JP2000281346A - Uv-transparent electric conductor - Google Patents

Uv-transparent electric conductor

Info

Publication number
JP2000281346A
JP2000281346A JP8523199A JP8523199A JP2000281346A JP 2000281346 A JP2000281346 A JP 2000281346A JP 8523199 A JP8523199 A JP 8523199A JP 8523199 A JP8523199 A JP 8523199A JP 2000281346 A JP2000281346 A JP 2000281346A
Authority
JP
Japan
Prior art keywords
crystal structure
electric conductor
perovskite crystal
conductor
transparent electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8523199A
Other languages
Japanese (ja)
Other versions
JP3194012B2 (en
Inventor
Hiroshi Mizoguchi
拓 溝口
Naoyuki Kitamura
直之 北村
Kohei Fukumi
幸平 福味
Masaki Makihara
正記 牧原
Junji Hayakawa
惇二 早川
Junji Nishii
準治 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP08523199A priority Critical patent/JP3194012B2/en
Publication of JP2000281346A publication Critical patent/JP2000281346A/en
Application granted granted Critical
Publication of JP3194012B2 publication Critical patent/JP3194012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a UV-transparent electric conductor having a transmission region extended to a UV region by using a material having a perovskite crystal structure or a material having an Na-site-defective perovskite crystal structure. SOLUTION: This transparent electric conductor consists of a material that has a perovskite crystal structure and is represented by the compositional formula RMoO3 (wherein R is Ca, Sr or Ba) or another material that has an Na-site- defective perovskite crystal structure and is represented by the compositional formula NaxWO3 (wherein 0.3<=x<=1). The transparent conductor can be produced by forming such a material on a substrate by using a radio-frequency magnetron sputtering method, vacuum deposition method, or the like. For example, the conditions for production of such a conductor consisting of SrMoO3 by a radio-frequency magnetron sputtering method are as follows: the target consists of an SrO-Mo mixture; the substrate consists of SiO2 glass; the gas pressure is 6×10-3 Torr; the gas composition consists of 95% of argon and 5% of hydrogen; and the radio-frequency power is 50 W. The conditions for production of such a conductor consisting of NaxWO3 by a vacuum deposition method are as follows: the raw material is an Na2CO3-WO3 sintered mixture placed in a tungsten boat; and the substrate consists of SiO2 glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、3〜4eVの領域の紫
外光を透過させることができるとともに、高い電気伝導
性を有する酸化物材料からなる紫外光透明電気伝導体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet transparent electric conductor made of an oxide material having a high electric conductivity and capable of transmitting ultraviolet light in a range of 3 to 4 eV.

【0002】[0002]

【従来の技術】従来、透明伝導性薄膜材料としては、酸
化インジウム、二酸化スズ、酸化亜鉛などが広く用いら
れている。これらの材料は、いずれも可視域の光子エネ
ルギー(1.6-3.2eV)にほぼ一致する光透過領域を有して
おり、その電気伝導度の典型値は、103Scm-1である。し
かしながら、これらの材料では、紫外光(3-4eV)の透過
率が低いという問題点がある。
2. Description of the Related Art Conventionally, indium oxide, tin dioxide, zinc oxide and the like have been widely used as transparent conductive thin film materials. Each of these materials has a light transmission region substantially matching the photon energy (1.6-3.2 eV) in the visible region, and a typical value of the electric conductivity is 10 3 Scm −1 . However, these materials have a problem that the transmittance of ultraviolet light (3-4 eV) is low.

【0003】透過波長の短波長化を図るために、酸化イ
ンジウムにスズを大量に導入したスズ置換酸化インジウ
ムが、使用されている。しかしながら、この材料におい
ても、透過領域の上限は、3.5eV程度にとどまってい
る。
[0003] In order to shorten the transmission wavelength, tin-substituted indium oxide obtained by introducing a large amount of tin into indium oxide is used. However, also in this material, the upper limit of the transmission region is about 3.5 eV.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明は、紫
外光域にまで透過領域を広げた透明伝導性材料を提供す
ることを主な目的とする。
SUMMARY OF THE INVENTION Accordingly, it is a main object of the present invention to provide a transparent conductive material whose transmission region is extended to an ultraviolet region.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記の様な
技術の現状に鑑みて研究を進めた結果、特定の組成式で
示される金属酸化物薄膜が、3〜4eVの領域の紫外光を透
過させることができるとともに、高い電気伝導性を有し
ていることを見出した。
Means for Solving the Problems The present inventor has conducted research in view of the state of the art as described above, and as a result, the metal oxide thin film represented by a specific composition formula has been found to be in the ultraviolet region of 3 to 4 eV. They have found that they can transmit light and have high electrical conductivity.

【0006】すなわち、本発明は、下記の紫外光透明電
気伝導体を提供するものである: 1.組成式RMoO3 (1) (RはCa、SrおよびBaの少なくとも1種である)で示され
るペロブスカイト型結晶構造材料からなる紫外光透明電
気伝導性体。 2.組成式NaxWO3 (2) (0.3≦x≦1である)で示されるNaサイト欠損ペロブスカ
イト型結晶構造材料からなる紫外光透明電気伝導性体。
That is, the present invention provides the following ultraviolet light transparent electric conductor: An ultraviolet light transparent electric conductor comprising a perovskite-type crystal structure material represented by a composition formula RMoO 3 (1) (R is at least one of Ca, Sr and Ba). 2. An ultraviolet-light transparent electric conductor comprising a Na-site-deficient perovskite-type crystal structure material represented by the composition formula Na x WO 3 (2) (where 0.3 ≦ x ≦ 1).

【0007】[0007]

【発明の実施の形態】本発明による紫外光透明電気伝導
体は、組成式RMoO3により示されるペロブスカイト型結
晶構造材料ならび組成式NaxWO3により示されるNaサイト
欠損ペロブスカイト型結晶構造材料からなる。
BEST MODE FOR CARRYING OUT THE INVENTION An ultraviolet transparent electric conductor according to the present invention comprises a perovskite-type crystal structure material represented by a composition formula RMoO 3 and a Na-site-deficient perovskite-type crystal structure material represented by a composition formula Na x WO 3. .

【0008】組成式RMoO3(1)で示される本発明材料にお
いて、Rは、Ca、SrおよびBaの少なくとも1種であり、
その結晶構造は、ペロブスカイト型である。
In the material of the present invention represented by the composition formula RMoO 3 (1), R is at least one of Ca, Sr and Ba;
Its crystal structure is perovskite type.

【0009】また、組成式NaxWO3(2)で示される本発明
材料においても、その結晶構造は、Naサイト欠損ペロブ
スカイト型である。
Further, also in the material of the present invention represented by the composition formula Na x WO 3 (2), the crystal structure is a Na site-deficient perovskite type.

【0010】上記組成式(1)および(2)で示されるペロブ
スカイト型結晶構造材料またはNaサイト欠損ペロブスカ
イト型結晶構造材料の製造方法は、特に制限されず、目
的とする用途乃至形態に応じて、公知の高周波マグネト
ロンスパッタリング法、真空蒸着法などにより適宜製造
することができる。製造条件の相違に関わりなく、上記
の組成と結晶構造とを有する限り、本発明の紫外光透明
電気伝導体が得られる。
The method for producing the perovskite-type crystal structure material or the Na-site-deficient perovskite-type crystal structure material represented by the above-mentioned composition formulas (1) and (2) is not particularly limited, and may be selected according to the intended use or form. It can be appropriately manufactured by a known high-frequency magnetron sputtering method, vacuum evaporation method, or the like. Irrespective of the difference in the production conditions, the ultraviolet light transparent electric conductor of the present invention can be obtained as long as it has the above composition and crystal structure.

【0011】より具体的に、例えば、高周波マグネトロ
ンスパッタリング法によりSrMoO3からなる本発明の紫外
光透明電気伝導性体を製造する場合の条件の一例は、下
記表1の通りである。
More specifically, for example, Table 1 below shows an example of conditions for producing the ultraviolet transparent electric conductor of the present invention comprising SrMoO 3 by a high frequency magnetron sputtering method.

【0012】[0012]

【表1】 [Table 1]

【0013】また、高周波マグネトロンスパッタリング
法によりNaxWO3からなる本発明の紫外光透明電気伝導性
体を製造する場合の条件の一例は、下記表2の通りであ
る。
Table 2 below shows an example of conditions for producing the ultraviolet transparent electric conductor of the present invention comprising Na x WO 3 by a high-frequency magnetron sputtering method.

【0014】[0014]

【表2】 [Table 2]

【0015】さらに、真空蒸着法によりNaxWO3からなる
本発明の紫外光透明電気伝導性体を製造する場合の条件
の一例は、下記表3の通りである。
Further, an example of the conditions for producing the ultraviolet light transparent electric conductor of the present invention comprising Na x WO 3 by a vacuum evaporation method is shown in Table 3 below.

【0016】[0016]

【表3】 [Table 3]

【0017】本発明による紫外光透過可能な透明伝導性
酸化物材料は、注入電子の濃度調整により、2〜4eVの領
域内で光透過領域を制御することができ、電気伝導度
は、約1E+4Scm-1にも達する。
The transparent conductive oxide material capable of transmitting ultraviolet light according to the present invention can control the light transmission region within the range of 2 to 4 eV by adjusting the concentration of injected electrons, and has an electric conductivity of about 1E. It reaches + 4Scm -1 .

【0018】[0018]

【発明の効果】本発明による紫外光透明電気伝導材料薄
膜は、添加イオンの量により、電気伝導度のみならず、
光透過波長領域を制御することができる。特に、その電
気伝導度は、従来の透明伝導度材料に比して、約1E+4Sc
m-1と大きいので、より薄い膜厚での実用化が可能とな
る。
According to the ultraviolet transparent electroconductive material thin film of the present invention, not only the electrical conductivity but also the
The light transmission wavelength region can be controlled. In particular, its electrical conductivity is about 1E + 4Sc compared to conventional transparent conductive materials.
Since it is as large as m- 1 , practical application with a thinner film thickness is possible.

【0019】従って、本発明による紫外光透明電気伝導
材料は、液晶ディスプレイ、光電効果を利用する太陽電
池、光伝導セルなどの窓材、光学バンドパスフィルタな
どとして有用である。
Therefore, the ultraviolet transparent electric conductive material according to the present invention is useful as a liquid crystal display, a window material such as a solar cell utilizing a photoelectric effect, a photoconductive cell, and an optical bandpass filter.

【0020】[0020]

【実施例】以下に実施例を示し、本発明の特徴とすると
ころをより一層明確にする。 実施例1 高周波マグネトロンスパッタリング法により、シリカガ
ラス基板上にRサイト欠損ペロブスカイト型構造材料と
してNaxWO3薄膜を形成させた。高周波マグネトロンスパ
ッタリング法による薄膜形成条件は、前記表1に示すと
おりであった。
EXAMPLES Examples are shown below to further clarify the features of the present invention. Example 1 A Na x WO 3 thin film was formed as an R-site-deficient perovskite structure material on a silica glass substrate by a high-frequency magnetron sputtering method. The conditions for forming the thin film by the high-frequency magnetron sputtering method were as shown in Table 1 above.

【0021】得られた薄膜(0.15〜0.25μm)について、
分光光度計により光吸収を測定し、直流4端子法により
電気伝導度を測定した。測定は、いずれも室温で行っ
た。光吸収の測定結果を図1に示し、電気伝導度の測定
結果を図2に示す。
With respect to the obtained thin film (0.15-0.25 μm),
The light absorption was measured by a spectrophotometer, and the electric conductivity was measured by a DC four-terminal method. All measurements were performed at room temperature. FIG. 1 shows the measurement results of the light absorption, and FIG. 2 shows the measurement results of the electric conductivity.

【0022】図1から明らかな通り、NaxWO3に大量に電
子を注入することにより、可視域から紫外域にかけて、
約1eVの幅で103〜104cm-1という低い吸収係数を示す。
すなわち、Na添加量によりキャリア濃度を制御すること
により、約2〜4eVの光子エネルギー範囲内で透過領域の
位置を制御することができる。例えば、Na0.9WO3薄膜に
おいて、電子注入を行った場合には、約4eVまで透過領
域が平行移動している。
As is apparent from FIG. 1, by injecting a large amount of electrons into Na x WO 3 , from the visible region to the ultraviolet region,
It exhibits a low absorption coefficient of 10 3 to 10 4 cm −1 with a width of about 1 eV.
That is, by controlling the carrier concentration by the amount of added Na, the position of the transmission region can be controlled within a photon energy range of about 2 to 4 eV. For example, when electron injection is performed on a Na 0.9 WO 3 thin film, the transmissive region moves parallel to about 4 eV.

【0023】また、Na添加量の増大にほぼ比例して、電
気伝導度が増大し、Na0.9WO3薄膜においては、6E+4Scm
-1にも達している。 実施例2 実施例1の手法に準じて、ペロブスカイト型構造を有す
る材料として、シリカガラス基板上にそれぞれCaMoO3
SrMoO3およびBaMoO3の薄膜を形成させた。
In addition, the electric conductivity increases almost in proportion to the increase in the amount of added Na, and in the Na 0.9 WO 3 thin film, 6E + 4 Scm
It has reached -1 . Example 2 According to the method of Example 1, as a material having a perovskite structure, CaMoO 3 ,
SrMoO 3 and BaMoO 3 thin films were formed.

【0024】得られたSrMoO3薄膜(約0.25μm)につい
て、分光光度計により光吸収を測定し、直流4端子法に
より電気伝導度を測定した。測定は、いずれも室温で行
った。
With respect to the obtained SrMoO 3 thin film (about 0.25 μm), light absorption was measured by a spectrophotometer, and electric conductivity was measured by a DC four-terminal method. All measurements were performed at room temperature.

【0025】得られたSrMoO3薄膜は、図3から明らかな
通り、2.1〜3.5eVの光子エネルギー域に光透過領域を有
しており、電気伝導度は、8E+3Scm-1であった。
As is apparent from FIG. 3, the obtained SrMoO 3 thin film has a light transmission region in a photon energy region of 2.1 to 3.5 eV, and has an electric conductivity of 8E + 3 Scm −1 .

【0026】また、これらの薄膜は、硝酸水溶液に容易
に溶解するので、用途に応じてエッチングに供すること
ができる。
Further, since these thin films are easily dissolved in a nitric acid aqueous solution, they can be subjected to etching depending on the application.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたNaxWO3薄膜において、光吸
収スペクトルにおよぼすNa量の影響を示すグラフであ
る。
FIG. 1 is a graph showing the influence of the amount of Na on the light absorption spectrum of the Na x WO 3 thin film obtained in Example 1.

【図2】実施例1で得られたNaxWO3薄膜において、電気
伝導度におよぼすNa量の影響を示すグラフである。
FIG. 2 is a graph showing the effect of the amount of Na on electric conductivity in the Na x WO 3 thin film obtained in Example 1.

【図3】実施例2で得られたSrMoO3薄膜による光吸収ス
ペクトルを示すグラフである。
FIG. 3 is a graph showing a light absorption spectrum of a SrMoO 3 thin film obtained in Example 2.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年4月12日(2000.4.1
2)
[Submission date] April 12, 2000 (2004.1.
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福味 幸平 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 牧原 正記 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 早川 惇二 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 西井 準治 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 Fターム(参考) 4G048 AA04 AA05 AB01 AC04 AC08 AD02 AD08 AE05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kohei Fukumi, 1-8-3, Midorioka, Ikeda-shi, Osaka Prefecture Inside the Industrial Technology Research Institute, Osaka Institute of Technology (72) Inventor, Masaki Makihara 1-8 Midorioka, Ikeda-shi, Osaka No. 31 Inside the Osaka Institute of Technology (72) Inventor Junji Hayakawa 1-81-31 Midorioka, Ikeda-shi, Osaka Inside the Institute of Industrial Technology Osaka (72) Junji Nishii Osaka 1-8-3 Midorigaoka, Ikeda-shi F-term in Osaka Institute of Technology (reference) 4G048 AA04 AA05 AB01 AC04 AC08 AD02 AD08 AE05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】組成式RMoO3 (1) (RはCa、SrおよびBaの少なくとも1種である)で示され
るペロブスカイト型結晶構造材料からなる紫外光透明電
気伝導性体。
1. An ultraviolet transparent electric conductor comprising a perovskite-type crystal structure material represented by a composition formula RMoO 3 (1) (R is at least one of Ca, Sr and Ba).
【請求項2】組成式NaxWO3 (2) (0.3≦x≦1である)で示されるNaサイト欠損ペロブスカ
イト型結晶構造材料からなる紫外光透明電気伝導性体。
2. An ultraviolet light-transparent electric conductor comprising a Na-site-deficient perovskite-type crystal structure material represented by a composition formula of Na x WO 3 (2) (where 0.3 ≦ x ≦ 1).
JP08523199A 1999-03-29 1999-03-29 Ultraviolet transparent electric conductor Expired - Lifetime JP3194012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08523199A JP3194012B2 (en) 1999-03-29 1999-03-29 Ultraviolet transparent electric conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08523199A JP3194012B2 (en) 1999-03-29 1999-03-29 Ultraviolet transparent electric conductor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000386379A Division JP2001253716A (en) 2000-12-20 2000-12-20 Ultraviolet ray transparent electroconductive material

Publications (2)

Publication Number Publication Date
JP2000281346A true JP2000281346A (en) 2000-10-10
JP3194012B2 JP3194012B2 (en) 2001-07-30

Family

ID=13852801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08523199A Expired - Lifetime JP3194012B2 (en) 1999-03-29 1999-03-29 Ultraviolet transparent electric conductor

Country Status (1)

Country Link
JP (1) JP3194012B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639143B2 (en) * 2001-08-24 2003-10-28 Samsung Sdi Co. Ltd. Solar cell using ferroelectric material(s)
WO2006025470A1 (en) * 2004-08-31 2006-03-09 Sumitomo Metal Mining Co., Ltd. Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
US7431984B2 (en) * 2004-10-01 2008-10-07 Murata Manufacturing Co., Ltd. Hybrid lens using translucent ceramic
JP2011195442A (en) * 2004-08-31 2011-10-06 Sumitomo Metal Mining Co Ltd Transparent conductive film and method of manufacturing the same and transparent conductive article
CN109928751A (en) * 2019-03-21 2019-06-25 中国科学院宁波材料技术与工程研究所 A kind of SrMoO3The preparation method of ceramic target
US10629321B2 (en) 2014-04-09 2020-04-21 Cornell University Misfit p-type transparent conductive oxide (TCO) films, methods and applications
US11105959B2 (en) 2004-08-31 2021-08-31 Sumitomo Metal Mining Co., Ltd. Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099970B1 (en) 2013-11-01 2020-04-10 삼성전자주식회사 Transparent conductive thin film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639143B2 (en) * 2001-08-24 2003-10-28 Samsung Sdi Co. Ltd. Solar cell using ferroelectric material(s)
WO2006025470A1 (en) * 2004-08-31 2006-03-09 Sumitomo Metal Mining Co., Ltd. Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
JP2011195442A (en) * 2004-08-31 2011-10-06 Sumitomo Metal Mining Co Ltd Transparent conductive film and method of manufacturing the same and transparent conductive article
US8980135B2 (en) 2004-08-31 2015-03-17 Sumitomo Metal Mining Co., Ltd. Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article
US11105959B2 (en) 2004-08-31 2021-08-31 Sumitomo Metal Mining Co., Ltd. Electroconductive particle, visible light transmitting particle-dispersed electrical conductor and manufacturing method thereof, transparent electroconductive thin film and manufacturing method thereof, transparent electroconductive article that uses the same, and infrared-shielding article
US7431984B2 (en) * 2004-10-01 2008-10-07 Murata Manufacturing Co., Ltd. Hybrid lens using translucent ceramic
US10629321B2 (en) 2014-04-09 2020-04-21 Cornell University Misfit p-type transparent conductive oxide (TCO) films, methods and applications
CN109928751A (en) * 2019-03-21 2019-06-25 中国科学院宁波材料技术与工程研究所 A kind of SrMoO3The preparation method of ceramic target

Also Published As

Publication number Publication date
JP3194012B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
Xirouchaki et al. Photoreduction and oxidation of as‐deposited microcrystalline indium oxide
JP3358893B2 (en) Transparent conductor containing gallium-indium oxide
JP2000067657A (en) Transparent conductive film excellent in infrared transmission and its manufacture
JP2000044236A (en) Article having transparent conductive oxide thin film and its production
US10366803B2 (en) Metal oxide thin film, method for depositing metal oxide thin film and device comprising metal oxide thin film
US6761986B2 (en) Thin film infrared transparent conductor
Choi et al. Low-temperature deposition of thermochromic VO2 thin films on glass substrates
RU2404124C2 (en) Gallium-containing zinc oxide
KR20100049536A (en) Conductor layer manufacturing method
CN109872835A (en) A kind of infrared transparent conductive film, and its preparation method and application
JP2000281346A (en) Uv-transparent electric conductor
Ravichandran et al. Effect of annealing on the transparent conducting properties of fluorine doped zinc oxide and tin oxide thin films–A comparative study
Madhuri et al. Physical investigations on electron beam evaporated V2O5–MoO3 thin films
Tezel et al. Structural and optical properties of undoped and silver, lithium and cobalt-doped ZnO thin films
Adurodija et al. The electro-optical properties of amorphous indium tin oxide films prepared at room temperature by pulsed laser deposition
JP2001253716A (en) Ultraviolet ray transparent electroconductive material
Kala et al. Structural and luminescence studies on TiO 2-MoO 3 thin films
JPS62229B2 (en)
Ashraf et al. Characterization of ternary MgxZn1− xO thin films deposited by electron beam evaporation
Wu et al. The Role of Annealing Process in Ag-Based BaSnO 3 Multilayer Thin Films
Syed Feroze Hussain et al. A review on optically transparent antenna fabricated with conductive nano-material oxides
Wu et al. Properties of nano-thick BaSnO 3/Cu/BaSnO 3 multilayer thin films: the role of substrate temperature
JP2001133814A (en) Self-power supply type dimming element
CN114032501B (en) Method for compatible far infrared transparency and conductivity in film material
Bhandari et al. Optical properties of [Ta2O5] 1-x [TiO2] x,(x= 0.08) thin films

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term