JP2000281330A - Production of dispersion of silica fine particles - Google Patents

Production of dispersion of silica fine particles

Info

Publication number
JP2000281330A
JP2000281330A JP11094632A JP9463299A JP2000281330A JP 2000281330 A JP2000281330 A JP 2000281330A JP 11094632 A JP11094632 A JP 11094632A JP 9463299 A JP9463299 A JP 9463299A JP 2000281330 A JP2000281330 A JP 2000281330A
Authority
JP
Japan
Prior art keywords
silica fine
ink
fine particles
silica
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11094632A
Other languages
Japanese (ja)
Other versions
JP4158274B2 (en
Inventor
Katsuto Suzuki
勝人 鈴木
Kozo Tajiri
耕三 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP09463299A priority Critical patent/JP4158274B2/en
Publication of JP2000281330A publication Critical patent/JP2000281330A/en
Application granted granted Critical
Publication of JP4158274B2 publication Critical patent/JP4158274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing silica fine particles which are capable of rapidly absorbing a large amount of ink when they are used in an ink absorbing layer of ink-jet recording sheet, thereby the surface of the absorbing layer becomes glossy and a clear full color image thick in color density can be obtained. SOLUTION: In this method for producing a dispersion of silica fine particles by hydrolyzing an alkoxy silane, the hydrolysis is carried out by using water in an amount of 40-800 mol per mole of silicon without using catalysts, thereby the silica fine particles having specific surface area of 150-500 m2/g, aggregated particle sizes of 100-250 nm when the sizes are measured using a laser particle size analyzer and a volume of 0.5-1.5 ml/g are obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インクジェット記
録法に用いられる被記録材料に関し、インク吸収層とし
て好適に用いられるシリカ微粒子分散液の製造法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording material used in an ink jet recording method, and to a method for producing a silica fine particle dispersion suitably used as an ink absorbing layer.

【0002】[0002]

【従来の技術】従来、コンピューターなどの出力用とし
て、ワイヤードット記録方式、感熱発色記録方式、溶融
熱転写記録方式、昇華記録方式、電子写真記録方式、イ
ンクジェット記録方式などの種々の方式が開発されてい
る。この中で水性インクを用いるインクジェット記録方
式は、ランニングコストが安価なこと、ハードウェアが
コンパクトで安価なことなどから、パーソナルユーズに
適した記録方式として認知されている。さらに近年、フ
ルカラー化及び高解像度化が達成されたことによりカラ
ー画像の手軽な出力手段としても注目され、広く普及し
つつある。一般に、インクジェット記録シートは、多孔
性顔料を適用したインク吸収特性を有するインク受容層
を設けて、画質を決定する色彩性や鮮鋭性のコントロー
ルを行い、色再現性や画像再現性の向上を図っている。
インク吸収性のあるインク受容層はインクを吸収し、保
持するためにインク受容層中の空隙を多く有する必要が
ある。このような用途に使用される顔料として安価に入
手できる工業製品の水ガラスから製造されているシリカ
がある。例えば、特開平9―95042号公報には珪酸
アルカリ水溶液に、30℃〜40℃の液温を保ちなが
ら、該珪酸アルカリを中和するのに必要な硫酸の45〜
55%となる酸の量を添加して、該溶液を85℃〜95
℃まで昇温し、硫酸をpHが3〜4になるまで連続的に
添加した後粉末を得たのち粉砕、分級することにより含
水珪酸非晶質シリカを得る方法が公示されている。しか
し、このような方法で得られる顔料は光の波長に比べて
大きいために、インク受容層への入射光が散乱されてし
まったり、透過が妨げられるため、不透明になり、空隙
に浸透したインクに光が到達しにくくなるため画像が白
っぽくなり、色再現性及び色濃度が低下する。また、空
隙の多いインク受容層は、多孔質な表面となることか
ら、高い光沢を望むことは難しい。
2. Description of the Related Art Conventionally, various systems such as a wire dot recording system, a thermosensitive color recording system, a fusion heat transfer recording system, a sublimation recording system, an electrophotographic recording system, and an ink jet recording system have been developed. I have. Among these, the ink jet recording method using an aqueous ink has been recognized as a recording method suitable for personal use because of its low running cost and compact and inexpensive hardware. Further, in recent years, the achievement of full color and high resolution has attracted attention as a means for easily outputting a color image, and is becoming widespread. In general, an ink jet recording sheet is provided with an ink receiving layer having an ink absorption property to which a porous pigment is applied to control color and sharpness that determine image quality, thereby improving color reproducibility and image reproducibility. ing.
An ink-absorbing ink-receiving layer must have many voids in the ink-receiving layer to absorb and retain the ink. As a pigment used in such an application, there is silica manufactured from water glass, an industrial product, which is available at a low cost. For example, Japanese Patent Application Laid-Open No. 9-95042 discloses an aqueous solution of alkali silicate containing 45 to 45% of sulfuric acid necessary for neutralizing the alkali silicate while maintaining the solution temperature at 30 ° C to 40 ° C.
The solution is brought to 85 ° C. to 95 ° C.
There has been disclosed a method of obtaining a hydrous silicate amorphous silica by raising the temperature to 0 ° C., continuously adding sulfuric acid until the pH becomes 3 to 4, obtaining a powder, and then pulverizing and classifying the powder. However, since the pigment obtained by such a method is large compared to the wavelength of light, the light incident on the ink receiving layer is scattered or the transmission is hindered, so that the ink becomes opaque and the ink penetrated into the voids As light hardly reaches the image, the image becomes whitish, and the color reproducibility and color density decrease. In addition, since the ink receiving layer having many voids has a porous surface, it is difficult to obtain high gloss.

【0003】また特開平2―278870号公報には、
擬ベーマイトよりなるインク受容層が開示されている。
小さい一次粒子間にインク中の比較的分子量の小さい水
や溶剤(インク成分中の90%以上を占める)を吸収さ
せ、大きな二次粒子間にインク中の染料を吸収させて定
着する構成である。この場合、ある程度の透明性を有し
ており、擬ベーマイト自身がカチオン性をおびているた
めにアニオン性である染料の定着に優れ、水溶性高分子
よりなるインク受容層に比較して耐水性に優れている
が、以下の課題が依然として残る。すなわち、擬ベーマ
イトはアルミナの結晶体の一種類であり、粒子は六角板
状の形を呈しているが、このような形状をもつ一次粒子
からなる二次粒子は薄板状結晶が互いに折り重なったス
リット型細孔と呼ばれる空隙構造を持つが(コロイド科
学、I 基礎及び分散・吸着、日本化学会編、p27
4)、このような細孔は、球状のシリカ一次粒子からな
る二次粒子の形成する細孔に比べて空隙容量が比較的少
ない。このためインクジェット記録用顔料として使用し
た場合、インクの吸収性においてシリカ系顔料に比べて
劣るという欠点がある。またアルミナとの発色性の悪い
インク(例えばアシットレッド52(食用赤色106
号)等の赤色)には向かない。さらに擬ベーマイトはコ
ストも高く、一般用途には向かない欠点がある。
[0003] Japanese Patent Application Laid-Open No. 2-278870 discloses that
An ink receiving layer comprising pseudo-boehmite is disclosed.
Water and a solvent (occupying 90% or more of the ink components) having a relatively small molecular weight in the ink are absorbed between the small primary particles, and the dye in the ink is absorbed and fixed between the large secondary particles. . In this case, the pseudo-boehmite itself has a certain degree of transparency, is excellent in fixing an anionic dye because it has cationic properties, and has a higher water resistance than an ink receiving layer composed of a water-soluble polymer. Although excellent, the following challenges remain. In other words, pseudo-boehmite is a type of alumina crystal, and the particles have a hexagonal plate shape.Secondary particles composed of primary particles having such a shape are slits in which thin plate crystals are folded over each other. It has a void structure called a pore type (Colloid Science, I Fundamentals and Dispersion / Adsorption, Chemical Society of Japan, p. 27)
4) Such pores have a relatively small void volume as compared to pores formed by secondary particles composed of spherical silica primary particles. Therefore, when used as a pigment for ink jet recording, there is a disadvantage that the ink absorbency is inferior to that of a silica pigment. In addition, ink having poor coloring properties with alumina (for example, Acid Red 52 (edible red 106)
Not suitable for red). Furthermore, pseudo-boehmite has a high cost and is not suitable for general use.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
のインクジェット記録シート用シリカの欠点を改善し、
インクジェット記録シートのインク吸収層に好適に用い
られる微細シリカの製造方法を提供しようとするもので
ある。即ちインク吸収層に用いることにより、多量のイ
ンクを素早く吸収でき、吸収層の表面の光沢が高く、色
濃度の濃い鮮やかなフルカラー画像が得られる微細シリ
カの製造方法を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the disadvantages of the conventional silica for ink jet recording sheets,
An object of the present invention is to provide a method for producing fine silica which is suitably used for an ink absorbing layer of an ink jet recording sheet. In other words, an object of the present invention is to provide a method for producing fine silica capable of quickly absorbing a large amount of ink, having a high gloss on the surface of the absorption layer, and obtaining a bright full-color image with a high color density by using the ink absorption layer. .

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決するため、シリカ系の顔料について種々検討した。
シリカを得る方法としては前述したように珪酸アルカ
リを鉱酸で処理した後に粉砕する方法が一般的であり、
この方法により得られるシリカは一次粒子が凝集した構
造をもっている。しかしこの方法で得られるシリカはイ
ンク吸収容量は大きいが、二次粒子径が大きすぎるため
に色濃度が低く、インクジェット記録シートの光沢が低
くくなるという欠点があった。
Means for Solving the Problems In order to solve the above problems, the present inventors have made various studies on silica pigments.
As a method for obtaining silica, a method in which alkali silicate is treated with a mineral acid and then pulverized as described above is generally used,
The silica obtained by this method has a structure in which primary particles are aggregated. However, the silica obtained by this method has a large ink absorption capacity, but has the disadvantage that the secondary particle diameter is too large, so that the color density is low and the gloss of the ink jet recording sheet is low.

【0006】また一次粒子が凝集せずに分散したコロイ
ダルシリカでは、インクジェット記録シートの透明性と
光沢は得られるものの、インク吸収容量が小さいことが
わかった。
Further, it was found that the colloidal silica in which the primary particles were dispersed without agglomeration provided the transparency and gloss of the ink jet recording sheet, but had a small ink absorption capacity.

【0007】しかし、アルコキシシランを特定の条件の
もとで加水分解して得られる微粒子は一次粒子が凝集し
た二次粒子となり、インク吸収量が多く、なおかつ透明
性が高いことを見出し、本発明に至った。
However, it has been found that fine particles obtained by hydrolyzing alkoxysilane under specific conditions become secondary particles in which primary particles are aggregated, have a large ink absorption amount, and have high transparency. Reached.

【0008】アルコキシシランを加水分解するとシリカ
が生成するのは公知のことであり、アルコキシシランを
酸性または塩基性触媒を用いて加水分解し、シリカ微粒
子からなるゲルを合成し、ついでこのゲルを乾燥後、焼
成して石英ガラスを製造する方法はよく知られている
(例えば作花済夫著“ゾルーゲル法の科学”、p28、
アグネ承風社出版)。またアルコキシシランを加水分解
して単分散シリカを製造できることも公知である(W.
Stoberら、JOURNAL OF COLLOID
AND INTERFACE SCIENCE,第26
巻第62〜69項、1968)。しかしながら、本発明
者らの課題はシリカゲルでも単分散シリカでもなく、比
表面積が150m2/g〜500m2/gであるシリカ一
次粒子が凝集して生じる粒子径10nm〜250nm、
かつ細孔容量が0.5ml/g〜1.5ml/gの二次粒
子が溶媒に安定に分散した分散液の製造法に関するもの
である。
It is known that silica is formed when an alkoxysilane is hydrolyzed. The alkoxysilane is hydrolyzed using an acidic or basic catalyst to synthesize a gel composed of silica fine particles, and then the gel is dried. Thereafter, a method for producing quartz glass by firing is well known (for example, “Sol-gel method science” by Sakubana S., p28,
Agune Shofusha Publishing). It is also known that monodisperse silica can be produced by hydrolyzing alkoxysilane (W.
Stover et al., JOURNAL OF COLLOID
AND INTERFACE SCIENCE, 26th
Vol. 62-69, 1968). However, the inventors of the problem is neither in monodisperse silica gel, particle size specific surface area is caused by the silica primary particles aggregate is 150m 2 / g~500m 2 / g 10nm~250nm ,
The present invention also relates to a method for producing a dispersion in which secondary particles having a pore volume of 0.5 ml / g to 1.5 ml / g are stably dispersed in a solvent.

【0009】本発明は、アルコキシシランを加水分解す
る際に従来のゾルゲル法に使用されるよりはるかに多量
の水を使用し、かつ加水分解を行う際に酸や塩基などの
加水分解触媒を使用しないことで目的とするシリカ微粒
子の分散液が得られ、このシリカ微粒子をインクジェッ
ト記録シートのインク受容層に用いた場合、多量のイン
クを吸収することができ、高い光沢と印字濃度が得られ
ることを見出した。本発明はこのような知見に基づくも
のである。
According to the present invention, a much larger amount of water is used in hydrolyzing an alkoxysilane than that used in the conventional sol-gel method, and a hydrolysis catalyst such as an acid or a base is used in performing the hydrolysis. By doing so, a dispersion of the desired silica fine particles is obtained.When the silica fine particles are used in the ink receiving layer of the inkjet recording sheet, a large amount of ink can be absorbed, and high gloss and print density can be obtained. Was found. The present invention is based on such findings.

【0010】本発明の第一は、「アルコキシシランを加
水分解してシリカ微粒子分散液を製造する方法におい
て、加水分解を、珪素1モルあたり40〜800モルの
水を使用し、かつ、触媒を使用せずに行うことによっ
て、比表面積が150m2/g〜500m2/gであり、
レーザー粒度計による二次粒子径が10nm〜250n
mであり、細孔容量が0.5ml/g〜1.5ml/g
であるシリカ微粒子を得ることを特徴とする、シリカ微
粒子分散液の製造方法」である。
The first aspect of the present invention is a method for producing a silica fine particle dispersion by hydrolyzing an alkoxysilane, wherein the hydrolysis is carried out using 40 to 800 mol of water per mol of silicon, and using a catalyst. by performing without using the specific surface area of 150m 2 / g~500m 2 / g,
Secondary particle size by laser granulometer is 10nm ~ 250n
m and the pore volume is 0.5 ml / g to 1.5 ml / g
A method for producing a silica fine particle dispersion, characterized by obtaining silica fine particles.

【0011】本発明の第二の発明は、「第一の発明にお
いて水及びアルコキシシランの温度を予め25℃以下に
調節した後、混合し、次いで該混合物を攪拌しながら加
熱することによって加水分解を行うことを特徴とする本
発明の第一に記載のシリカ微粒子分散液の製造方法」で
ある。ここにおいて、加水分解は、40℃〜100℃の
間で行われることが好ましい。
[0011] The second invention of the present invention relates to the method described in the first invention, wherein the temperature of water and the alkoxysilane is previously adjusted to 25 ° C. or less, mixed, and then the mixture is heated with stirring to carry out hydrolysis. And the method for producing a silica fine particle dispersion according to the first aspect of the present invention. Here, the hydrolysis is preferably performed at a temperature between 40 ° C and 100 ° C.

【0012】[0012]

【発明の実施の形態】本発明で製造されるシリカ微粒子
とは比表面積が150m2/g〜500m2/gであり、
レーザー粒度計による二次粒子径が10nm〜350n
mであり且つ細孔容量が0.5ml/g〜1.5ml/
gである。 比表面積が小さいことは一次粒子径が大きいことを意味
し、比表面積が大きいことは一次粒子径が小さいことを
意味する。球状シリカ粒子が単分散コロイド状シリカで
ある場合、粒子の直径は、D(nm)=2.727×1
3/比表面積(m2/g)で表されるが、本発明のシリ
カ微粒子は一次粒子が化学結合して二次粒子を形成して
いるため一次粒子の直径を正確に求めることは困難であ
る。また本発明で製造されるシリカ微粒子を透過型電子
顕微鏡(日立株式会社製、商標:H−300形日立電子
顕微鏡)で観察したところ、直径5nm〜20nmの球
状一次粒子が緩やかに凝集した構造をしていた。このた
め本発明では一次粒子の粒子径を比表面積で表した。本
発明のシリカ比表面積が上記範囲より小さい場合、イン
クジェット受容層として適用したとき、光の散乱が大き
くなり、インク受容層の透明性が低下し、印字濃度の低
下を招くため好ましくない。逆に上記範囲より大きいと
様々な問題が生じる。例えば一次粒子があまりにも小さ
いため、シリカ微粒子分散液の濃縮が困難となり、無理
に濃縮するとシリカ粒子が過剰に凝集し分散液のゲル化
を招く。また十分に濃縮せずにシリカ微粒子の希薄溶液
を塗工すると十分な塗工量を得ることが困難である。そ
の上シリカ微粒子の比表面積が上記範囲よりも大きいと
インク受容層の毛細管収縮が著しく大きくなるため乾燥
時にひび割れが生じ表面平滑性が下がり、光沢が落ちる
など様々な問題が生じる。上記範囲に比表面積を制御す
ることで、透明性が高く、作業性に優れたシリカ微粒子
分散液を得ることができる。
The specific surface area of silica fine particles produced by DETAILED DESCRIPTION OF THE INVENTION The present invention is 150m 2 / g~500m 2 / g,
Secondary particle size by laser granulometer is 10nm ~ 350n
m and the pore volume is 0.5 ml / g to 1.5 ml /
g. A small specific surface area means that the primary particle diameter is large, and a large specific surface area means that the primary particle diameter is small. When the spherical silica particles are monodisperse colloidal silica, the diameter of the particles is D (nm) = 2.727 × 1
0 3 / specific surface area (m 2 / g), but it is difficult to accurately determine the diameter of the primary particles of the silica fine particles of the present invention because the primary particles are chemically bonded to form secondary particles. It is. When the silica fine particles produced by the present invention were observed with a transmission electron microscope (trade name: H-300 type Hitachi Electron Microscope, manufactured by Hitachi, Ltd.), a structure in which spherical primary particles having a diameter of 5 nm to 20 nm were loosely aggregated was observed. Was. For this reason, in the present invention, the particle diameter of the primary particles is represented by the specific surface area. When the silica specific surface area of the present invention is smaller than the above range, when applied as an inkjet receiving layer, light scattering is increased, the transparency of the ink receiving layer is reduced, and the print density is undesirably reduced. Conversely, if it is larger than the above range, various problems occur. For example, since the primary particles are too small, it is difficult to concentrate the silica fine particle dispersion, and when the silica fine particles are forcibly concentrated, the silica particles excessively aggregate and gelation of the dispersion is caused. Further, when a dilute solution of silica fine particles is applied without sufficiently concentrating, it is difficult to obtain a sufficient coating amount. In addition, if the specific surface area of the silica fine particles is larger than the above range, the capillary shrinkage of the ink receiving layer becomes remarkably large, so that cracks are caused at the time of drying, surface smoothness is reduced, and various problems such as a decrease in gloss occur. By controlling the specific surface area within the above range, a silica fine particle dispersion having high transparency and excellent workability can be obtained.

【0013】本発明で製造されるシリカ微粒子はレーザ
ー粒度計による二次粒子径が10nm〜250nmの範
囲である。本発明の二次粒子径の測定は動的光散乱法の
原理を利用したレーザー粒度計を用いた。懸濁溶液や溶
液中に分散している微粒子はブラウン運動をしている。
その動きは大きな粒子では遅く、小さな粒子では速くな
る。この溶液中にレーザー光(He−Neレーザー)を
照射するとレーリー散乱により光が散乱し、ドップラー
シフトをする。この振動数のシフトを光子検出法を用い
て観測し、解析することにより粒子径、粒度径分布を得
ることができる。本発明では合成して得られた微粒子を
水中で十分に希釈した状態で粒子径を測定した。本発明
の一次粒子径は少なくとも5nm程度の大きさを持って
いるため、二次粒子径が上記範囲よりも小さい値をとる
ことはない。二次粒子径が上記範囲よりも大きい場合は
インク受理層に微粒子を塗工した場合、表面にミクロな
凸凹が生じ、光沢が低下する。
The silica fine particles produced by the present invention have a secondary particle size of 10 nm to 250 nm as measured by a laser granulometer. The secondary particle diameter of the present invention was measured using a laser granulometer utilizing the principle of the dynamic light scattering method. The suspended solution and the fine particles dispersed in the solution have Brownian motion.
The movement is slow for large particles and fast for small particles. When this solution is irradiated with laser light (He-Ne laser), the light is scattered by Rayleigh scattering, causing a Doppler shift. By observing and analyzing the shift of the frequency using the photon detection method, the particle size and the particle size distribution can be obtained. In the present invention, the particle diameter was measured in a state where the fine particles obtained by synthesis were sufficiently diluted in water. Since the primary particle diameter of the present invention has a size of at least about 5 nm, the secondary particle diameter does not take a value smaller than the above range. When the secondary particle diameter is larger than the above range, when fine particles are applied to the ink receiving layer, micro unevenness occurs on the surface, and the gloss is reduced.

【0014】本発明で製造されるシリカ微粒子の細孔容
量は0.5ml/g〜1.5ml/gである。上記範囲
よりも細孔容量が小さい場合は、インクをバインダーと
混ぜて塗工した場合、インク受理層の空隙が少なくな
り、インクを十分に吸収することができない。上記範囲
よりも大きい空隙容量を得ようとすると、一次粒子を更
に小さくする必要があるため好ましくない。なお、本発
明で言う細孔容量は、シリカ微粒子分散液をPETフィ
ルムに塗布、105℃にて乾燥し、そこから塗膜を剥が
し、その試料をCoulter社製のSA3100型を
用いて窒素吸着法により測定した値を意味し、対応する
細孔直径として100nm以下の細孔の積算容積であ
る。
The fine silica particles produced in the present invention have a pore volume of 0.5 ml / g to 1.5 ml / g. When the pore volume is smaller than the above range, when the ink is mixed with the binder and applied, the voids in the ink receiving layer are reduced, and the ink cannot be sufficiently absorbed. It is not preferable to obtain a void volume larger than the above range because it is necessary to further reduce the primary particles. The pore volume as referred to in the present invention is determined by applying a silica fine particle dispersion to a PET film, drying at 105 ° C., peeling the coating film from the dispersion, and then subjecting the sample to nitrogen adsorption using Coulter SA3100. Means the integrated volume of pores having a diameter of 100 nm or less as the corresponding pore diameter.

【0015】以下に製造法につき詳細に説明する。本発
明で使用するアルコキシシランとしては、テトラメトキ
シシラン、テトラエトキシシラン、テトラプロポキシシ
ラン、テトラ−n−ブトキシシラン、テトラ−sec−
ブトキシシラン、テトラ−tert−ブトキシシランな
どを原料として用いることができ、これらのアルコキシ
シランが縮合したオリゴマーでも良く、これらの中でテ
トラエトキシシランが特に好ましい。
Hereinafter, the manufacturing method will be described in detail. As the alkoxysilane used in the present invention, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetra-n-butoxysilane, tetra-sec-
Butoxysilane, tetra-tert-butoxysilane and the like can be used as a raw material, and an oligomer obtained by condensation of these alkoxysilanes may be used. Among them, tetraethoxysilane is particularly preferable.

【0016】本発明は、アルコキシシランに含まれる珪
素1モルあたり40〜800モル、より好ましくは50
〜800モル、さらに好ましくは100〜400モルの
水を加えて加水分解して重縮合することにより一次粒子
を形成させた後に二次粒子を生成させるものである。
According to the present invention, 40 to 800 moles, preferably 50 moles, per mole of silicon contained in the alkoxysilane is used.
To form secondary particles after forming primary particles by subjecting to hydrolysis and polycondensation by adding water of 800800 mol, more preferably 100-400 mol.

【0017】アルコキシシランに含有される珪素1モル
あたり水が50モル未満の水で加水分解を行なった場合
では粒子の凝集が過剰に促進され、粗大な二次粒子が生
成するので不適である。逆に珪素1モルあたりの水が8
00モルを越えると水溶液中の水和珪酸の一次粒子同士
の衝突頻度が相対的に少ないためか、二次粒子が形成さ
れない。
If the hydrolysis is carried out with less than 50 moles of water per mole of silicon contained in the alkoxysilane, the aggregation of particles is excessively promoted and coarse secondary particles are formed, which is not suitable. Conversely, water per mole of silicon is 8
If it exceeds 00 mol, secondary particles are not formed, probably because the frequency of collision between the primary particles of the hydrated silica in the aqueous solution is relatively low.

【0018】また本発明においては触媒を使用しないで
加水分解を行うことが重要である。アルコキシシランの
加水分解の反応機構が酸性条件下及び塩基性条件下では
異なることは知られている(例えば作花済夫著“ゾルー
ゲル法の科学”、p160、アグネ承風社出版、セラミ
ックス 31、1996、No.6)。酸性条件下で加水分解を
行なった場合、鎖状ポリシロキサンが生成しやすいため
か、水和珪酸のクラスターが数多く生成する結果、生成
する一次粒子が小さくなりすぎる傾向にある。このため
生成したシリカ微粒子の表面エネルギーが大きいため、
濃縮すると一次粒子同士が凝集し、二次粒子が大きくな
りすぎる傾向にある。逆に塩基性条件下で加水分解をお
こなった場合、加水分解と縮合反応が3次元的に行われ
るためか、一次粒子径の大きいシリカ微粒子が得られ
る。しかしこのようにして得られる微粒子は一次粒子が
大きくなりすぎるためか、インクを十分に吸収するだけ
の二次粒子が生成しないことを見出した。
In the present invention, it is important to carry out the hydrolysis without using a catalyst. It is known that the reaction mechanism of the hydrolysis of alkoxysilane is different under acidic conditions and basic conditions (for example, “Sol-gel method science” by Sakuhana Sakubana, p160, Agne Shofusha Publishing, Ceramics 31, 1996, No. 6). When hydrolysis is carried out under acidic conditions, a large number of clusters of hydrated silicic acid are generated, probably due to the formation of chain polysiloxanes, and the resulting primary particles tend to be too small. Because the surface energy of the generated silica fine particles is large,
When concentrated, the primary particles tend to agglomerate and the secondary particles tend to be too large. Conversely, when hydrolysis is performed under basic conditions, silica particles having a large primary particle diameter are obtained, probably because the hydrolysis and condensation reactions are performed three-dimensionally. However, it has been found that the fine particles obtained in this way do not produce secondary particles that can sufficiently absorb the ink, probably because the primary particles are too large.

【0019】本発明の製造方法では、水及びアルコキシ
シランの温度を予め25℃以下に調節した後、混合し、
次いで該混合物を攪拌しながら加熱することによって加
水分解を行なうことが望ましい。混合時の温度が25℃
以上では一次粒子径が小さく、かつ二次粒子径が大きく
なり過ぎる傾向がある。この現象の理由は不明である
が、温度が高い場合には、水とアルコキシシランを混合
した瞬間から加水分解が始まり、水和珪酸のクラスター
が数多く生成するためにシリカの核粒子が多量に発生し
て小さな一次粒子を形成するものと考えられる。本発明
においてはシリカ微粒子を製造する際の加水分解温度に
ついては40℃〜100℃が好ましく、70℃〜100
℃がさらに好ましい。温度が40℃未満では生成する水
和珪酸の一次粒子が小さいために出来上がったシリカ微
粒子の分散安定性が悪くなり、分散液がゲル化する場合
や、あるいは二次粒子径が過大になることもある。また
温度が100℃を越えると加水分解により生成するエタ
ノールの突沸現象を引き起こすこともある。加水分解時
間は3〜40時間の間が好ましく、6時間から24時間
の範囲がより好ましい。3時間未満では加水分解された
水和珪酸の縮合が十分に行われず、所望の効果を得るこ
とができない。加水分解時間が40時間を越えると粒子
の凝集が進みすぎ、分散液がゲル化する場合があるほ
か、生産性の点からも好ましくない。
In the production method of the present invention, the temperatures of the water and the alkoxysilane are previously adjusted to 25 ° C. or less, and then mixed,
It is then desirable to carry out the hydrolysis by heating the mixture with stirring. 25 ° C when mixing
Above, the primary particle size tends to be small and the secondary particle size tends to be too large. The reason for this phenomenon is unknown, but when the temperature is high, hydrolysis starts from the moment water and alkoxysilane are mixed, and a large number of silica hydrate particles are generated due to the formation of a large number of hydrated silica clusters. To form small primary particles. In the present invention, the hydrolysis temperature when producing the silica fine particles is preferably from 40 ° C to 100 ° C, and more preferably from 70 ° C to 100 ° C.
C is more preferred. If the temperature is lower than 40 ° C., the dispersion stability of the resulting silica fine particles is deteriorated due to the small size of the primary particles of the hydrated silicic acid produced, and the dispersion may gel or the secondary particle diameter may be excessive. is there. If the temperature exceeds 100 ° C., bumping of ethanol produced by hydrolysis may occur. The hydrolysis time is preferably between 3 and 40 hours, more preferably between 6 and 24 hours. If the time is less than 3 hours, the hydrolyzed hydrated silica is not sufficiently condensed, and the desired effect cannot be obtained. If the hydrolysis time exceeds 40 hours, the aggregation of the particles will proceed too much, and the dispersion may be gelled, which is not preferable from the viewpoint of productivity.

【0020】加水分解が終了した後、余分な水や加水分
解の結果生成したアルコールを除去してシリカ微粒子の
濃縮を行なうことが好ましく、濃縮装置としてはエバポ
レーターや限外ろ過膜などが使用できる。
After the hydrolysis is completed, it is preferable to remove excess water and alcohol generated as a result of the hydrolysis to concentrate the silica fine particles, and an evaporator or an ultrafiltration membrane can be used as a concentration device.

【0021】また得られた微粒子の表面をシランカップ
リング剤を用いて修飾しても良いし、アルミニウムや、
カチオン化剤などの各種化合物を用いてシリカ表面を修
飾し、耐光性など様々な機能性を与えることも可能であ
る。
The surface of the obtained fine particles may be modified with a silane coupling agent,
It is also possible to modify the silica surface with various compounds such as a cationizing agent to impart various functions such as light resistance.

【0022】[0022]

【実施例】尚、以下に本発明の更に詳しい説明を実施例
により行うが、実施例および比較例に記載した試験項目
の測定方法は次の通りである。
EXAMPLES The present invention will be described in more detail with reference to the following examples. The method of measuring test items described in the examples and comparative examples is as follows.

【0023】<表面積、細孔径、細孔容量測定法>シリ
カ微粒子分散液をPETフィルムに塗布、105℃にて
乾燥し、そこから塗膜を剥がし、その試料をCoult
er社製のSA3100型を用いて窒素吸着法により測
定した。
<Measurement of Surface Area, Pore Diameter, and Pore Volume> A silica fine particle dispersion was applied to a PET film, dried at 105 ° C.
The measurement was performed by a nitrogen adsorption method using a model SA3100 manufactured by ER Co., Ltd.

【0024】<微粒子の二次粒子径測定方法>レーザー
粒度分布計(大塚電子株式会社製、商標LPA3000
/3100)にて測定した。測定原理はレーザー法によ
るものである。この測定は、ブラウン運動している液体
中の粒子に、He−Neレーザー光を照射して、レーリ
ー散乱により光が散乱され、粒子の運動によりドップラ
ーシフトするという原理に基づく光散乱法によるもので
ある。
<Method for Measuring Secondary Particle Size of Fine Particles> Laser particle size distribution meter (trade name LPA3000, manufactured by Otsuka Electronics Co., Ltd.)
/ 3100). The measurement principle is based on the laser method. This measurement is based on a light scattering method based on the principle that particles in a liquid undergoing Brownian motion are irradiated with He-Ne laser light, light is scattered by Rayleigh scattering, and Doppler shift is caused by the motion of the particles. is there.

【0025】<実施例1>容量5リットルのガラス製反
応容器(セパラブルフラスコ、撹拌羽根、温度計付き)
に蒸留水1440gを仕込み18℃で保持しておく。次
いで攪拌しつつ20℃に保持しておいたテトラエトキシ
シラン92.3g(0.421モル、和光純薬工業製、
純度95%)を添加した後(H2O(モル)/Si(モ
ル)=190)、95℃にて24時間反応させ、得られ
た反応液を濃縮して、固形分濃度12%のシリカ微粒子
分散液を得た。
Example 1 5 liter glass reaction vessel (separable flask, stirring blade, thermometer)
And 1440 g of distilled water is charged and kept at 18 ° C. Next, 92.3 g of tetraethoxysilane (0.421 mol, manufactured by Wako Pure Chemical Industries, held at 20 ° C. while stirring)
(Purity: 95%) (H 2 O (mol) / Si (mol) = 190), and then reacted at 95 ° C. for 24 hours. The obtained reaction solution was concentrated to obtain silica having a solid content of 12%. A fine particle dispersion was obtained.

【0026】得られたシリカ微粒子の比表面積は311
2/gであり、二次粒子径は56nmであった。細孔
径は16nm、細孔容量は0.978ml/gであっ
た。
The specific surface area of the obtained silica fine particles is 311
m 2 / g, and the secondary particle diameter was 56 nm. The pore diameter was 16 nm, and the pore volume was 0.978 ml / g.

【0027】<実施例2>実施例1において、蒸留水の
温度を25℃とし、テトラエトキシシランの温度を10
℃、添加量を331g(1.51モル)とし(H2O(モ
ル)/Si(モル)=53)、添加後の温度を75℃と
した以外は実施例1と同様にしてシリカ微粒子分散液を
得た。得られたシリカ微粒子の比表面積は455m2
g、二次粒子径は220nmであった。平均細孔径は2
2nmであり、細孔容量は1.40ml/gであった。
<Example 2> In Example 1, the temperature of distilled water was 25 ° C, and the temperature of tetraethoxysilane was 10 ° C.
C., the amount of addition was 331 g (1.51 mol) (H 2 O (mol) / Si (mol) = 53), and the dispersion of silica fine particles was carried out in the same manner as in Example 1 except that the temperature after the addition was 75 ° C. A liquid was obtained. The specific surface area of the obtained silica fine particles is 455 m 2 /
g, the secondary particle diameter was 220 nm. Average pore size is 2
2 nm and the pore volume was 1.40 ml / g.

【0028】<実施例3>実施例1において、蒸留水の
温度を5℃とし、テトラエトキシシランの温度を20
℃、添加量を22.3g(0.102モル)とし(H2
O(モル)/Si(モル)=785)、添加後、65℃
にて8時間反応させたこと以外は実施例1と同様にして
シリカ微粒子分散液を得た。得られたシリカ微粒子分散
液中の微粒子の比表面積は430m2/gであり、二次
粒子径は52nmであった。細孔径は10.1nmであ
り、細孔容量は1.03ml/gであった。
<Example 3> In Example 1, the temperature of distilled water was set at 5 ° C and the temperature of tetraethoxysilane was set at 20 ° C.
° C, the addition amount was 22.3 g (0.102 mol) (H 2
O (mol) / Si (mol) = 785), 65 ° C. after addition
A silica fine particle dispersion was obtained in the same manner as in Example 1 except that the reaction was carried out for 8 hours. The specific surface area of the fine particles in the obtained silica fine particle dispersion was 430 m 2 / g, and the secondary particle size was 52 nm. The pore size was 10.1 nm and the pore volume was 1.03 ml / g.

【0029】<実施例4>実施例1において、蒸留水の
温度を5℃とし、テトラエトキシシランの温度も5℃と
し、添加後95℃にて48時間反応させた以外は実施例
1と同様にしてシリカ微粒子分散液を得た。得られたシ
リカ微粒子分散液中の微粒子の比表面積は208m2
gであり、二次粒子径は82.2nmであった。細孔径
は25nmであり、細孔容量は0.901ml/gであ
った。
Example 4 Same as Example 1 except that the temperature of distilled water was 5 ° C., the temperature of tetraethoxysilane was 5 ° C., and the reaction was carried out at 95 ° C. for 48 hours after the addition. Thus, a silica fine particle dispersion was obtained. The specific surface area of the fine particles in the obtained silica fine particle dispersion is 208 m 2 /
g and the secondary particle size was 82.2 nm. The pore size was 25 nm and the pore volume was 0.901 ml / g.

【0030】<実施例5>実施例1において、蒸留水の
温度を30℃とし、テトラエトキシシランの温度を28
℃とした以外は実施例1と同様にしてシリカ微粒子分散
液を得た。得られたシリカ微粒子分散液中の微粒子の比
表面積は383m2/gであり、二次粒子径は250n
mであった。細孔径は10nmであり、細孔容量は1.
03ml/gであった。
Example 5 In Example 1, the temperature of distilled water was 30 ° C., and the temperature of tetraethoxysilane was 28
A silica fine particle dispersion was obtained in the same manner as in Example 1 except that the temperature was changed to ° C. The specific surface area of the fine particles in the obtained silica fine particle dispersion is 383 m 2 / g, and the secondary particle size is 250 n.
m. The pore size is 10 nm and the pore volume is 1.
03 ml / g.

【0031】<比較例1>実施例1において、蒸留水の
温度を18℃とし、テトラエトキシシランの温度を20
℃、テトラエトキシシランの添加量を501g(0.1
02モル)とし(H2O(モル)/Si(モル)=3
5)、添加後の反応温度を95℃にて24時間反応させ
た以外は実施例1と同様にしてシリカ微粒子分散液を得
た。得られたシリカ微粒子分散液中の微粒子の比表面積
は583m2/gであり、二次粒子径は365nmであ
った。細孔径は24nmであり、細孔容量は1.63m
l/gであった。
Comparative Example 1 In Example 1, the temperature of distilled water was set at 18 ° C., and the temperature of tetraethoxysilane was set at 20.
° C, the amount of tetraethoxysilane added was 501 g (0.1
02 mol) (H 2 O (mol) / Si (mol) = 3
5) A silica fine particle dispersion was obtained in the same manner as in Example 1 except that the reaction was carried out at 95 ° C. for 24 hours after the addition. The specific surface area of the fine particles in the obtained silica fine particle dispersion was 583 m 2 / g, and the secondary particle size was 365 nm. The pore diameter is 24 nm and the pore volume is 1.63 m
1 / g.

【0032】<比較例2>実施例1において蒸留水中に
塩酸を0.0001Nとなるように配合したこと以外は
実施例1と同様にしてシリカ微粒子分散液を得た。得ら
れたシリカ微粒子分散液中の微粒子の比表面積は865
2/gであり、二次粒子径は3.90μmであった。細
孔径は4nmであり、細孔容量は0.877ml/gで
あった。
<Comparative Example 2> A silica fine particle dispersion was obtained in the same manner as in Example 1 except that hydrochloric acid was added to distilled water so as to have a concentration of 0.0001 N. The specific surface area of the fine particles in the obtained silica fine particle dispersion is 865.
m 2 / g, and the secondary particle size was 3.90 μm. The pore size was 4 nm and the pore volume was 0.877 ml / g.

【0033】<比較例3>実施例1において蒸留水中に
アンモニア水を0.0001Nとなるように配合した以
外は実施例1と同様にしてシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液中の微粒子の比表面積は1
86m2/gであり二次粒子径は29.2nmであった。
細孔径は16nmであり、細孔容量は0.475ml/
gであった。
Comparative Example 3 A silica fine particle dispersion was obtained in the same manner as in Example 1 except that ammonia water was added to distilled water so as to have a concentration of 0.0001 N.
The specific surface area of the fine particles in the obtained silica fine particle dispersion is 1
It was 86 m 2 / g, and the secondary particle size was 29.2 nm.
The pore size is 16 nm and the pore volume is 0.475 ml /
g.

【0034】[評価]上記各実施例および比較例で得ら
れたシリカ微粒子分散液について、下記方法によりイン
クジェット記録シートを作製、評価し、その結果を表
1、表2に示した。
[Evaluation] With respect to the silica fine particle dispersions obtained in the above Examples and Comparative Examples, ink jet recording sheets were prepared and evaluated by the following methods, and the results are shown in Tables 1 and 2.

【0035】<インクジェット記録シートの作製>シリ
カ微粒子分散液のシリカ固形分に対して珪素含有ポリビ
ニルアルコール(クラレ製、商標:R2105)30重
量%加えてインク受容層用塗工液を調整し、PETフィ
ルム(東レ製、商標:ルミラー)にメイヤーバーで乾燥
後の塗工量が25g/m2となるように塗工、乾燥して
インクジェット記録シートを作製した。
<Preparation of Ink-Jet Recording Sheet> A coating liquid for an ink receiving layer was prepared by adding 30% by weight of silicon-containing polyvinyl alcohol (trade name: R2105, manufactured by Kuraray Co., Ltd.) to the silica solid content of the silica fine particle dispersion. A film (manufactured by Toray, trade name: Lumirror) was coated with a Meyer bar so that the coating amount after drying was 25 g / m 2, and dried to prepare an ink jet recording sheet.

【0036】<インクジェット記録シートの評価>上記
作製法により得られたインクジェット記録シートについ
て、下記方法により評価した。
<Evaluation of Inkjet Recording Sheet> The inkjet recording sheet obtained by the above-mentioned production method was evaluated by the following method.

【0037】<インク吸収性>インクジェット記録シー
トにインクジェットプリンター(キャノン株式会社製、
商標:BJC700J)でシアン、マゼンダ、イエロ
ー、及びブラックの各色でベタ印字(スーパーフォトモ
ード)し、評価した。インク吸収性はインクのにじみ具
合を見て評価した。インクを完全に吸収していものを、
少し滲んでいるものを△、あふれているものを×とし
た。
<Ink Absorption> An ink jet printer (manufactured by Canon Inc.,
(Trademark: BJC700J), solid printing (super photo mode) in each color of cyan, magenta, yellow, and black was evaluated. The ink absorbency was evaluated by observing the degree of ink bleeding. What completely absorbs ink,
A slightly bleeding was marked with △, and an overflowing was marked with ×.

【0038】<透明感>各実施例、比較例で作成したイ
ンクジェット記録シートを平らに置き、斜め上面から光
をあて透明感を目視で評価した。透明感が良いものを、
少し曇っているものを×とした。
<Transparency> The ink jet recording sheets prepared in the respective Examples and Comparative Examples were laid flat, and the transparency was visually evaluated by irradiating light from an oblique upper surface. What has good transparency,
Those that were slightly cloudy were marked with x.

【0039】<印字濃度>各インクジェット記録用シー
トの下に市販コート紙を敷き、黒ベタ部の印字濃度をマ
クベス反射濃度計(Macbeth,RD−920)を
測定した。
<Print Density> A commercially available coated paper was spread under each ink jet recording sheet, and the print density of the solid black portion was measured by a Macbeth reflection densitometer (Macbeth, RD-920).

【0040】<印字部の光沢性>印字部の光沢性は印字
部に対して20度の角度から観察して目視評価した。◎
はカラー印画紙並みの高い光沢をもち、以降、△の順で
光沢を評価し、光沢のないものを×とした。
<Glossiness of Printed Area> The glossiness of the printed area was visually evaluated by observing the printed area from an angle of 20 degrees. ◎
Has a gloss as high as that of a color photographic paper. Thereafter, the gloss was evaluated in the order of △, and a non-glossy one was evaluated as x.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】表1、表2から明らかなように実施例1〜
5で得られたシリカ微粒子は粒子径も小さく、細孔容量
も大きいために、それらを塗工して得られるインクジェ
ット記録シートはインク吸収性も良く、印字濃度も高
く、光沢もあり、透明感が優れるものであった。
As is clear from Tables 1 and 2, Examples 1 to
Since the silica fine particles obtained in Step 5 have a small particle size and a large pore volume, the ink jet recording sheet obtained by coating them has good ink absorption, high print density, high gloss, and high transparency. Was excellent.

【0044】[0044]

【発明の効果】本発明で製造されたシリカ微粒子分散液
は基材上に塗布したときにインクの吸収性に優れ、透明
でなおかつ光沢を兼ね備えた多孔質層を形成することが
できる。
As described above, the silica fine particle dispersion produced by the present invention can form a porous layer which is excellent in ink absorbency, transparent and glossy when applied to a substrate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルコキシシランを加水分解してシリカ
微粒子分散液を製造する方法において、加水分解を、珪
素1モルあたり40〜800モルの水を使用し、かつ、
触媒を使用せずに行うことによって、比表面積が150
2/g〜500m2/gであり、レーザー粒度計による
二次粒子径が10nm〜250nmであり、細孔容量が
0.5ml/g〜1.5ml/gであるシリカ微粒子を
得ることを特徴とする、シリカ微粒子分散液の製造方
法。
1. A method for producing a silica fine particle dispersion by hydrolyzing an alkoxysilane, wherein the hydrolysis uses 40 to 800 mol of water per mol of silicon, and
By performing without using a catalyst, a specific surface area of 150
a m 2 / g~500m 2 / g, a secondary particle size 10nm~250nm by laser granulometer, that pore volume to obtain a silica fine particle is 0.5ml / g~1.5ml / g A method for producing a silica fine particle dispersion.
【請求項2】 水及びアルコキシシランの温度を予め2
5℃以下に調節した後、混合し、次いで該混合物を攪拌
しながら加熱することによって加水分解を行うことを特
徴とする請求項1記載のシリカ微粒子分散液の製造方
法。
2. The temperature of the water and the alkoxysilane is previously set at 2
2. The method for producing a silica fine particle dispersion according to claim 1, wherein the hydrolysis is performed by adjusting the temperature to 5 ° C. or lower, mixing, and then heating the mixture while stirring.
【請求項3】 加水分解は40℃〜100℃の間で行わ
れる請求項2に記載のシリカ微粒子分散液の製造方法。
3. The method for producing a silica fine particle dispersion according to claim 2, wherein the hydrolysis is performed at 40 ° C. to 100 ° C.
JP09463299A 1999-04-01 1999-04-01 Method for producing silica fine particle dispersion Expired - Fee Related JP4158274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09463299A JP4158274B2 (en) 1999-04-01 1999-04-01 Method for producing silica fine particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09463299A JP4158274B2 (en) 1999-04-01 1999-04-01 Method for producing silica fine particle dispersion

Publications (2)

Publication Number Publication Date
JP2000281330A true JP2000281330A (en) 2000-10-10
JP4158274B2 JP4158274B2 (en) 2008-10-01

Family

ID=14115651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09463299A Expired - Fee Related JP4158274B2 (en) 1999-04-01 1999-04-01 Method for producing silica fine particle dispersion

Country Status (1)

Country Link
JP (1) JP4158274B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179422A (en) * 2000-12-08 2002-06-26 Mizusawa Ind Chem Ltd Stabilized silica sol and coating agent for paper making
WO2002083802A1 (en) * 2001-04-06 2002-10-24 Isi Corporation Gentle self-hydrolytic monodisperse thin film forming material, monodisperse pigment covered with them and cosmetics blended with them
JP2002356321A (en) * 2001-06-01 2002-12-13 Asahi Glass Co Ltd Silica alumina complex sol, its producing method, and ink- jet recording medium
JP2003171115A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2003171116A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2003171113A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica hydrogel and silica
JP2003221223A (en) * 2001-09-25 2003-08-05 Mitsubishi Chemicals Corp Silica
JP2006069883A (en) * 2004-08-05 2006-03-16 Tokuyama Corp Wet silica and its production method
US7101523B2 (en) 2001-09-25 2006-09-05 Mitsubishi Chemical Corporation Silica
WO2008123373A1 (en) * 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
KR101626179B1 (en) 2008-09-26 2016-05-31 후소카가쿠코교 가부시키가이샤 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179422A (en) * 2000-12-08 2002-06-26 Mizusawa Ind Chem Ltd Stabilized silica sol and coating agent for paper making
WO2002083802A1 (en) * 2001-04-06 2002-10-24 Isi Corporation Gentle self-hydrolytic monodisperse thin film forming material, monodisperse pigment covered with them and cosmetics blended with them
JP2002356321A (en) * 2001-06-01 2002-12-13 Asahi Glass Co Ltd Silica alumina complex sol, its producing method, and ink- jet recording medium
JP4593011B2 (en) * 2001-06-01 2010-12-08 三菱製紙株式会社 Silica alumina composite sol, method for producing the same, and ink jet recording medium
US7101523B2 (en) 2001-09-25 2006-09-05 Mitsubishi Chemical Corporation Silica
JP2003171113A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica hydrogel and silica
JP2003221223A (en) * 2001-09-25 2003-08-05 Mitsubishi Chemicals Corp Silica
JP2003171116A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2003171115A (en) * 2001-09-25 2003-06-17 Mitsubishi Chemicals Corp Silica
JP2006069883A (en) * 2004-08-05 2006-03-16 Tokuyama Corp Wet silica and its production method
JP4596998B2 (en) * 2004-08-05 2010-12-15 株式会社トクヤマ Wet silica and method for producing the same
WO2008123373A1 (en) * 2007-03-27 2008-10-16 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
JPWO2008123373A1 (en) * 2007-03-27 2010-07-15 扶桑化学工業株式会社 Colloidal silica and method for producing the same
JP2012211080A (en) * 2007-03-27 2012-11-01 Fuso Chemical Co Ltd Method for producing colloidal silica
KR101484795B1 (en) * 2007-03-27 2015-01-20 후소카가쿠코교 가부시키가이샤 Colloidal silica, and method for production thereof
US9550683B2 (en) 2007-03-27 2017-01-24 Fuso Chemical Co., Ltd. Colloidal silica, and method for production thereof
KR101626179B1 (en) 2008-09-26 2016-05-31 후소카가쿠코교 가부시키가이샤 Colloidal silica containing silica secondary particles having bent structure and/or branched structure, and method for producing same

Also Published As

Publication number Publication date
JP4158274B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US6569908B2 (en) Dispersion of silica particle agglomerates and process for producing the same
US6808768B2 (en) Porous, fine inorganic particles
JP4350043B2 (en) Dispersions, coating solutions and absorbent media
JP4197747B2 (en) Silica alumina composite sol, method for producing the same, and recording medium
JP2010501651A (en) Aluminum oxide dispersion, coating composition and ink absorbing medium
JPH0986035A (en) Receiving medium, production threof and image forming method
JP4158274B2 (en) Method for producing silica fine particle dispersion
JP3876610B2 (en) Silica fine particle dispersion and production method thereof
EP0988993B1 (en) Ink-jet recording material containing alumina hydrate
JP2002347337A (en) Ink jet recording medium
JP2002145609A (en) Production process of liquid dispersion of fine silica particles
JPH11322325A (en) Silica composite particle and its production, and ink jet recording sheet
US6630213B2 (en) Recording medium excellent in ink absorptivity and process for its production, and process for producing silica-alumina composite sol
JP2006232592A (en) Method for manufacturing silica fine particle dispersion liquid
JP3879489B2 (en) Silica fine particle aggregate dispersion and method for producing the same
JP2005255457A (en) Silica minute particle dispersion and its manufacturing method
JP4199885B2 (en) Amorphous silica for inkjet recording sheet and method for producing the same
JP3854879B2 (en) Method for producing cationic silica fine particle aggregate dispersion and recording sheet
JP2003191617A (en) Ink jet recording sheet
JP2005154235A (en) Silica minute particle dispersion and its manufacturing method
JP4326096B2 (en) Method for producing silica-alumina composite sol
JP4593011B2 (en) Silica alumina composite sol, method for producing the same, and ink jet recording medium
JP3907322B2 (en) Inkjet recording paper filler
JP2003276315A (en) Silica alumina composite sol, manufacturing method thereof and inkjet recording medium
JPH111060A (en) Recording medium and ink jet recording method employing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees