JP2000279180A - Gene coding for branching enzyme and microorganism having the gene - Google Patents

Gene coding for branching enzyme and microorganism having the gene

Info

Publication number
JP2000279180A
JP2000279180A JP11094806A JP9480699A JP2000279180A JP 2000279180 A JP2000279180 A JP 2000279180A JP 11094806 A JP11094806 A JP 11094806A JP 9480699 A JP9480699 A JP 9480699A JP 2000279180 A JP2000279180 A JP 2000279180A
Authority
JP
Japan
Prior art keywords
branching enzyme
leu
gly
amino acid
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11094806A
Other languages
Japanese (ja)
Inventor
Akimitsu Tanaka
昭光 田中
Norihiro Tsukagoshi
塚越  規弘
Tetsuo Kobayashi
哲夫 小林
Masashi Kato
雅士 加藤
Aya Matsuno
彩 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Higeta Shoyu Co Ltd
Original Assignee
Higeta Shoyu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Higeta Shoyu Co Ltd filed Critical Higeta Shoyu Co Ltd
Priority to JP11094806A priority Critical patent/JP2000279180A/en
Publication of JP2000279180A publication Critical patent/JP2000279180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new branching enzyme which is derived from Aspergillus nidulans, has a specific amino acid sequence, forms a branch via α-1,6 bond, and is useful for preventing the aging of starch in food industry and so on. SOLUTION: This is a new branching enzyme which is derived from Aspergillus nidulans, has the amino acid sequence shown by the formula or an amino acid sequence obtained by deleting, substituting, adding, or inserting one or more amino acid(s) from, in, to, or into the amino acid sequence, cleaves α-1,4 bond of α-glucan such a amylose and amylopectin to form a branch via α-1,6 bond, and is useful for preventing the aging of starch in food industry and so on. This enzyme is obtained by carrying out PCR of chromosomal DNA of A.nidulans using primers having its partial sequences, screening a genomic library of A.nidulans using the obtained DNA as a probe, followed by expressing the obtained gene in A.nidulans.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、糸状菌アスペルギ
ルス・ニドランス(Aspergillus nidu
lans)由来の枝作り酵素に対応するアミノ酸配列及
び枝作り酵素遺伝子をコードするDNA並びに該遺伝子
を導入してなる形質転換体に関するものである。
The present invention relates to a filamentous fungus, Aspergillus nidulan.
lans), a DNA encoding a branching enzyme gene, and a transformant into which the gene is introduced.

【0002】[0002]

【従来の技術】枝作り酵素は、1943年Cori等に
よってウサギ肝臓組織中に初めて発見され、現在では、
動物、植物、微生物等、幅広い生物種でその存在が確認
されている。枝作り酵素は、アミロースやアミロペクチ
ン等のα−グルカンに作用し、α−1,4結合を切断
し、α−1,6結合による枝分かれを形成させる酵素で
ある。現在、デンプンを含む物質の加工においてデンプ
ンの老化は、大きな問題となっている。例えば、食品中
のデンプンの老化は保存性の低下や消化率の減少をもた
らすことが知られている。この老化の原因はデンプン中
に含まれるアミロース分子の会合、それにつづく不溶化
に起因している。しかし、デンプン溶液中に枝作り酵素
を作用させると、デンプン中のアミロース及びアミロペ
クチン分子にα−1,6−グルコシド結合による枝分か
れ構造を増加させることができ、このことによってデン
プンの老化を抑制することができる(澱粉化学、第30
巻、第2号、第223頁)。
2. Description of the Related Art A branching enzyme was first discovered in rabbit liver tissue by Cori et al.
Its existence has been confirmed in a wide variety of organisms such as animals, plants, and microorganisms. A branching enzyme is an enzyme that acts on α-glucan such as amylose or amylopectin, cuts α-1,4 bonds, and forms branches by α-1,6 bonds. At present, starch aging is a major problem in the processing of substances containing starch. For example, it is known that aging of starch in foods leads to a decrease in storage stability and a decrease in digestibility. This aging is due to the association of the amylose molecules contained in the starch, followed by insolubilization. However, when a branching enzyme is acted on in a starch solution, the amylose and amylopectin molecules in the starch can be increased in the branched structure by α-1,6-glucosidic bonds, thereby suppressing the aging of starch. (Starch Chemistry, No. 30
Vol. 2, No. 2, p. 223).

【0003】従来、枝作り酵素は、動物、植物、微生物
等、幅広い生物種でその存在が確認されているが、カビ
由来のものはこれまで確認されていなかったし、そのア
ミノ酸配列も明らかにされておらず、ましてや、それを
コードする遺伝子のクローニングに成功した例など全く
報告されていない。
Hitherto, the existence of branching enzymes has been confirmed in a wide variety of organisms such as animals, plants, microorganisms, etc., but those derived from mold have not been confirmed so far, and their amino acid sequences have been clarified. No report has been made of any successful cloning of the gene encoding it.

【0004】[0004]

【発明が解決しようとする課題】現在知られている枝作
り酵素をその生産生物から得る方法では、微生物あるい
は動植物から抽出する方法が行われているが枝作り酵素
の生産量そのものが低く、業界の必要量を満たすにはほ
ど遠いのが現状である。
In a method of obtaining a branching enzyme from a producing organism, which is known at present, a method of extracting from a microorganism or an animal or a plant is used. It is far from satisfying the required amount.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記現状
に鑑み、各方面から検討した結果、枝作り酵素の効率的
製造を達成するには、遺伝子工学的手法による方法が最
適であるとの知見を得た。そして、本発明者らは、鋭意
研究の結果、枝作り酵素のアミノ酸配列を明らかにし、
該アミノ酸配列に対応する塩基配列を決定し、該塩基配
列を導入してなる形質転換体を作製することにより、遺
伝子工学的技術を適用し、枝作り酵素の量産化にはじめ
て成功し、本発明の完成に至った。以下、本発明につい
て詳述する。
Means for Solving the Problems In view of the above-mentioned situation, the present inventors have studied from various aspects. As a result, a method using a genetic engineering technique is most suitable for achieving efficient production of a branching enzyme. I got the knowledge. As a result of intensive studies, the present inventors have clarified the amino acid sequence of the branching enzyme,
By determining a base sequence corresponding to the amino acid sequence and preparing a transformant into which the base sequence has been introduced, genetic engineering techniques have been applied and mass production of a branching enzyme has been successfully achieved for the first time. Was completed. Hereinafter, the present invention will be described in detail.

【0006】本発明にしたがって、枝作り酵素をコード
する遺伝子をクローニングにするには、先ず、糸状菌ア
スペルギルス・ニドランス(Aspergillus
nidulans)由来の枝作り酵素として同菌のマル
トース結合タンパク質(72kDaのタンパク質:p7
7)を分離する。分離した枝作り酵素について、プロテ
アーゼ処理してペプチド断片を得、その部分アミノ酸配
列を決定する。
In order to clone a gene encoding a branching enzyme according to the present invention, first, the filamentous fungus Aspergillus nidulans (Aspergillus) is used.
maltose-binding protein (72 kDa protein: p7)
7) is separated. The isolated branching enzyme is subjected to protease treatment to obtain a peptide fragment, and its partial amino acid sequence is determined.

【0007】この部分アミノ酸配列は、枝作り酵素が属
するα−アミラーゼファミリー高度保存領域の一部を含
んでいることから、この部分アミノ酸配列をもとにして
必要なプライマーを設計合成し、A.nidulans
の染色体DNAをテンプレーとしてPCRを行い、PC
R産物である枝作り酵素遺伝子断片を得、このDNA断
片をプローブとしてA.nidulansのゲノミック
ライブラリーのコロニーハイブリダイゼーションを行
い、ポジティブなコロニーを取得するのに成功し、全塩
基配列を決定した(配列表の配列番号2、図6〜図1
0)。また、取得した遺伝子の上流側をプローブとして
cDNAライブラリーのプラークハイブリダイゼーショ
ンを行い、cDNAを取得するのにも成功し、cDNA
の全塩基配列を決定した(図11〜図13)。
Since this partial amino acid sequence contains a part of the highly conserved region of the α-amylase family to which the branching enzyme belongs, necessary primers are designed and synthesized based on this partial amino acid sequence. nidulans
PCR using the chromosomal DNA of
An R. product R-branching enzyme gene fragment was obtained. The colony hybridization of the genomic library of Nidulans was carried out, a positive colony was successfully obtained, and the entire nucleotide sequence was determined (SEQ ID NO: 2 in the sequence listing, FIGS. 6 to 1).
0). In addition, cDNA library plaque hybridization was performed using the upstream side of the obtained gene as a probe, and the cDNA was successfully obtained.
Was determined (FIGS. 11 to 13).

【0008】その結果、枝作り酵素遺伝子(p72遺伝
子)は2524bp(開始コドンATG〜TAA:停止
コドンはTAA)からなり、イントロンが7つ存在して
いることが判った。そしてイントロンを除いたcDNA
の塩基配列は2061bpからなり、686アミノ酸、
約78kDaのタンパク質をコードしていることが判っ
た。
As a result, it was found that the branching enzyme gene (p72 gene) was composed of 2524 bp (start codon ATG to TAA: stop codon was TAA) and that seven introns were present. And cDNA without intron
Consists of 2061 bp, comprising 686 amino acids,
It was found to encode a protein of about 78 kDa.

【0009】更に本発明においては、このようにして枝
作り酵素に対応する遺伝子を単離しただけでなく、これ
を遺伝子組換え技術を用いてアスペルギルス・ニドラン
ス(Aspergillus nidulans)G1
91株に導入することによって、染色体上で枝作り酵素
遺伝子を多コピー化し、該酵素遺伝子の発現を増強する
ことに成功した。以下に、本発明の枝作り酵素遺伝子の
単離及び塩基配列の決定及び対応するアミノ酸配列を実
施例によって示す。
Furthermore, in the present invention, not only the gene corresponding to the branching enzyme was isolated in this way, but also the gene corresponding to Aspergillus nidulans G1 was isolated using a genetic recombination technique.
By introducing the gene into 91 strains, the gene encoding a branching enzyme was multiply copied on the chromosome, and the expression of the enzyme gene was successfully enhanced. The isolation of the branching enzyme gene of the present invention, the determination of the nucleotide sequence thereof, and the corresponding amino acid sequence are shown below by examples.

【0010】[0010]

【実施例】以下に本発明の実施例を示すが、この実施例
は例示のためのものであって本発明をこの実施例のみに
限定するものではない。
Examples of the present invention will be described below, but these examples are for the purpose of illustration only, and the present invention is not limited to these examples.

【0011】1.枝作り酵素の精製及び部分アミノ酸配
列の決定 アスペルギルス・ニドランスG191株(Univer
sity of Glasgow,Glasgow G
11 6NU,Scotland,U.K.またはFu
ngal Genetics Stock Cente
rより購入)の胞子をDP−S培地500mlに10
個/mlになるように植菌し、37℃で一晩振とう培養
した。培養した菌体を濾過によって回収した後、液体窒
素で凍結し、乳鉢で細かく破砕した。その後、この破砕
菌体を破砕緩衝液80ml(5mM EDTA・2N
a,2mM PMSF,10mM Tris−HCl,
5mM メルカプトエタノール,pH7.5)に懸濁
し、ホモジェナイザーによって更に細かく破砕した後、
遠心分離によって上清を回収し、細胞抽出液を得た。こ
の細胞抽出液をアミロースカラムに供した後、洗浄緩衝
液10ml(1M NaCl,10mM Tris−H
Cl,5mM EDTA・2Na,2mM PMSF,
5mM メルカプトエタノール,pH7.5)でアミロ
ースカラムを洗浄した。
1. Purification of Branching Enzyme and Determination of Partial Amino Acid Sequence Aspergillus nidulans strain G191 (Univer
situation of Glasgow, Glasgow G
116 NU, Scotland, U.S.A. K. Or Fu
ngal Genetics Stock Center
10 spores purchased from r) to the DP-S medium 500ml 6
The cells were inoculated so as to obtain the number of cells / ml, and cultured with shaking at 37 ° C. overnight. After the cultured cells were collected by filtration, they were frozen with liquid nitrogen and crushed in a mortar. Thereafter, the disrupted cells were disrupted in 80 ml of a disruption buffer (5 mM EDTA · 2N).
a, 2 mM PMSF, 10 mM Tris-HCl,
5 mM mercaptoethanol, pH 7.5), and further crushed with a homogenizer.
The supernatant was recovered by centrifugation to obtain a cell extract. After applying this cell extract to an amylose column, 10 ml of a washing buffer (1 M NaCl, 10 mM Tris-H) was used.
Cl, 5 mM EDTA · 2Na, 2 mM PMSF,
The amylose column was washed with 5 mM mercaptoethanol, pH 7.5).

【0012】枝作り酵素の溶出は、マルトース溶液10
ml(0.5M マルトース、10mM Tris−H
Cl,5mMメルカプトエタノール,pH7.5)で行
った。その後、SDS−PAGEによって精製度を確認
した。この操作によって枝作り酵素は、ほぼ単一バンド
としてSDS−PAGEで確認される。アスペルギルス
・ニドランスG191株より枝作り酵素を精製し、精製
した枝作り酵素をV8プロテアーゼで処理し断片化し
た。それをSDS−PAGEゲルに供した後、PVDF
メンブラン(BioRad社製)にトランスファーし
た。そのメンブランから26kDaに相当する断片を切
り出した後、エドマン分解法を用いたプロテインシーク
エンサー(パーキンエルマージャパン610A)にてこ
のペプチドのN末端アミノ酸配列を決定した。決定され
たN末端アミノ酸配列は、配列表の配列番号3に示し
た。
[0012] The elution of the branching enzyme is carried out using a maltose solution 10
ml (0.5 M maltose, 10 mM Tris-H
Cl, 5 mM mercaptoethanol, pH 7.5). Thereafter, the degree of purification was confirmed by SDS-PAGE. By this operation, the branching enzyme is confirmed by SDS-PAGE as a substantially single band. The branching enzyme was purified from Aspergillus nidulans strain G191, and the purified branching enzyme was treated with V8 protease and fragmented. After subjecting it to SDS-PAGE gel, PVDF
It was transferred to a membrane (manufactured by BioRad). After cutting out a fragment corresponding to 26 kDa from the membrane, the N-terminal amino acid sequence of this peptide was determined using a protein sequencer (Perkin Elmer Japan 610A) using the Edman degradation method. The determined N-terminal amino acid sequence is shown in SEQ ID NO: 3 in the sequence listing.

【0013】2.本酵素遺伝子の単離 枝作り酵素遺伝子を単離するため、先のアミノ酸配列の
決定によって得られたアミノ酸配列と種々の起源の異な
る枝作り酵素を比較した際見いだされる保存領域のアミ
ノ酸配列の部分にプライマーを設計し、PCRによる枝
作り酵素遺伝子断片の取得を試みた。はじめに、Rae
derとBrodaの方法(Lett.Appl.Mi
crob.,1,17(1977))に従ってアスペル
ギルス・ニドランスG191株の菌体から染色体DNA
抽出した。次にこの染色体DNAを鋳型とし、配列表の
配列番号4に示すプライマーと配列表の配列番号5に示
すプライマーとを混合し、AmpliTaq DNAポ
リメラーゼ(パーキンエルマージャパン社製)を用いて
PCR反応を行った。更にPCRにより増幅されたDN
A断片を鋳型とし、配列表の配列番号6に示すプライマ
ーと配列表の配列番号7に示すプライマーとを混合し、
再度PCR反応を行うと約460bpの枝作り酵素遺伝
子断片が得られた。
2. Isolation of this enzyme gene To isolate the branching enzyme gene, a part of the amino acid sequence of the conserved region found when comparing the amino acid sequence obtained by the previous amino acid sequence determination with the branching enzymes of different origins The primers were designed, and an attempt was made to obtain a branching enzyme gene fragment by PCR. First, Rae
der and Broda's method (Lett. Appl. Mi.
crob. Chromosomal DNA from the cells of Aspergillus nidulans G191 strain according to
Extracted. Next, using this chromosomal DNA as a template, the primer shown in SEQ ID NO: 4 of the Sequence Listing and the primer shown in SEQ ID NO: 5 in the Sequence Listing are mixed, and a PCR reaction is performed using AmpliTaq DNA polymerase (Perkin Elmer Japan). Was. Furthermore, DN amplified by PCR
Using the A fragment as a template, a primer shown in SEQ ID NO: 6 in the sequence listing and a primer shown in SEQ ID NO: 7 in the sequence listing were mixed,
When the PCR reaction was performed again, an about 460 bp branching enzyme gene fragment was obtained.

【0014】なお、配列番号4〜7において、m、n、
r、y、wはそれぞれ次のことを意味する。 m:a,c n:a,c,g,t r:a,g y:c,t w:a,t
In the sequence numbers 4 to 7, m, n,
r, y, and w mean the following, respectively. m: a, cn: a, c, g, tr: a, gy: c, tw: a, t

【0015】PCRの条19は次のとおりである。 Article 19 of the PCR is as follows.

【0016】Fungal Genetics Sto
ck Centerより入手したアスペルギルス・ニド
ランスの染色体DNAライブラリーをナイロンメンブラ
ンに写し取り、先にPCR反応によって得た約460b
pのDNA断片をプローブとし、コロニーハイブリダイ
ゼーションを行うことにより、枝作り酵素遺伝子を含む
DNA断片のクローン化されたコスミドを含む大腸菌を
選別することができる。以上の手法により染色体由来の
枝作り酵素遺伝子を含有するコスミドが得られ、これを
pBE−Gと名付けた。
[0016] Fungal Genetics Sto
The chromosomal DNA library of Aspergillus nidulans obtained from ck Center was copied to a nylon membrane, and about 460 b
By performing colony hybridization using the DNA fragment of p as a probe, Escherichia coli containing a cloned cosmid of a DNA fragment containing a branching enzyme gene can be selected. By the above method, a cosmid containing a chromosome-derived branching enzyme gene was obtained and named pBE-G.

【0017】更に枝作り酵素のcDNAを得るために、
Fungal GeneticsStock Cent
erより入手したアスペルギルス・ニドランスのcDN
Aライブラリー(λZAPII(Stratagene社
製)をベクターとして使用)から枝作り酵素のcDNA
の取得を試みた。すなわち、cDNAライブラリーを適
当に希釈し、大腸菌XL1−Blue MRF’(St
ratagene社製)と接触させ、適当量をNZY寒
天培地(1% NZアミン、0.5% イーストエクス
トラスト、0.5% NaCl、0.2% MgSO
・7HO、1.5% 寒天;pH7.5)上に重層法
によりひろげ37℃で一晩保温する事でλファージによ
るプラークが点在するプレートを得た。このプレートよ
りプラークをナイロンメンブランに写し取り、先にPC
R反応によって得た約460bpのDNA断片をプロー
ブとし、プラークハイブリダイゼーションを行うことに
より本酵素のcDNAを含むDNA断片のクローン化さ
れたλファージを選別した。図1に示す制限酵素地図を
有する組換えファージが得られ、λBE−1と名付け
た。
In order to further obtain the cDNA of the branching enzyme,
Fungal GeneticsStock Center
cdn obtained from Aspergillus nidulans
CDNA of an enzyme that branches from A library (using λZAPII (Stratagene) as a vector)
Tried to get. That is, the cDNA library was appropriately diluted, and E. coli XL1-Blue MRF '(St
ratagene) and an appropriate amount of NZY agar medium (1% NZ amine, 0.5% yeast extra, 0.5% NaCl, 0.2% MgSO 4)
・ 7H 2 O, 1.5% agar; pH 7.5) was spread by an overlay method and kept at 37 ° C. overnight to obtain a plate on which plaques due to λ phage were scattered. Transfer the plaque from this plate to a nylon membrane,
Using a DNA fragment of about 460 bp obtained by the R reaction as a probe, λ phage cloned from a DNA fragment containing the cDNA of the present enzyme was selected by performing plaque hybridization. A recombinant phage having the restriction map shown in FIG. 1 was obtained and named λBE-1.

【0018】3.組換えコスミドpBE−G上の本酵素
遺伝子及び組換えファージλBE−1上の塩基配列の決
定 組換えコスミドpBE−G上の枝作り酵素遺伝子及び組
換えファージλBE−1上の塩基配列の決定は、サンガ
ー(Sanger)のジデオキシチェーンターミネーシ
ョン法(J.Mol.Biol.,94,441(19
75);Proc.Natl.Acad.Sci.US
A,74,5463(1977))に従って決定するこ
とができる。すなわち、コスミド組換えコスミドpBE
−G上の枝作り酵素遺伝子をpUC118(宝酒造
(株)製)にサブクローングした後、染色体DNA上の
枝作り酵素遺伝子の塩基配列の決定を行った。組換えλ
ファージλBE−1は、インビトロイクサイジョン法
(in vitro Excision法)により枝作
り酵素cDNAを含むpBluescriptSK
(−)に変換した後、枝作り酵素遺伝子のcDNAの塩
基配列を決定した。決定したcDNAの全塩基配列を図
11〜図13に示した。また、このcDNA及びイント
ロンを含む全枝作り酵素遺伝子についても、上記によっ
て決定した全塩基配列を配列表の配列番号2(及び図6
〜図10)に示した。
3. Determination of the present enzyme gene on the recombinant cosmid pBE-G and the nucleotide sequence on the recombinant phage λBE-1 Determination of the branching enzyme gene on the recombinant cosmid pBE-G and the nucleotide sequence on the recombinant phage λBE-1 And Sanger's dideoxy chain termination method (J. Mol. Biol., 94 , 441 (19).
75); Proc. Natl. Acad. Sci. US
A, 74 , 5463 (1977)). That is, the cosmid recombinant cosmid pBE
After subcloning the branching gene on -G into pUC118 (Takara Shuzo Co., Ltd.), the nucleotide sequence of the branching gene on chromosomal DNA was determined. Recombinant λ
The phage λBE-1 was prepared by pBluescriptSK containing the cDNA for branching enzyme by the in vitro excision method (in vitro Excision method).
After conversion to (-), the base sequence of the cDNA of the branching enzyme gene was determined. The determined total nucleotide sequence of the cDNA is shown in FIGS. In addition, as for the cDNA and the whole branching enzyme gene including introns, the entire base sequence determined as described above is determined by using SEQ ID NO: 2 in the sequence listing (and FIG. 6).
To FIG. 10).

【0019】上記した塩基配列の決定により得られた枝
作り酵素遺伝子のゲノミックDNA及びcDNA(すな
わち、枝作り酵素遺伝子の染色体上及びcDNAの塩基
配列)を比較した結果、枝作り酵素遺伝子(p72遺伝
子)は、cDNAを含む2524bpからなり(配列番
号2、図6〜図10)、46bpから96bpの7つの
イントロンの存在が確認された(図11〜図13、矢
印)。図中、淡い網掛け部はp72から決定した部分ア
ミノ酸配列、濃い網掛け部は4つの保存領域を示す。
As a result of comparing the genomic DNA and cDNA of the branching enzyme gene obtained by the above determination of the base sequence (ie, the chromosome and cDNA base sequences of the branching enzyme gene), the branching enzyme gene (p72 gene ) Is composed of 2524 bp including cDNA (SEQ ID NO: 2, FIGS. 6 to 10), and the presence of seven introns of 46 bp to 96 bp was confirmed (FIGS. 11 to 13, arrows). In the figure, light shaded portions indicate partial amino acid sequences determined from p72, and dark shaded portions indicate four conserved regions.

【0020】また、cDNAの塩基配列の中から、DN
Aの遺伝情報がmRNAへ転写されタンパク質へと翻訳
される部分であるオープンリーディングフレーム(OR
F)を検索した結果、枝作り酵素は開始コドンATGか
ら始まり、終止コドンTAAで終わる2061bpのO
RFが見出され(図1〜図13)、686アミノ酸、約
78kDaのタンパク質をコードしていることが判っ
た。このORFに対応するアミノ酸配列を配列表の配列
番号1(及び図3〜図5)に示した。以下に、枝作り酵
素遺伝子、プラスミド並びに枝作り酵素の製法の一例を
示す。
[0020] In the base sequence of the cDNA, DN
A is an open reading frame (OR) where the genetic information of A is transcribed into mRNA and translated into protein.
The search for F) indicated that the branching enzyme had a 2061 bp O starting at the start codon ATG and ending at the stop codon TAA.
RF was found (FIGS. 1-13) and was found to encode a protein of 686 amino acids, approximately 78 kDa. The amino acid sequence corresponding to this ORF is shown in SEQ ID NO: 1 (and FIGS. 3 to 5) in the sequence listing. Hereinafter, an example of a method for producing a branching enzyme gene, a plasmid, and a branching enzyme will be described.

【0021】5.本酵素遺伝子のアスペルギルス・ニド
ランスへの導入 枝作り酵素遺伝子を効率的にアスペルギルス・ニドラン
スG191株に導入するために、組換えプラスミドpT
G1−BEを作製した。すなわち、pBE−GをXba
Iで切断し、4147bpのバンドを回収し、XbaI
で切断したプラスミドpTG1(Mol.Gen.Ge
net.,254,119(1997))とT4DNA
リガーゼを用いて連結した。組換えプラスミドpTG1
−BEをアスペルギルス・ニドランスG191株にBa
llanceとTurnerの方法(Gene,36,
321(1985))により導入した。その結果、約1
00株の形質転換株を得た。その中から10株を選択
し、1で示した方法で枝作り酵素を抽出し、SDS−P
AGEを行った。その結果、枝作り酵素をSDS−PA
GEに供した際、認められる72kDのバンドがアスペ
ルギルス・ニドランスG191株の5倍に増加した形質
転換株を得ることができた。この形質転換株をアスペル
ギルス・ニドランスBE株と命名した。アスペルギルス
・ニドランスBE株が多量に生産する72kDのタンパ
ク質が枝作り酵素遺伝子産物であることを確かめるため
にこのタンパク質を1の方法と同じようにV8プロテア
ーゼで切断後、SDS−PAGEに供した。
5. Introduction of this enzyme gene into Aspergillus nidulans In order to efficiently introduce the branching enzyme gene into Aspergillus nidulans strain G191, the recombinant plasmid pT
G1-BE was produced. That is, pBE-G is converted to Xba
I, the 4147 bp band was recovered, and XbaI
Plasmid pTG1 (Mol. Gen. Ge)
net. , 254, 119 (1997)) and T4 DNA
Ligation was performed using ligase. Recombinant plasmid pTG1
-BE was added to Aspergillus nidulans strain G191 by Ba
Lance and Turner's method (Gene, 36,
321 (1985)). As a result, about 1
00 transformants were obtained. Ten strains were selected from among them, and a branching enzyme was extracted by the method shown in 1 to obtain SDS-P.
AGE was performed. As a result, the branching enzyme was replaced with SDS-PA
When subjected to GE, it was possible to obtain a transformant in which the observed 72 kD band was increased 5-fold as compared to Aspergillus nidulans G191 strain. This transformant was named Aspergillus nidulans BE strain. In order to confirm that the 72 kD protein produced in large quantities by Aspergillus nidulans strain BE was a branching enzyme gene product, this protein was digested with V8 protease in the same manner as in method 1, and then subjected to SDS-PAGE.

【0022】その泳動パターンを図2に示した。図中、
レーン1は分子量マーカー、レーン2はアスペルギルス
・ニドランスBE株が生産する枝作り酵素、レーン3は
V8プロテアーゼ処理後の枝作り酵素をそれぞれ示す。
その結果から明らかなように、その泳動パターンは、枝
作り酵素をV8プロテアーゼで処理した際得られるパタ
ーンとほぼ一致し、p72タンパク質が枝作り酵素であ
ることが示唆された。さらに1でアミノ酸配列を決定し
た26kDaのバンドと同一分子量のバンド(図2のペ
プチド1)のアミノ酸配列を決定した。決定されたN末
端アミノ酸配列は、Ser−His−Asp−Gln−
Ala−Leu−Val−Glyであり、この配列は、
配列表の配列番号3に示したアミノ酸配列に一致し、枝
作り酵素遺伝子から見いだされたアミノ酸配列の一部に
一致した。このことからアスペルギルス・ニドランスB
E株の78kDのタンパク質は、本発明にかかる遺伝子
産物であることが確認された。
FIG. 2 shows the migration pattern. In the figure,
Lane 1 shows a molecular weight marker, lane 2 shows a branching enzyme produced by Aspergillus nidulans BE strain, and lane 3 shows a branching enzyme after V8 protease treatment.
As is apparent from the results, the migration pattern almost coincided with the pattern obtained when the branching enzyme was treated with V8 protease, suggesting that the p72 protein is a branching enzyme. Further, the amino acid sequence of the band of the same molecular weight (peptide 1 in FIG. 2) as the 26 kDa band whose amino acid sequence was determined in 1 was determined. The determined N-terminal amino acid sequence is Ser-His-Asp-Gln-
Ala-Leu-Val-Gly, the sequence of which is:
It corresponded to the amino acid sequence shown in SEQ ID NO: 3 of the sequence listing, and corresponded to a part of the amino acid sequence found from the branching enzyme gene. From this, Aspergillus nidulans B
The 78 kD protein of the E strain was confirmed to be the gene product according to the present invention.

【0023】[0023]

【発明の効果】本発明によって、枝作り酵素遺伝子及び
枝作り酵素のアミノ酸配列が明らかにされ、該遺伝子を
導入した形質転換体によるその発現も確認された。その
結果、該酵素の工業的生産が可能となり、デンプンの老
化の抑制等、食品工業その他における広範な用途への利
用が期待される。
According to the present invention, the branching enzyme gene and the amino acid sequence of the branching enzyme have been clarified, and the expression of the gene in a transformant into which the gene has been introduced has also been confirmed. As a result, the enzyme can be industrially produced, and is expected to be used for a wide range of uses in the food industry and the like, such as suppression of starch aging.

【0024】[0024]

【配列表】 SEQUENCE LISTING <110> Higeta Shoyu Co., Ltd. <120> Gene Encoding Glycogen Branching Enzyme and Microorganism Gontaining thereof <130> 6149 <141> 1999-4-1 <160> 7 <210> 1 <211> 686 <212> PRT <213> Aspergillus nidulans <400> 1 Met Thr Ser Thr Ala Pro Ser Asp Gly Thr Gly Ile Ile Asp Leu 1 5 10 15 Asp Pro Trp Leu Glu Pro Phe Arg Glu Ala Ile Lys Arg Arg Phe 20 25 30 Asp Tyr Val Glu Ser Trp Ile Lys Thr Val Asp Glu Val Glu Gly 35 40 45 Gly Leu Asp Lys Phe Ser Lys Gly Tyr Glu Lys Phe Gly Phe Asn 50 55 60 Val Ser Glu Thr Gly Asp Ile Thr Tyr Arg Glu Trp Ala Pro Asn 65 70 75 Ala Ile Glu Ala Ala Leu Val Gly Asp Phe Asn Asn Trp Asp Thr 80 85 90 Lys Ala Asn Pro Met Thr Arg Asp Asn Phe Gly Val Trp Glu Ile 95 100 105 Ala Leu Pro Ala Lys Asn Gly Thr Pro Val Ile Pro His Asp Ser 110 115 120 Lys Val Lys Val Lys Ile Thr Met Val Thr Arg Ser Gly Glu Arg 125 130 135 Ile Tyr Arg Ile Pro Ala Trp Ile Lys Arg Val Val Gln Asp Leu 140 145 150 Asn Val Ser Pro Ile Tyr Glu Ser Val Phe Trp Asn Pro Pro Lys 155 160 165 Ala Glu Arg Tyr Asn Phe Gln His Ala Arg Pro Lys Lys Pro Glu 170 175 180 Ser Leu Arg Ile Tyr Glu Ala His Val Gly Ile Ser Ser Pro Asp 185 190 195 Thr Arg Val Ala Thr Tyr Lys Glu Phe Thr Ala Asn Met Leu Pro 200 205 210 Arg Ile Lys Tyr Leu Gly Tyr Asn Ala Ile Gln Leu Met Ala Ile 215 220 225 Met Glu His Ala Tyr Tyr Ala Ser Phe Gly Tyr Gln Val Asn Asn 230 235 240 Phe Phe Ala Ala Ser Ser Arg Tyr Gly Lys Pro Glu Asp Leu Lys 245 250 255 Glu Leu Val Asp Thr Ala His Ser Met Gly Leu Val Val Leu Leu 260 265 270 Asp Val Val His Ser His Ala Ser Lys Asn Val Asp Asp Gly Leu 275 280 285 Asn Met Phe Asp Gly Ser Asp His Leu Tyr Phe His Ser Gly Ser 290 295 300 Lys Gly Gln His Glu Leu Trp Asp Ser Arg Leu Phe Asn Tyr Gly 305 310 315 Asn His Glu Val Leu Arg Phe Leu Leu Ser Asn Leu Arg Phe Trp 320 325 330 Met Glu Glu Tyr Gly Phe Asp Gly Phe Arg Phe Asp Gly Val Thr 335 340 345 Ser Met Leu Tyr Thr His His Gly Ile Gly Thr Gly Phe Ser Gly 350 355 360 Gly Tyr His Glu Tyr Phe Gly Pro Ala Val Asp Asp Asp Gly Val 365 370 375 Met Tyr Leu Ala Leu Ala Asn Glu Met Leu His Arg Leu Tyr Pro 380 385 390 Asp Cys Ile Thr Val Ala Glu Asp Val Ser Gly Met Pro Ala Leu 395 400 405 Cys Leu Pro His Gly Leu Gly Gly Val Gly Phe Asp Tyr Arg Leu 410 415 420 Ala Met Ala Ile Pro Asp Met Tyr Ile Lys Leu Leu Lys Glu Lys 425 430 435 Ser Asp Asn Asp Trp Asp Ile Gly Asn Leu Ala Phe Thr Leu Thr 440 445 450 Asn Arg Arg His Gly Glu Lys Thr Ile Ala Tyr Ala Glu Ser His 455 460 465 Asp Gln Ala Leu Val Gly Asp Lys Ser Leu Met Met Trp Leu Cys 470 475 480 Asp Lys Glu Met Tyr Thr His Met Ser Val Leu Thr Glu Phe Thr 485 490 495 Pro Val Ile Glu Arg Gly Met Ala Leu His Lys Met Ile Arg Leu 500 505 510 Val Thr His Ala Leu Gly Gly Glu Gly Tyr Leu Asn Phe Glu Gly 515 520 525 Asn Glu Phe Gly His Pro Glu Trp Leu Asp Phe Pro Arg Ala Gly 530 535 540 Asn Asn Asn Ser Phe Trp Tyr Ala Arg Arg Gln Leu Asn Leu Thr 545 550 555 Glu Asp His Leu Leu Arg Tyr Arg Phe Leu Asn Glu Phe Asp Arg 560 565 570 Ala Met Gln Leu Thr Glu Ser Lys Tyr Gly Trp Leu His Ala Pro 575 580 585 Gln Ala Tyr Ile Ser Leu Lys His Glu Gly Asp Lys Val Leu Val 590 595 600 Phe Glu Arg Ala Asp Leu Leu Trp Ile Phe Asn Phe His Pro Thr 605 610 615 Glu Ser Phe Thr Asp Tyr Arg Val Gly Val Glu Gln Ala Gly Thr 620 625 630 Tyr Arg Val Val Leu Asp Thr Asp Asp Gln Ala Phe Gly Gly Leu 635 640 645 Gly Arg Ile Asp Gln Gly Thr Arg Phe Phe Thr Thr Asp Met Glu 650 655 660 Trp Asn Gly Arg Arg Asn Tyr Leu Gln Val Tyr Ile Pro Thr Arg 665 670 675 Thr Ala Leu Ala Leu Ala Leu Glu Glu Thr Leu 680 685 <210> 2 <211> 3037 <212> DNA <213> Aspergillus nidulans <400> 2 tctagaggga gagcgaggat cgcaacagag cctgtgatgt ccctgacaaa atagtggtgt -1020 gacgggcatt tagggctgcc tgtggtgctc acttcccaac gtcaccggcc ttgtgcacac -960 acaaagtcta tatatcatga cctgagcccg agtggtattc catgctcaga gcagaagatg -900 ggcttcttca gcagtctctg atatgatgga tcacatgttg ccataacgcg caaagtcgat -840 aggcggcggg atattgcttg acgcaacagt caaggaggga gactgatgct aattcgacta -780 actgagccta gatactctgc agttacttgc aattatggtc gtcatctagc cttttgctac -720 agtcattgga ggttatgcta caggcacttg atttcttaca tctgtactgt ttctcccttc -660 tctgtcggcg cctgcaccta ggggtaaagc accccaactc gctgcacaac ataatgcgct -600 gacatcggcc tattactggt ttgaggaagg tccaaatcgt ttgatctggt aaaggaaaag -540 gttcgaaagt caggagaagg agtatatgat ttcgtagcac tatctgcttt tgattcaaag -480 ttctaggaac tttaggaact gctttttcct tgggttatgg tcctctaacc tccgggtaac -420 gggatacaga acaaatacat aaacagcacg cgcactgatg ttactcaaca agtggcccgt -360 ttggccactt tgaatagaaa ccactaacta ccgccactat gcagacgatg atcgcagtgt -300 ccaatcagac cacggcacac ccttgaaacc cagccgatta aaggtgataa aaacccgtcg -240 atggctgttc caagaccaaa aagaggttgg gaaaagatag tgatgtcagc gatgtggaat -180 gttggcagga cacggacccc cgcaatcaac tcctcccagg aacaagagct ctgaaccgct -120 tctttcccgc atccggttca cttttttttt actctctaaa acttcgaaga ctcaatcaat -90 tcctactcta ttttggccct ggagtttatt cctgacgcga ctctcaacgc gtatcgagcc -30 tgagccagct tatctcgttg ctcaacggcc atgacttcca cagctccatc tgacggcact 30 ggtgggtcaa agaacgccga ttattcagtc aatgacattc taacgctgat ctacaggtat 90 catcgatctt gatccgtggt tagagccttt tcgggaggct atcaagcgcc gattcgatta 150 tgttgagagc tggatcaaga ccgttgatga ggtggaggga ggtctcgata agttcagcaa 210 ggtgagtaga ctatcaacta tccagttgtg ttccccattt tctctataac ttgtgtgcaa 270 cggctaattg gagagctttt tccatgggga cgatagggct atgagaaatt cggcttcaat 330 gtcagcgaga cgggcgacat cacctacagg gaatgggctc caaacgccat agaagcggcg 390 ctggtgggtg acttcagtac gtctgtctgg cacctggggt gggtaaaatc gccagttaaa 450 gcacgttact aagactggca gacaattggg ataccaaggc gaatccaatg acgagagaca 510 acttcggtgt ttgggagatt gcccttcctg cgaagaatgg cacgccggtc ataccgcatg 570 atagtaaggt taaggtatgt ttacggcatg cagcttcacc accgtggggg ttctaatgct 630 gacttcctac agataactat ggtcacccgc agcggagaac gtatatatcg tattcccgca 690 tggatcaagc gtgttgtgca agatctgaat gtatcgccta tctacgaatc tgtcttttgg 750 aacccaccaa aggcagagcg gtataacttt cagcatgcgc gccctaagaa acccgaaagc 810 ctacggatct atgaagctca cgtcggtatc tcgtccccgg ataccagagt agcaacatac 870 aaggagttca cagccaacat gctccctcgg attaagtacc taggctacaa cgcaatccag 930 ctcatggcca ttatggaaca tgcctactat gccagcttcg ggtaccaggt taacaatttc 990 ttcgcagcga gtagtcgcta cggtaagccc gaggatctga aggaactggt tgacacggca 1050 catagtatgg gcttggtagt tctcctcgac gtggtgcaca gccacgcatc gaagaacgtc 1110 gatgacggac tgaacatgtt tgatggcagt gaccatttat atttccattc cgggtcaaaa 1170 ggtcagcacg agctatggga cagccgactg tttaactacg gaaaccatga agttctgcgg 1230 ttcctcctta gcaatcttcg cttttggatg gaggaatacg gctttgacgg ttttcgattt 1290 gatggtgtca ccagcatgtt atatacccat cacggtattg ggacgtgagt cacgataatc 1350 tcgatatttt ttacaagtgc tcaccagtgt cagtggcttt tcaggcggat accacgaata 1410 cttcggtcca gcagttgacg acgatggcgt tatgtaccta gccctagcaa acgaaatgct 1470 gcaccgtctt tacccagatt gcataaccgt ggcagaggat gtttcgggaa tgccagcgtt 1530 atgcatacca cacggccttg gtggagtcgg attcgactat cgtctcgcga tggccattcc 1590 agatatgtat atcaagcttc taaaagagaa gtcagacaac gattgggaca ttggcaatct 1650 cgccttcacg ttgacaaacc gacgccatgg cgagaagacc attgcatacg cagaaagcca 1710 cgaccaagcg taagtcctcc cgtcttctgt aacagaccca aatcataaca taacccagtc 1770 tcgtcggcga caaatctctc atgatgtggc tctgcgataa agaaatgtac acacacatgt 1830 ccgtcctgac agagttcacc cccgtcatcg aacgcggcat ggcactccac aaaatgatcc 1890 ggcttgtcac acacgccctt ggtggcgaag gctacctcaa tttcgaaggt aacgaattcg 1950 ggcacccgga atggctcgac tttccccgcg ccggcaacaa caactccttc tggtacgcac 2010 gtcgccaact aaacctgacc gaagatcact tcctctacgc tacagattcc ttaacgagtt 2070 cgaccgcgcc atgcagttga cagaatccaa gtacggctgg ctccatgcgc cccaggctta 2130 tatttctctc aagcacgaag gagataaagt gcttgtcttt gagcgggcgg atttgctatg 2190 gattttcaat ttccatccta cggagagttt taccgattat agggtcggtg tagaacaagc 2250 tgggacttat cgggttgtgc ttgacactga tgaccaggcg tttgggggct tgggaaggat 2310 cgatcagggg actagattct ttacaaccga tatggaatgg aatgggagga ggaattactt 2370 gcaggtttat attccgacta ggactgctct ggtgagtcta ctcgttcttg aacccttcat 2430 gcctttttct cttcgtggtt gtcatctgta tacgaaactc gatactaatc acttctgttg 2490 gatgtaggcc ctagcattgg aagagacgct gtaatactcc actccggagc ttttacgtgc 2550 gaatatattc gctattaaga tactctttct cgaaaactaa cgccagacca aactatatat 2610 ctatatgtac cgaccatata tccgtatcct agcatgttga gatagttcat agcataattt 2670 aatctttgtt aaccgcgcaa tttctcaccc cttccctttg ctgtacacta tgggtgattt 2730 tgttcatcat tggcctcgta catagtacat gagacgttaa acagccagga tgagttcaga 2790 tagcagggac ataacatcta ctgcgagagc catgctgcaa tctccatcat ttgatgaagc 2850 tgcacaagct ccagacaaca tactacagag gctatacgag aggtactaca atggagaaaa 2910 agaataaacc atattttcca atccaacaaa agaaatgata catgttgtcc ctgcccgagg 2970 gtataaggcc gggtgtggtc atttaattta cttacatgag cacaatatat tgtcacacga 3030 gtctaga 3037 <210> 3 <211> 10 <212> PRT <213> Aspergillus nidulans <400> 3 Ser His Asp Gln Ala Leu Val Gly Asp Lys 1 5 10 <210> 4 <211> 26 <212> DNA <213> Artificial sequence <400> 4 ttygayggnt tymgnttyga ygtnac 26 <210> 5 <211> 23 <212> DNA <213> Artificial sequence <400> 5 gtyttrtcnc cnacnarngc ytg 23 <210> 6 <211> 27 <212> DNA <213> Artificial sequence <400> 6 ggnttymgnt tygaygtnac nwsnatg 27 <210> 7 <211> 29 <212> DNA <213> Artificial sequence <400> 7 gtyttrtcnc cnacnarngc ytgrtcrtg 29[Sequence List] SEQUENCE LISTING <110> Higeta Shoyu Co., Ltd. <120> Gene Encoding Glycogen Branching Enzyme and Microorganism Gontaining there <130> 6149 <141> 1999-4-1 <160> 7 <210> 1 <211 > 686 <212> PRT <213> Aspergillus nidulans <400> 1 Met Thr Ser Thr Ala Pro Ser Asp Gly Thr Gly Ile Ile Asp Leu 1 5 10 15 Asp Pro Trp Leu Glu Pro Phe Arg Glu Ala Ile Lys Arg Arg Phe 20 25 30 Asp Tyr Val Glu Ser Trp Ile Lys Thr Val Asp Glu Val Glu Gly 35 40 45 Gly Leu Asp Lys Phe Ser Lys Gly Tyr Glu Lys Phe Gly Phe Asn 50 55 60 Val Ser Glu Thr Gly Asp Ile Thr Tyr Arg Glu Trp Ala Pro Asn 65 70 75 Ala Ile Glu Ala Ala Leu Val Gly Asp Phe Asn Asn Trp Asp Thr 80 85 90 Lys Ala Asn Pro Met Thr Arg Asp Asn Phe Gly Val Trp Glu Ile 95 100 105 Ala Leu Pro Ala Lys Asn Gly Thr Pro Val Ile Pro His Asp Ser 110 115 120 Lys Val Lys Val Lys Ile Thr Met Val Thr Arg Ser Gly Glu Arg 125 130 135 Ile Tyr Arg Ile Pro Ala Trp Ile Lys Arg Val Val Gln Asp Leu 140 145 150 Asn Val Ser Pro Ile Tyr Glu Ser Val Phe Trp Asn Pro Pro Lys 155 160 165 Ala Glu Arg Tyr Asn Phe Gln His Ala Arg Pro Lys Lys Pro Glu 170 175 180 Ser Leu Arg Ile Tyr Glu Ala His Val Gly Ile Ser Ser Pro Asp 185 190 195 Thr Arg Val Ala Thr Tyr Lys Glu Phe Thr Ala Asn Met Leu Pro 200 205 210 Arg Ile Lys Tyr Leu Gly Tyr Asn Ala Ile Gln Leu Met Ala Ile 215 220 225 Met Glu His Ala Tyr Tyr Ala Ser Phe Gly Tyr Gln Val Asn Asn 230 235 240 Phe Phe Ala Ala Ser Ser Arg Tyr Gly Lys Pro Glu Asp Leu Lys 245 250 255 Glu Leu Val Asp Thr Ala His Ser Met Gly Leu Val Val Leu Leu 260 265 270 Asp Val Val His Ser His Ala Ser Lys Asn Val Asp Asp Gly Leu 275 280 285 Asn Met Phe Asp Gly Ser Asp His Leu Tyr Phe His Ser Gly Ser 290 295 300 Lys Gly Gln His Glu Leu Trp Asp Ser Arg Leu Phe Asn Tyr Gly 305 310 315 Asn His Glu Val Leu Arg Phe Leu Leu Ser Asn Leu Arg Phe Trp 320 325 330 Met Glu Glu Tyr Gly Phe Asp Gly Phe Arg Phe Asp Gly Val Thr 335 340 345 Ser Met Leu Tyr Thr His His Gly Ile Gly Thr Gly Phe Ser Gly 350 355 360 Gly Tyr His Glu Tyr Phe Gly Pro Ala Val Asp AspAsp Gly Val 365 370 375 Met Tyr Leu Ala Leu Ala Asn Glu Met Leu His Arg Leu Tyr Pro 380 385 390 Asp Cys Ile Thr Val Ala Glu Asp Val Ser Gly Met Pro Ala Leu 395 400 405 Cys Leu Pro His Gly Leu Gly Gly Val Gly Phe Asp Tyr Arg Leu 410 415 420 Ala Met Ala Ile Pro Asp Met Tyr Ile Lys Leu Leu Lys Glu Lys 425 430 435 Ser Asp Asn Asp Trp Asp Ile Gly Asn Leu Ala Phe Thr Leu Thr 440 445 445 450 Asn Arg Arg His Gly Glu Lys Thr Ile Ala Tyr Ala Glu Ser His 455 460 465 Asp Gln Ala Leu Val Gly Asp Lys Ser Leu Met Met Trp Leu Cys 470 475 480 Asp Lys Glu Met Tyr Thr His Met Ser Val Leu Thr Glu Phe Thr 485 490 495 Pro Val Ile Glu Arg Gly Met Ala Leu His Lys Met Ile Arg Leu 500 505 510 Val Thr His Ala Leu Gly Gly Glu Gly Tyr Leu Asn Phe Glu Gly 515 520 525 Asn Glu Phe Gly His Pro Glu Trp Leu Asp Phe Pro Arg Ala Gly 530 535 540 Asn Asn Asn Ser Phe Trp Tyr Ala Arg Arg Gln Leu Asn Leu Thr 545 550 555 Glu Asp His Leu Leu Arg Tyr Arg Phe Leu Asn Glu Phe Asp Arg 560 565 570 570 Ala Met Gln Leu Thr Glu Ser Lys Tyr GlyTrp Leu His Ala Pro 575 580 585 Gln Ala Tyr Ile Ser Leu Lys His Glu Gly Asp Lys Val Leu Val 590 595 600 Phe Glu Arg Ala Asp Leu Leu Trp Ile Phe Asn Phe His Pro Thr 605 610 615 Glu Ser Phe Thr Asp Tyr Arg Val Gly Val Glu Gln Ala Gly Thr 620 625 630 Tyr Arg Val Val Leu Asp Thr Asp Asp Gln Ala Phe Gly Gly Leu 635 640 645 Gly Arg Ile Asp Gln Gly Thr Arg Phe Phe Thr Thr Asp Met Glu 650 655 660 Trp Asn Gly Arg Arg Asn Tyr Leu Gln Val Tyr Ile Pro Thr Arg 665 670 675 Thr Ala Leu Ala Leu Ala Leu Glu Glu Thr Leu 680 685 <210> 2 <211> 3037 <212> DNA <213> Aspergillus nidulans <400> 2 tctagaggga gagcgaggat cgcaacagag cctgtgatgt ccctgacaaa atagtggtgt -1020 gacgggcatt tagggctgcc tgtggtgctc acttcccaac gtcaccggcc ttgtgcacac -960 acaaagtcta tatatcatga cctgagcccg agtggtattc catgctcaga gcagaagatg -900 ggcttcttca gcagtctctg atatgatgga tcacatgttg ccataacgcg caaagtcgat -840 aggcggcggg atattgcttg acgcaacagt caaggaggga gactgatgct aattcgacta -780 actgagccta gatactctgc agttacttgc aattatggtc gtcatctagc cttttgcta c -720 agtcattgga ggttatgcta caggcacttg atttcttaca tctgtactgt ttctcccttc -660 tctgtcggcg cctgcaccta ggggtaaagc accccaactc gctgcacaac ataatgcgct -600 gacatcggcc tattactggt ttgaggaagg tccaaatcgt ttgatctggt aaaggaaaag -540 gttcgaaagt caggagaagg agtatatgat ttcgtagcac tatctgcttt tgattcaaag -480 ttctaggaac tttaggaact gctttttcct tgggttatgg tcctctaacc tccgggtaac -420 gggatacaga acaaatacat aaacagcacg cgcactgatg ttactcaaca agtggcccgt - 360 ttggccactt tgaatagaaa ccactaacta ccgccactat gcagacgatg atcgcagtgt -300 ccaatcagac cacggcacac ccttgaaacc cagccgatta aaggtgataa aaacccgtcg -240 atggctgttc caagaccaaa aagaggttgg gaaaagatag tgatgtcagc gatgtggaat -180 gttggcagga cacggacccc cgcaatcaac tcctcccagg aacaagagct ctgaaccgct -120 tctttcccgc atccggttca cttttttttt actctctaaa acttcgaaga ctcaatcaat -90 tcctactcta ttttggccct ggagtttatt cctgacgcga ctctcaacgc gtatcgagcc -30 tgagccagct tatctcgttg ctcaacggcc atgacttcca cagctccatc tgacggcact 30 ggtgggtcaa agaacgccga ttattcagtc aatgacattc taacgctgat ctacaggtat 90 catcg atctt gatccgtggt tagagccttt tcgggaggct atcaagcgcc gattcgatta 150 tgttgagagc tggatcaaga ccgttgatga ggtggaggga ggtctcgata agttcagcaa 210 ggtgagtaga ctatcaacta tccagttgtg ttccccattt tctctataac ttgtgtgcaa 270 cggctaattg gagagctttt tccatgggga cgatagggct atgagaaatt cggcttcaat 330 gtcagcgaga cgggcgacat cacctacagg gaatgggctc caaacgccat agaagcggcg 390 ctggtgggtg acttcagtac gtctgtctgg cacctggggt gggtaaaatc gccagttaaa 450 gcacgttact aagactggca gacaattggg ataccaaggc gaatccaatg acgagagaca 510 acttcggtgt ttgggagatt gcccttcctg cgaagaatgg cacgccggtc ataccgcatg 570 atagtaaggt taaggtatgt ttacggcatg cagcttcacc accgtggggg ttctaatgct 630 gacttcctac agataactat ggtcacccgc agcggagaac gtatatatcg tattcccgca 690 tggatcaagc gtgttgtgca agatctgaat gtatcgccta tctacgaatc tgtcttttgg 750 aacccaccaa aggcagagcg gtataacttt cagcatgcgc gccctaagaa acccgaaagc 810 ctacggatct atgaagctca cgtcggtatc tcgtccccgg ataccagagt agcaacatac 870 aaggagttca cagccaacat gctccctcgg attaagtacc taggctacaa cgcaatccag 930 ctcatggcca ttatggaaca tgc ctactat gccagcttcg ggtaccaggt taacaatttc 990 ttcgcagcga gtagtcgcta cggtaagccc gaggatctga aggaactggt tgacacggca 1050 catagtatgg gcttggtagt tctcctcgac gtggtgcaca gccacgcatc gaagaacgtc 1110 gatgacggac tgaacatgtt tgatggcagt gaccatttat atttccattc cgggtcaaaa 1170 ggtcagcacg agctatggga cagccgactg tttaactacg gaaaccatga agttctgcgg 1230 ttcctcctta gcaatcttcg cttttggatg gaggaatacg gctttgacgg ttttcgattt 1290 gatggtgtca ccagcatgtt atatacccat cacggtattg ggacgtgagt cacgataatc 1350 tcgatatttt ttacaagtgc tcaccagtgt cagtggcttt tcaggcggat accacgaata 1410 cttcggtcca gcagttgacg acgatggcgt tatgtaccta gccctagcaa acgaaatgct 1470 gcaccgtctt tacccagatt gcataaccgt ggcagaggat gtttcgggaa tgccagcgtt 1530 atgcatacca cacggccttg gtggagtcgg attcgactat cgtctcgcga tggccattcc 1590 agatatgtat atcaagcttc taaaagagaa gtcagacaac gattgggaca ttggcaatct 1650 cgccttcacg ttgacaaacc gacgccatgg cgagaagacc attgcatacg cagaaagcca 1710 cgaccaagcg taagtcctcc cgtcttctgt aacagaccca aatcataaca taacccagtc 1770 tcgtcggcga caaatctctc atgatgtggc tctgcgataa agaaatgtac acacacatgt 1830 ccgtcctgac agagttcacc cccgtcatcg aacgcggcat ggcactccac aaaatgatcc 1890 ggcttgtcac acacgccctt ggtggcgaag gctacctcaa tttcgaaggt aacgaattcg 1950 ggcacccgga atggctcgac tttccccgcg ccggcaacaa caactccttc tggtacgcac 2010 gtcgccaact aaacctgacc gaagatcact tcctctacgc tacagattcc ttaacgagtt 2070 cgaccgcgcc atgcagttga cagaatccaa gtacggctgg ctccatgcgc cccaggctta 2130 tatttctctc aagcacgaag gagataaagt gcttgtcttt gagcgggcgg atttgctatg 2190 gattttcaat ttccatccta cggagagttt taccgattat agggtcggtg tagaacaagc 2250 tgggacttat cgggttgtgc ttgacactga tgaccaggcg tttgggggct tgggaaggat 2310 cgatcagggg actagattct ttacaaccga tatggaatgg aatgggagga ggaattactt 2370 gcaggtttat attccgacta ggactgctct ggtgagtcta ctcgttcttg aacccttcat 2430 gcctttttct cttcgtggtt gtcatctgta tacgaaactc gatactaatc acttctgttg 2490 gatgtaggcc ctagcattgg aagagacgct gtaatactcc actccggagc ttttacgtgc 2550 gaatatattc gctattaaga tactctttct cgaaaactaa cgccagacca aactatatat 2610 ctatatgtac cgaccatata tccgtatcct agcat gttga gatagttcat agcataattt 2670 aatctttgtt aaccgcgcaa tttctcaccc cttccctttg ctgtacacta tgggtgattt 2730 tgttcatcat tggcctcgta catagtacat gagacgttaa acagccagga tgagttcaga 2790 tagcagggac ataacatcta ctgcgagagc catgctgcaa tctccatcat ttgatgaagc 2850 tgcacaagct ccagacaaca tactacagag gctatacgag aggtactaca atggagaaaa 2910 agaataaacc atattttcca atccaacaaa agaaatgata catgttgtcc ctgcccgagg 2970 gtataaggcc gggtgtggtc atttaattta cttacatgag cacaatatat tgtcacacga 3030 gtctaga 3037 <210 > 3 <211> 10 <212> PRT <213> Aspergillus nidulans <400> 3 Ser His Asp Gln Ala Leu Val Gly Asp Lys 1 5 10 <210> 4 <211> 26 <212> DNA <213> Artificial sequence < 400> 4 ttygayggnt tymgnttyga ygtnac 26 <210> 5 <211> 23 <212> DNA <213> Artificial sequence <400> 5 gtyttrtcnc cnacnarngc ytg 23 <210> 6 <211> 27 <212> DNA <213> Artificial sequence < 400> 6 ggnttymgnt tygaygtnac nwsnatg 27 <210> 7 <211> 29 <212> DNA <213> Artificial sequence <400> 7 gtyttrtcnc cnacnarngc ytgrtcrtg 29

【図面の簡単な説明】[Brief description of the drawings]

【図1】枝作り酵素のcDNAの制限酵素地図を示す。FIG. 1 shows a restriction map of the cDNA of the branching enzyme.

【図2】枝作り酵素のプロテアーゼ分解物の電気泳動パ
ターンを示す。
FIG. 2 shows an electrophoresis pattern of a protease degradation product of a branching enzyme.

【図3】枝作り酵素のアミノ酸配列1を示す。FIG. 3 shows the amino acid sequence 1 of the branching enzyme.

【図4】同2を示す。FIG. 4 shows the same.

【図5】同3を示す。FIG. 5 shows the same.

【図6】枝作り酵素遺伝子の塩基配列1を示す。FIG. 6 shows base sequence 1 of a branching enzyme gene.

【図7】同2を示す。FIG. 7 shows the same.

【図8】同3を示す。FIG. 8 shows the same.

【図9】同4を示す。FIG. 9 shows the same.

【図10】同5を示す。FIG. 10 shows the same.

【図11】枝作り酵素遺伝子cDNAの塩基配列1を示
す。
FIG. 11 shows the nucleotide sequence 1 of the branching enzyme gene cDNA.

【図12】同2を示す。FIG. 12 shows the same.

【図13】同3を示す。FIG. 13 shows the same.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) (C12N 1/15 C12R 1:66) (C12N 9/10 C12R 1:66) (72)発明者 加藤 雅士 愛知県名古屋市千種区北千種一丁目9の11 仲田住宅8棟34号 (72)発明者 松野 彩 愛知県尾張旭市北原山町鳴湫1754−15 Fターム(参考) 4B024 AA03 AA05 BA10 CA04 DA11 EA04 GA11 4B050 CC04 LL02 4B065 AA60X AA60Y AB01 AC14 BA02 CA29 CA41 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) (C12N 1/15 C12R 1:66) (C12N 9/10 C12R 1:66) (72) Inventor Masato Kato 1-11, Kita Chikusa 1-chome, Chikusa-ku, Nagoya-shi, Aichi No. 8 Building 34, No. 34 (72) Inventor: Aya Matsuno GA11 4B050 CC04 LL02 4B065 AA60X AA60Y AB01 AC14 BA02 CA29 CA41

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 配列表の配列番号1のアミノ酸配列で示
される枝作り酵素。
1. A branching enzyme represented by the amino acid sequence of SEQ ID NO: 1 in the sequence listing.
【請求項2】 配列表の配列番号2の塩基配列で示さ
れ、請求項1に記載のアミノ酸配列をコードする枝作り
酵素遺伝子を含むDNA。
2. A DNA comprising a branching enzyme gene represented by the nucleotide sequence of SEQ ID NO: 2 in the sequence listing and encoding the amino acid sequence according to claim 1.
【請求項3】 請求項2に記載のDNAの少なくとも一
部を含有してなる組換えプラスミド。
3. A recombinant plasmid comprising at least a part of the DNA according to claim 2.
【請求項4】 請求項3に記載の組換えプラスミドを導
入してなる形質転換体アスペルギルス・ニドランス(A
spergillus nidulans)BE。
4. A transformant into which the recombinant plasmid according to claim 3 has been introduced, Aspergillus nidulans (A)
spergillus nidulans) BE.
【請求項5】 請求項4に記載の形質転換体Asper
gillus nidulans BEを使用すること
を特徴とする枝作り酵素の製造法。
5. The transformant Asper according to claim 4,
A method for producing a branching enzyme, which comprises using Gillus nidulans BE.
JP11094806A 1999-04-01 1999-04-01 Gene coding for branching enzyme and microorganism having the gene Pending JP2000279180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11094806A JP2000279180A (en) 1999-04-01 1999-04-01 Gene coding for branching enzyme and microorganism having the gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11094806A JP2000279180A (en) 1999-04-01 1999-04-01 Gene coding for branching enzyme and microorganism having the gene

Publications (1)

Publication Number Publication Date
JP2000279180A true JP2000279180A (en) 2000-10-10

Family

ID=14120312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11094806A Pending JP2000279180A (en) 1999-04-01 1999-04-01 Gene coding for branching enzyme and microorganism having the gene

Country Status (1)

Country Link
JP (1) JP2000279180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812221B2 (en) 2003-06-30 2010-10-12 Commonwealth Scientific And Industrial Research Organization Wheat with altered branching enzyme activity and starch and starch containing products derived therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812221B2 (en) 2003-06-30 2010-10-12 Commonwealth Scientific And Industrial Research Organization Wheat with altered branching enzyme activity and starch and starch containing products derived therefrom
US8115087B2 (en) 2003-06-30 2012-02-14 Commonwealth Scientific And Industrial Research Organisation Wheat with altered branching enzyme activity and starch and starch containing products derived therefrom
US8829315B2 (en) 2003-06-30 2014-09-09 Commonwealth Scientific And Industrial Research Organisation Wheat with altered branching enzyme activity and starch containing products derived therefrom

Similar Documents

Publication Publication Date Title
Saxena et al. Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum
AU718990B2 (en) Lysophospholipase produced from Aspergillus by recombinant methods
Gelb et al. Cathepsin K: isolation and characterization of the murine cDNA and genomic sequence, the homologue of the human pycnodysostosis gene
JPH03500008A (en) Production of glucose oxidase in a recombinant system
KR100545010B1 (en) Method for reducing or eliminating tripeptidyl aminopeptidase production
JPH11503002A (en) Production of Enzymatically Active Recombinant Carboxypeptidase B
EP0769553B1 (en) Dna fragment, recombination vector containing the same, and method of the expression of alien gene with the use of the same
JP2000514292A (en) Transcription factor
CN1143371A (en) Corpuscles of stannius protein, stanniocalcin
TWI282370B (en) Improved method for the recombinant production of polypeptides
US6228632B1 (en) Leucine aminopeptidases produced recombinantly from Aspergillus soyae
JPH05199882A (en) Production of bilirubin oxidase
JP2000279180A (en) Gene coding for branching enzyme and microorganism having the gene
JP2001500022A (en) Enhanced expression of proteolytic enzymes in Aspergillus oryzae
JPH08196281A (en) Dna coding water-formation type nadh oxidase
Kimpel et al. PaGrg1, a glucose-repressible gene of Podospora anserina that is differentially expressed during lifespan
JP3903125B2 (en) Novel tyrosinase gene melB
Vastag et al. Cloning and sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase gene from the zygomycetes fungus Rhizomucor miehei
TWI313300B (en) Saponin-decomposing enzyme, gene thereof and large-scale production system for producing soyasapogenol
JP3107977B2 (en) Novel cellulase and its gene
JP4267318B2 (en) Novel tyrosinase gene melD
JP3014159B2 (en) DNA sequence encoding human epidermal transglutaminase
JPH11500919A (en) Multidrug resistance gene of Aspergillus flavus
JP2003164284A (en) New endoglucanase and endoglucanase gene
CN116003542A (en) Microorganism for producing citric acid, construction method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104