JP2000277442A - Vapor-phase growth device - Google Patents

Vapor-phase growth device

Info

Publication number
JP2000277442A
JP2000277442A JP11085565A JP8556599A JP2000277442A JP 2000277442 A JP2000277442 A JP 2000277442A JP 11085565 A JP11085565 A JP 11085565A JP 8556599 A JP8556599 A JP 8556599A JP 2000277442 A JP2000277442 A JP 2000277442A
Authority
JP
Japan
Prior art keywords
substrate
partition plate
gas
phase growth
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11085565A
Other languages
Japanese (ja)
Inventor
Nakao Akutsu
仲男 阿久津
Akira Yamaguchi
晃 山口
Yuki Tokunaga
祐樹 徳永
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP11085565A priority Critical patent/JP2000277442A/en
Publication of JP2000277442A publication Critical patent/JP2000277442A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent occurrence of gas flow disturbance at both side ends of a tip end part of a partition plate, which causes a whirl, etc., by providing the partition plate parallel to a substrate surface in a reactive tube on the upper stream side of the substrate forming a thin-film, with a cut part provided at both side ends of the tip end part of the partition plate. SOLUTION: Related to a reactive tube 1, a gas guide part 2 is provided at one end while a gas discharge part 3 at the other end, a susceptor 5 which holds a substrate 4 is provided at a central part, and on the upper stream side of the substrate 4, in short, on the gas guide part 2 side, two partition plates 6 which vertically partition the tnterior of the reactive tube 1 into three layers are horizontally arranged in parallel. On the outer periphery of the reactive tube 1, a high-frequency coil 7 which heats the substrate 4 through the susceptor 5 is provided. The partition plates 6 gradually widen from the gas guiding part 2 side to the substrate 4 so as to correspond to the inner-surface form of the reactive tube. Related to the tip end part of the substrate 4 side, a cut part 10 is provided on both side ends so that a central part 11 protrudes on the substrate 4 side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気相成長装置に関
し、詳しくは、基板面と平行に各種ガスを流して基板面
に薄膜を形成するための横型の気相成長装置であって、
特に、基板面に二成分系以上の化合物半導体薄膜を形成
するための気相成長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus, and more particularly to a horizontal vapor phase growth apparatus for forming a thin film on a substrate surface by flowing various gases in parallel with the substrate surface.
In particular, the present invention relates to a vapor phase growth apparatus for forming a compound semiconductor thin film of two or more components on a substrate surface.

【0002】[0002]

【従来の技術】欠陥の少ない良好な二成分系以上の化合
物半導体薄膜を形成するための気相成長装置として、例
えば、特公平7−27868号公報に記載された装置が
知られている。この気相成長装置は、基板面より上流側
の反応管内に、基板面と平行な仕切板を配設して反応管
内を上下に区切り、該仕切板の上下からそれぞれ基板面
と平行に2種類以上の原料ガスを導入するようにしてい
る。例えば、2枚の仕切板を設けた場合、基板側(下段
層)にアンモニアを、仕切板同士の間(中段層)に有機
金属と水素を、最上部(上段層)に窒素をそれぞれ導入
することにより、基板面に窒化ガリウムの二成分系化合
物半導体薄膜を形成することができる。
2. Description of the Related Art As a vapor phase growth apparatus for forming a good compound semiconductor thin film of two or more components having few defects, for example, an apparatus described in Japanese Patent Publication No. 7-27868 is known. In this vapor phase growth apparatus, a partition plate parallel to the substrate surface is disposed in a reaction tube on the upstream side of the substrate surface to divide the inside of the reaction tube into upper and lower portions. The above source gases are introduced. For example, when two partition plates are provided, ammonia is introduced into the substrate side (lower layer), organic metal and hydrogen are introduced between the partition plates (middle layer), and nitrogen is introduced into the uppermost portion (upper layer). Thus, a gallium nitride binary compound semiconductor thin film can be formed on the substrate surface.

【0003】しかし、このような仕切板を有する気相成
長装置では、操作条件、例えば、成長温度,各層を流れ
る原料ガスの種類,ガスの流速条件等によっては、得ら
れる薄膜にパーティクルによる欠陥が発生したり、成長
速度が低下したり、再現性が低下したりすることがあっ
た。特に、仕切板で区切られた各層のガスの流速差が大
きい場合に多く発生していた。
[0003] However, in a vapor phase growth apparatus having such a partition plate, defects due to particles may be present in the obtained thin film depending on the operating conditions, for example, the growth temperature, the type of raw material gas flowing through each layer, the gas flow rate, and the like. Occasionally, the growth rate may be reduced, or the reproducibility may be reduced. In particular, it often occurs when the gas flow velocity difference between the layers separated by the partition plate is large.

【0004】このようなことから、本出願人は、これら
の問題を解決するため、仕切板の先端部の肉厚を連続的
に薄くなるように形成することを提案した(特開平10
−223543号公報参照)。
[0004] In view of the above, the present applicant has proposed to form the partition plate so as to continuously reduce the thickness at its tip end in order to solve these problems (Japanese Patent Application Laid-Open No. Hei 10 (1998)).
-223543).

【0005】[0005]

【発明が解決しようとする課題】上述のように、仕切板
の先端部を薄くすることによって前述のほとんどの問題
は解決することができたが、この対策を施した場合で
も、操作条件によってはガス流れに乱れが発生し、得ら
れる薄膜の均一性が低下してしまうことがあった。
As described above, most of the above-mentioned problems could be solved by making the leading end of the partition plate thinner. However, even if this countermeasure is taken, depending on the operating conditions. In some cases, the gas flow was disturbed and the uniformity of the obtained thin film was reduced.

【0006】そこで本発明者らが種々考究したところ、
仕切板上下の各ガスの流速や圧力によっては、仕切板の
先端部両側端でガス流れに乱れが発生し、これによって
渦が発生したり、ガス流れに偏りが生じたりすることを
知見した。本発明は、このような知見に基づいて成され
たものであって、仕切板で区切られた各層のガス流速の
設定範囲や、ガス圧力の設定範囲を広くとれ、各層のガ
ス流速に影響されずに再現性よく、かつ、原料利用効率
を低下させることなく良質で均一性に優れた薄膜、特
に、二成分系以上の化合物半導体薄膜を効率よく形成す
ることができる気相成長装置を提供することを目的とし
ている。
Accordingly, the present inventors have made various studies and found that
It has been found that, depending on the flow velocity and pressure of each gas above and below the partition plate, a turbulence occurs in the gas flow at both ends of the leading end of the partition plate, thereby causing a vortex or an uneven gas flow. The present invention has been made based on such knowledge, and the setting range of the gas flow rate of each layer separated by the partition plate and the setting range of the gas pressure can be widened, and the gas flow rate of each layer is affected. To provide a vapor phase growth apparatus capable of efficiently forming a thin film of good quality and excellent uniformity without deteriorating the raw material use efficiency, particularly, a compound semiconductor thin film of two or more components without lowering the raw material use efficiency. It is intended to be.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の気相成長装置は、薄膜を形成する基板より
上流側の反応管内に、基板面と平行な仕切板を配設した
気相成長装置において、前記仕切板の先端部両側端に切
欠部を設けたことを特徴とし、さらに、前記仕切板の先
端部の肉厚を連続的に薄くなるように形成したことを特
徴としている。
In order to achieve the above object, a vapor phase growth apparatus according to the present invention comprises a partition plate parallel to a substrate surface in a reaction tube upstream of a substrate on which a thin film is formed. In the phase growth apparatus, notches are provided at both ends of the tip of the partition plate, and further, the thickness of the tip portion of the partition plate is formed to be continuously reduced. .

【0008】[0008]

【発明の実施の形態】図1乃至図4は、本発明の気相成
長装置の一形態例を示すもので、図1は気相成長装置に
おける反応管の断面平面図、図2は同じく断面正面図、
図3は仕切板の平面図、図4は同じく正面図である。ま
た、図5及び図6は仕切板の他の形状例を示すもので、
図5は平面図、図6は正面図である。さらに、図7は仕
切板の変形例を示す正面図である。
1 to 4 show one embodiment of a vapor phase growth apparatus according to the present invention. FIG. 1 is a plan view of a cross section of a reaction tube in the vapor phase growth apparatus, and FIG. Front view,
FIG. 3 is a plan view of the partition plate, and FIG. 4 is a front view of the same. FIGS. 5 and 6 show other examples of the shape of the partition plate.
FIG. 5 is a plan view, and FIG. 6 is a front view. FIG. 7 is a front view showing a modification of the partition plate.

【0009】この気相成長装置における反応管1は、一
端にガス導入部2を、他端にガス排出部3を有するとと
もに、中央部に基板4を保持するサセプタ5を配置し、
基板4の上流側、即ちガス導入部2側に、反応管1内を
上下3層に区切る2枚の仕切板6を水平方向に平行に配
設したものである。また、反応管1の外周には、サセプ
タ5を介して基板4を加熱するためのRF(高周波)コ
イル7が設けられている。
A reaction tube 1 in this vapor phase growth apparatus has a gas introduction part 2 at one end, a gas discharge part 3 at the other end, and a susceptor 5 for holding a substrate 4 at the center.
On the upstream side of the substrate 4, that is, on the side of the gas introduction unit 2, two partition plates 6 for dividing the inside of the reaction tube 1 into upper and lower three layers are arranged in parallel in the horizontal direction. An RF (high frequency) coil 7 for heating the substrate 4 via the susceptor 5 is provided on the outer periphery of the reaction tube 1.

【0010】仕切板6は、図3及び図4に示すように、
反応管1の内面形状に対応するように、ガス導入部2側
から基板4の方向に向けて幅広になる形状を有するもの
であって、その基板4側の先端部は、両側端に切欠部1
0が設けられ、中央部11が基板4側に突出した状態に
なるように形成されている。
As shown in FIGS. 3 and 4, the partition plate 6
It has a shape that becomes wider from the gas introduction unit 2 side toward the substrate 4 so as to correspond to the inner surface shape of the reaction tube 1, and the front end of the substrate 4 side has cutouts at both ends. 1
0 is provided, and the central portion 11 is formed so as to protrude toward the substrate 4 side.

【0011】この切欠部10の幅W及び深さDは、仕切
板自体の厚みTや全幅Wt、中央部11の先端形状、該
仕切板6により区切られた上下の層の厚さ、気相成長を
行う際のガス条件によって異なるが、通常は、幅Wを1
mm以上、好ましくは5〜10mm程度とし、深さDを
仕切板6の厚みT以上、好ましくは10〜20mm程度
とすることが効果的である。すなわち、幅Wが1mm未
満では切欠部10を設けた効果がほとんど得られず、幅
Wが大きくなりすぎると、切欠部10の側縁部分でガス
流れの乱れが発生するおそれがある。また、深さDが厚
みT未満でも切欠部10の効果が得られ難く、深さDが
大きくなりすぎると、中央部11の支持が不安定になり
やすい。
The width W and the depth D of the notch 10 are the thickness T and the total width Wt of the partition plate itself, the tip shape of the central portion 11, the thickness of the upper and lower layers separated by the partition plate 6, the gas phase, Usually, the width W is set to 1 depending on the gas conditions at the time of growth.
mm or more, preferably about 5 to 10 mm, and the depth D is effectively equal to or more than the thickness T of the partition plate 6, preferably about 10 to 20 mm. That is, if the width W is less than 1 mm, the effect of the provision of the notch 10 is hardly obtained, and if the width W is too large, the gas flow may be disturbed at the side edge of the notch 10. Further, even if the depth D is less than the thickness T, the effect of the notch 10 is difficult to obtain, and if the depth D is too large, the support of the central portion 11 tends to be unstable.

【0012】また、切欠部10の先端部12は、図3及
び図4に示すように、直角に切り落とした状態としても
よいが、図5及び図6あるいは図7に示すように、切欠
部10の先端部12に至る部分13の肉厚を連続的に薄
くなるように形成してもよく、丸味を付けるようにして
もよい。切欠部10の側面部14についても同様であ
る。
The tip 12 of the notch 10 may be cut off at a right angle as shown in FIGS. 3 and 4, but as shown in FIG. 5, FIG. 6 or FIG. The portion 13 reaching the tip 12 may be formed to have a continuously reduced thickness, or may be rounded. The same applies to the side surface portion 14 of the notch 10.

【0013】このように、仕切板6の先端部両側端に切
欠部10をそれぞれ設けることにより、仕切板6の先端
部と反応管1との接続部におけるガス流れを安定化させ
ることができ、渦や偏流の発生を抑えて均一なガス流れ
が得られる。
As described above, by providing the notches 10 on both side ends of the leading end of the partition plate 6, the gas flow at the connection between the leading end of the partition plate 6 and the reaction tube 1 can be stabilized. A uniform gas flow can be obtained by suppressing the generation of eddies and drifts.

【0014】また、基板4側に突出した中央部11の先
端部も、肉厚が連続的に薄くなるように形成しておくこ
とにより、この部分でのガス流れの乱れを抑制すること
ができるので、切欠部10の効果と併せて仕切板6の先
端部全体におけるガス流れの均一性を大幅に高めること
ができる。このとき、仕切板6の先端部両側端に切欠部
10が設けられているので、仕切板6を反応管1の内壁
に溶着する際に、先端の肉厚の薄い部分の加工歪みによ
る影響を小さくすることができる。このため、中央部1
1におけるガス流れも安定させることができるという二
次的な効果が得られる。
Further, the tip of the central portion 11 protruding toward the substrate 4 is also formed so as to have a continuously reduced thickness, so that the turbulence of the gas flow in this portion can be suppressed. Therefore, the uniformity of the gas flow over the entire distal end portion of the partition plate 6 can be greatly improved in addition to the effect of the cutout portion 10. At this time, since the notch portions 10 are provided at both ends of the distal end portion of the partition plate 6, when the partition plate 6 is welded to the inner wall of the reaction tube 1, the influence of the processing distortion of the thin portion at the distal end is reduced. Can be smaller. For this reason, the central part 1
1 has the secondary effect of also stabilizing the gas flow.

【0015】したがって、先端部の肉厚を連続的に薄く
した仕切板6の先端部両側端に切欠部10を設けること
により、成膜における均一性や再現性を飛躍的に高める
ことができ、さらに、反応管1の製造ロットによる成長
再現性のばらつきも低減することができる。
Therefore, by providing the notches 10 on both side ends of the tip of the partition plate 6 in which the thickness of the tip is continuously reduced, uniformity and reproducibility in film formation can be remarkably improved. Further, variation in growth reproducibility among the production lots of the reaction tube 1 can be reduced.

【0016】なお、本発明は、仕切板により区切られた
各層から2種類以上の原料ガスを基板面に対して平行な
方向に導入し、前記基板面に二成分系以上の化合物半導
体薄膜を形成する気相成長装置に最適であるが、成長さ
せる薄膜の種類や原料ガスの種類は特に限定されるもの
ではなく、仕切板により区切られた各層に導入するガス
の組合わせとして、少なくとも1種類の原料ガスを含む
気相成長ガスと原料ガスを含まない不活性ガス(例えば
水素ガスのみ、窒素ガスのみ等)との組合わせも含まれ
る。
According to the present invention, two or more kinds of source gases are introduced from each layer separated by a partition plate in a direction parallel to the substrate surface to form a compound semiconductor thin film of two or more components on the substrate surface. The type of the thin film to be grown and the type of the source gas are not particularly limited, and at least one type of gas to be introduced into each layer separated by the partition plate is optimal. A combination of a vapor growth gas containing a source gas and an inert gas not containing a source gas (eg, only hydrogen gas, only nitrogen gas, etc.) is also included.

【0017】また、上記二成分系以上の化合物半導体薄
膜とは、III−V族化合物半導体薄膜やII−VI族化合物
半導体薄膜であり、例えば、GaN(窒化ガリウム)等
の二成分系薄膜や、Gaの一部をAl(アルミニウム)
で置換したAlGaN等の三成分系薄膜、In(インジ
ウム)を含む多成分系薄膜等を挙げることができる。さ
らに、原料ガスとは、気相成長反応に寄与する個々の成
分ガスであり、例えば、アンモニア,シラン,トリメチ
ルガリウム,トリメチルインジウム等の一種又はこれら
の混合物であって、例えば、サファイア基板にGaN薄
膜を形成するときは、窒素原料としてアンモニアを、ガ
リウム原料としてトリメチルガリウムを使用する。原料
ガスを反応管内に導入する場合、これらの原料ガスをそ
のまま導入してもよいが、通常は、原料ガスを水素,ヘ
リウム,窒素等の不活性ガスで希釈して導入するように
している。
The above-mentioned two-component or more compound semiconductor thin film is a III-V compound semiconductor thin film or a II-VI compound semiconductor thin film, for example, a two-component thin film such as GaN (gallium nitride), Part of Ga is Al (aluminum)
And a three-component thin film such as AlGaN, and a multi-component thin film containing In (indium). Further, the source gas is an individual component gas that contributes to a vapor phase growth reaction, and is, for example, one of ammonia, silane, trimethylgallium, trimethylindium, or a mixture thereof, and is, for example, a GaN thin film on a sapphire substrate. Is used, ammonia is used as a nitrogen source, and trimethylgallium is used as a gallium source. When the source gas is introduced into the reaction tube, the source gas may be introduced as it is, but usually, the source gas is introduced after being diluted with an inert gas such as hydrogen, helium, or nitrogen.

【0018】[0018]

【実施例】実施例1 図3及び図4に示す形状で、厚みTが1.5mm、全幅
Wtが70mm、連続的に肉薄にした中央部先端の角度
α(図4参照)が10度の仕切板において、先端部両側
端に幅Wが5mmで、深さDを0mm(切欠部無し)、
5mm、10mm、15mmとした4種類の切欠部を設
けた仕切板を作製し、図1及び図2に示すように反応管
内に2枚ずつを装着して三層構造とした。そして、直径
50mmのサファイア基板上に、一般的な成長方法、す
なわち、550℃で25nmのGaNを成長後、105
0℃でMgを添加したGaN膜を成膜し、それぞれの膜
厚均一性とMg濃度の均一性とを測定した。
EXAMPLE 1 The shape shown in FIGS. 3 and 4 was such that the thickness T was 1.5 mm, the total width Wt was 70 mm, and the angle α (see FIG. 4) of the continuously thinned center portion was 10 degrees. In the partition plate, the width W is 5 mm and the depth D is 0 mm (no notch) on both sides of the tip,
A partition plate having four types of notches of 5 mm, 10 mm, and 15 mm was prepared, and two plates were mounted in the reaction tube as shown in FIGS. 1 and 2 to form a three-layer structure. Then, on a sapphire substrate with a diameter of 50 mm, a general growth method, that is, GaN of 25 nm is grown at 550 ° C.
A GaN film to which Mg was added was formed at 0 ° C., and the film thickness uniformity and the Mg concentration uniformity were measured.

【0019】表1に成長条件を、表2に基板エッジから
3mmを除いて2mm間隔で膜厚を測定したときの均一
性の測定結果を、表3に基板中心から5mm間隔で測定
したMg濃度の面内均一性の測定結果を、それぞれ示
す。
Table 1 shows the growth conditions, Table 2 shows the measurement results of the uniformity when the film thickness was measured at intervals of 2 mm except for 3 mm from the edge of the substrate, and Table 3 shows the Mg concentration measured at intervals of 5 mm from the center of the substrate. The results of the measurement of the in-plane uniformity are shown below.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】実施例2 先端部両側端に幅Wが5mm、深さDが10mmの切欠
部を設けた仕切板と、切欠部を設けない仕切板とをそれ
ぞれ使用し、10回連続してMg添加GaN膜を成長さ
せ、基板中心位置と、基板中心から10mmの位置とに
おけるMg量を測定した。なお、成長条件は実施例1と
同じとした。測定結果及び標準偏差を表4に示す。
Example 2 A partition plate provided with a notch having a width W of 5 mm and a depth D of 10 mm at both ends of a tip portion, and a partition plate having no notch were used. The added GaN film was grown, and the amount of Mg was measured at the center of the substrate and at a position 10 mm from the center of the substrate. The growth conditions were the same as in Example 1. Table 4 shows the measurement results and the standard deviation.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【発明の効果】以上説明したように、本発明の気相成長
装置によれば、仕切板で区切られた各層のガス流速の設
定範囲やガス圧力の設定範囲を広くとれ、各層のガス流
速に影響されずに、良質で均一性に優れた薄膜、特に、
二成分系以上の化合物半導体薄膜を効率よくかつ再現性
よく製造することができる。
As described above, according to the vapor phase growth apparatus of the present invention, the gas flow rate setting range and gas pressure setting range of each layer separated by the partition plate can be widened, and the gas flow rate of each layer can be reduced. Unaffected, good quality and uniform thin films, especially
A compound semiconductor thin film of two or more components can be manufactured efficiently and with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の気相成長装置の一形態例を示す反応
管の断面平面図である。
FIG. 1 is a sectional plan view of a reaction tube showing one embodiment of a vapor phase growth apparatus of the present invention.

【図2】 同じく断面正面図である。FIG. 2 is a sectional front view of the same.

【図3】 仕切板の平面図である。FIG. 3 is a plan view of a partition plate.

【図4】 同じく正面図である。FIG. 4 is a front view of the same.

【図5】 仕切板の他の形状例を示す平面図である。FIG. 5 is a plan view showing another example of the shape of the partition plate.

【図6】 同じく正面図である。FIG. 6 is a front view of the same.

【図7】 仕切板の変形例を示す正面図である。FIG. 7 is a front view showing a modification of the partition plate.

【符号の説明】[Explanation of symbols]

1…反応管、2…ガス導入部、3…ガス排出部、4…基
板、5…サセプタ、6…仕切板、7…RFコイル、10
…切欠部、11…中央部
DESCRIPTION OF SYMBOLS 1 ... Reaction tube, 2 ... Gas introduction part, 3 ... Gas discharge part, 4 ... Substrate, 5 ... Susceptor, 6 ... Partition plate, 7 ... RF coil, 10
... Notch, 11 ... Center

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳永 祐樹 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 松本 功 東京都港区西新橋1−16−7 日本酸素株 式会社内 Fターム(参考) 4K030 AA11 BA54 BA55 BA56 BA57 EA05 5F045 AA04 AB09 AB14 AB17 AB21 AC01 AC07 AC08 AC12 AC15 AC17 AD09 AD14 AF09 BB02 BB04 DP04 EF14  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yuki Tokunaga 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Nippon Sanso Corporation (72) Inventor Isao Matsumoto 1-16-7, Nishi-Shimbashi, Minato-ku, Tokyo Japan 4K030 AA11 BA54 BA55 BA56 BA57 EA05 5F045 AA04 AB09 AB14 AB17 AB21 AC01 AC07 AC08 AC12 AC15 AC17 AD09 AD14 AF09 BB02 BB04 DP04 EF14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 薄膜を形成する基板より上流側の反応管
内に、基板面と平行な仕切板を配設した気相成長装置に
おいて、前記仕切板の先端部両側端に切欠部を設けたこ
とを特徴とする気相成長装置。
In a vapor phase growth apparatus having a partition plate parallel to a substrate surface provided in a reaction tube upstream of a substrate on which a thin film is formed, notches are provided at both ends of a front end portion of the partition plate. A vapor phase growth apparatus characterized by the above-mentioned.
【請求項2】 前記仕切板は、先端部の肉厚が連続的に
薄くなるように形成されていることを特徴とする請求項
1記載の気相成長装置。
2. The vapor phase growth apparatus according to claim 1, wherein the partition plate is formed such that a thickness of a tip portion is continuously reduced.
JP11085565A 1999-03-29 1999-03-29 Vapor-phase growth device Pending JP2000277442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11085565A JP2000277442A (en) 1999-03-29 1999-03-29 Vapor-phase growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11085565A JP2000277442A (en) 1999-03-29 1999-03-29 Vapor-phase growth device

Publications (1)

Publication Number Publication Date
JP2000277442A true JP2000277442A (en) 2000-10-06

Family

ID=13862347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11085565A Pending JP2000277442A (en) 1999-03-29 1999-03-29 Vapor-phase growth device

Country Status (1)

Country Link
JP (1) JP2000277442A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524250A (en) * 2004-02-25 2007-08-23 アイクストロン、アーゲー Inlet system for MOCVD reactor
JP2009170868A (en) * 2007-12-18 2009-07-30 Sumitomo Electric Ind Ltd Vapor-phase processing apparatus, vapor-phase processing method, and substrate therefor
JP2011199154A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Mocvd apparatus
JP2012519235A (en) * 2009-02-27 2012-08-23 ケンブリッジ ナノテック インコーポレイテッド ALD system and method
US8349083B2 (en) 2007-12-11 2013-01-08 Sumitomo Electric Industries, Ltd. Vapor-phase process apparatus, vapor-phase process method, and substrate
JP2013219344A (en) * 2007-12-20 2013-10-24 Applied Materials Inc Thermal reactor with improved gas flow distribution

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524250A (en) * 2004-02-25 2007-08-23 アイクストロン、アーゲー Inlet system for MOCVD reactor
JP4673881B2 (en) * 2004-02-25 2011-04-20 アイクストロン、アーゲー Crystal layer deposition apparatus and crystal layer deposition method
US8349083B2 (en) 2007-12-11 2013-01-08 Sumitomo Electric Industries, Ltd. Vapor-phase process apparatus, vapor-phase process method, and substrate
US8349403B2 (en) 2007-12-11 2013-01-08 Sumitomo Electric Industries, Ltd. Vapor-phase process apparatus, vapor-phase process method, and substrate
US8628616B2 (en) 2007-12-11 2014-01-14 Sumitomo Electric Industries, Ltd. Vapor-phase process apparatus, vapor-phase process method, and substrate
JP2009170868A (en) * 2007-12-18 2009-07-30 Sumitomo Electric Ind Ltd Vapor-phase processing apparatus, vapor-phase processing method, and substrate therefor
JP2013219344A (en) * 2007-12-20 2013-10-24 Applied Materials Inc Thermal reactor with improved gas flow distribution
US8888916B2 (en) 2007-12-20 2014-11-18 Applied Materials, Inc. Thermal reactor with improved gas flow distribution
JP2012519235A (en) * 2009-02-27 2012-08-23 ケンブリッジ ナノテック インコーポレイテッド ALD system and method
JP2011199154A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Mocvd apparatus

Similar Documents

Publication Publication Date Title
KR100272752B1 (en) Vapor phase growth apparatus and vapor phase growth method
JP2008066490A (en) Vapor phase growing device
JP2000277442A (en) Vapor-phase growth device
JP5668602B2 (en) Method and apparatus for growing semi-insulating nitride semiconductor layer
US10059590B2 (en) Method for producing group III nitride crystal
JPH10182282A (en) Vapor phase growth system and crystal growth method
US20210310118A1 (en) Vapor phase growth method
JP2001284269A (en) Vapor phase growth apparatus and method
JP3936425B2 (en) Vapor growth method
JP2009010279A (en) Thin film manufacturing device
US20200058497A1 (en) Silicon nitride forming precursor control
JP7432465B2 (en) Vapor phase growth equipment
US20050263071A1 (en) Apparatus and system for manufacturing a semiconductor
JP2768023B2 (en) Vapor growth method
JP2827736B2 (en) Vapor growth method
JPH0360800B2 (en)
JPH09260291A (en) Vapor growth equipment and method therefor
JP4720692B2 (en) Vapor growth susceptor, vapor growth apparatus and vapor growth method
JPS62145725A (en) Manufacture of compound semiconductor and apparatus for the same
JP4961888B2 (en) Vapor phase growth apparatus and compound semiconductor film growth method
JPH05190454A (en) Vapor phase epitaxial growth device
JPS62172714A (en) Manufacture of compound semiconductor thin film
JP2002083778A (en) Method and device for producing semiconductor, and production method for semiconductor device
JPH05182915A (en) Vapor growing apparatus
JP2004253413A (en) Compound semiconductor vapor growth device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202