JP2000275577A - Stereoscopsis optical device - Google Patents

Stereoscopsis optical device

Info

Publication number
JP2000275577A
JP2000275577A JP11122841A JP12284199A JP2000275577A JP 2000275577 A JP2000275577 A JP 2000275577A JP 11122841 A JP11122841 A JP 11122841A JP 12284199 A JP12284199 A JP 12284199A JP 2000275577 A JP2000275577 A JP 2000275577A
Authority
JP
Japan
Prior art keywords
eye
image
optical device
stereoscopic
viewed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11122841A
Other languages
Japanese (ja)
Inventor
Susumu Nishikawa
進 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11122841A priority Critical patent/JP2000275577A/en
Publication of JP2000275577A publication Critical patent/JP2000275577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain less-defect stereoscopsis by a relatively easy method from two side-by-side images for stereoscopsis having both-eye parallax. SOLUTION: On one eye of an observer, an optical device consisting of two plane mirrors is mounted and an image viewed with the eye is rotated and moved to an image viewed with the other eye to obtain a natural angle of convergence. A image 1L for the left eye and an image 1R for the right eye which are formed for stereoscopsis and have both-eye parallax are formed side by side, for example, 60 cm before the eyes. The optical device composed of the two plane mirrors 2L and 3L is mounted on one eye, e.g. the left eye 4L; and the left image 1L is observed with the left eye 4L and the right image 1R is observed with the right eye 4R. A center line 5L represents the light beam from the left image 1L to the left eye 4L. Here, 6L is a visual line toward the image viewed with the left eye 4L and 6R is a visual line along which the right eye 4R views the center of the right image 1R.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は2眼式の立体視光学
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a binocular stereoscopic optical device.

【0002】[0002]

【従来の技術】2眼式立体視に分類される方式のうち両
眼に2枚ずつ平面鏡を使って立体視しようとする方式が
ある。これについて図5を参照して説明する。まず両眼
視差のある2枚の画像(例えば写真など)を用意し、左
眼用画像1Lは左に右眼用画像1Rは右に並置する。こ
のとき眼と前方の画像との距離を例えば60cmにし、
平面鏡2枚で構成される光学装置を両眼に装着する。こ
のとき左画像1Lからの光線5Lは平面鏡2L,3Lで
反射し左眼4Lに入る。この結果左眼4Lは視線6Lの
方向に虚像1L’を見る。同様に右画像1Rからの光線
5Rは平面鏡2R、3Rで反射し右眼4Rに入り、視線
6Rの方向に虚像1R”を見る。これらの虚像1L’、
1R”は平面鏡3L、3Rの角度調節によってほぼ同じ
位置に重ねることが出来る。即ち視線6L、6Rは虚像
1L’、1R”上で輻輳する。すると2つの虚像は融合
し立体画像として認識される。左眼4Lで見る右画像1
Rと右眼4Rで見る左画像1Lは平面鏡3L、3Rによ
ってそれぞれ遮蔽されるから見える画像13は立体画像
のみとなる。
2. Description of the Related Art Among systems classified into binocular stereoscopic vision, there is a system in which stereoscopic vision is attempted using two plane mirrors for each of two eyes. This will be described with reference to FIG. First, two images (for example, photographs) having binocular parallax are prepared, and the left-eye image 1L is juxtaposed to the left and the right-eye image 1R is juxtaposed to the right. At this time, the distance between the eye and the front image is set to, for example, 60 cm,
An optical device composed of two plane mirrors is attached to both eyes. At this time, the light beam 5L from the left image 1L is reflected by the plane mirrors 2L and 3L and enters the left eye 4L. As a result, the left eye 4L sees the virtual image 1L ′ in the direction of the line of sight 6L. Similarly, the light ray 5R from the right image 1R is reflected by the plane mirrors 2R and 3R, enters the right eye 4R, and sees virtual images 1R ″ in the direction of the line of sight 6R.
1R "can be superimposed almost at the same position by adjusting the angles of the plane mirrors 3L and 3R. That is, the lines of sight 6L and 6R converge on the virtual images 1L 'and 1R". Then, the two virtual images are fused and recognized as a stereoscopic image. Right image 1 viewed with the left eye 4L
Since the left image 1L viewed by R and the right eye 4R is shielded by the plane mirrors 3L and 3R, the image 13 seen is only a stereoscopic image.

【0003】[0003]

【発明が解決しようとする課題】各2枚の平面鏡で構成
される光学装置を両眼に装着する方法には次の課題があ
る。 1.光学装置を介して見る画像は減光、着色、歪み、ボ
ケ、汚れなどがあり肉眼で直接見る画像とは画質の点で
差がある。さらにコストを重視して裏面鏡を使う場合は
2重像の問題がある。 2.両眼に光学装置を装着するため、両眼とも画質の劣
化した画像を見ることになる。このため画質は補完され
ない。 3.両眼に同じ光学装置を必要とする。この結果サイ
ズ、重さ、費用が2倍になる。 4.通常の平面視と立体視間のスムーズな移行は出来な
い。即ち光学装置を着脱するときは観察が中断される。 5.視野を大きくしようとすると、装置が大型化する。 6.ビューアを装着しているときは他の作業をすること
は無理である。
The method for mounting an optical device composed of two plane mirrors on both eyes has the following problems. 1. An image viewed through an optical device has dimming, coloring, distortion, blur, dirt, and the like, and has a difference in image quality from an image viewed directly with the naked eye. Further, when the back mirror is used with emphasis on cost, there is a problem of a double image. 2. Since the optical device is attached to both eyes, both eyes see images with deteriorated image quality. Therefore, the image quality is not complemented. 3. Requires the same optics for both eyes. This doubles the size, weight and cost. 4. A smooth transition between normal planar and stereoscopic viewing is not possible. That is, the observation is interrupted when the optical device is attached or detached. 5. If an attempt is made to increase the field of view, the size of the device increases. 6. It is impossible to do other work while wearing the viewer.

【0004】[0004]

【課題を解決するための手段】本発明はかかる課題に鑑
みなされたものであって、両眼視差のある左眼用および
右眼用画像を並置し、左眼は左眼用画像を、右眼は右眼
用画像を見るようにした立体視光学装置に於いて、観察
者の一方の眼は肉眼のままとし、観察者の他方の眼に2
枚の平面鏡で構成される光学装置を装着し平面鏡の角度
調節により、その眼が見る上記画像を一方の肉眼が見る
上記画像の方向に回転移動させる手段を具備して立体視
光学装置を構成し上記課題を解決する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a left-eye image and a right-eye image having binocular parallax arranged side by side. In a stereoscopic optical apparatus in which an eye is viewed as an image for the right eye, one eye of the observer is left as it is while the other eye of the observer is not.
A stereoscopic optical device is provided, comprising means for mounting an optical device composed of two plane mirrors and adjusting the angle of the plane mirror to rotate the image viewed by the eye in the direction of the image viewed by one naked eye. Solution to the Problems

【0005】[0005]

【発明の実施の形態】図1に発明の実施の形態を示す。
即ち立体視用に作成された両眼視差のある左眼用画像1
Lと右眼用画像1Rを眼の前例えば60cmの所に並置
する。これらの画像を2枚の平面鏡2L、3Lで構成さ
れる光学装置を片方の眼例えば左眼4Lに装着し、左眼
4Lで左画像1Lを、右眼4Rで右画像1Rを観察す
る。図に於いて5Lは左画像1Lから左眼4Lに至る光
線を代表として中心線で表したものである。6Lは左眼
4Lが見る画像の方向即ち視線である。6Rは右眼4R
が右画像1Rの中心を見る視線である。
FIG. 1 shows an embodiment of the present invention.
That is, a left-eye image 1 with binocular parallax created for stereoscopic viewing
L and the image 1R for the right eye are juxtaposed, for example, at a position of 60 cm in front of the eye. An optical device composed of the two plane mirrors 2L and 3L is attached to one eye, for example, the left eye 4L, and the left image 1L is observed by the left eye 4L and the right image 1R is observed by the right eye 4R. In the figure, 5L is represented by a center line as a representative of light rays from the left image 1L to the left eye 4L. 6L is the direction of the image viewed by the left eye 4L, that is, the line of sight. 6R is right eye 4R
Is a line of sight looking at the center of the right image 1R.

【0006】図2は平面鏡2L、3Lで構成される光学
装置の実施例である。本実施例では透明アクリルケース
7に2枚の平面鏡2L、3Lを収納する。鏡に写る像の
方向を調節する目的で平面鏡2Lを軸9に取り付け回転
出来るようにする。平面鏡2Lの端に突起11を設け、
ねじ穴を設けてつまみ付きねじ10を連結する。つまみ
付きねじはアクリルケース7にストッパーを付けて固定
される。つまみ10を回してねじの露出部分の長さを変
え、鏡の角度を変える。切り欠き部8に左眼をあてて見
る。本説明では構造が理解しやすいように透明のアクリ
ルケースとしたが、不透明であってもまた他の材料であ
ってもさしつかえない。本発明は以上のように構成され
る。
FIG. 2 shows an embodiment of an optical device composed of plane mirrors 2L and 3L. In this embodiment, two plane mirrors 2L and 3L are stored in the transparent acrylic case 7. The plane mirror 2L is attached to the shaft 9 so as to be rotatable in order to adjust the direction of the image reflected on the mirror. A projection 11 is provided at an end of the plane mirror 2L,
A screw hole is provided to connect the knob screw 10. The knob screw is fixed to the acrylic case 7 with a stopper. Turn knob 10 to change the length of the exposed portion of the screw and change the angle of the mirror. Put the left eye on the notch 8 and look. In this description, a transparent acrylic case is used for easy understanding of the structure, but it may be opaque or another material. The present invention is configured as described above.

【0007】次に本発明の原理について説明する。図3
に示すように左画像1Lからの光線5Lは2つの平面鏡
2L、3Lで反射し左眼4Lに入る。この結果左眼4L
は視線6Lの方向に虚像1L’を見ることになる。一方
右画像1Rと左画像1Lは直接右眼4Rで観察される。
虚像1L’は平面鏡2Lまたは3Lの角度調節によって
右眼4Rで見る右画像1Rとほぼ重ねる事が出来る。即
ち両眼の視線6L、6Rはこれらの画像上で輻輳する。
この結果2枚の画像1L’と1Rは融合して立体画像と
して認識される。また左眼4Lからは右画像1Rが見え
ないようにすることが出来る。この結果立体画像の左に
右眼4Rが見る左画像が並び、観察者は2つの画像12
を見ることになる。
Next, the principle of the present invention will be described. FIG.
As shown in FIG. 5, a light ray 5L from the left image 1L is reflected by the two plane mirrors 2L and 3L and enters the left eye 4L. As a result, the left eye 4L
Sees the virtual image 1L 'in the direction of the line of sight 6L. On the other hand, the right image 1R and the left image 1L are directly observed by the right eye 4R.
The virtual image 1L 'can be substantially overlapped with the right image 1R viewed by the right eye 4R by adjusting the angle of the plane mirror 2L or 3L. That is, the lines of sight 6L and 6R of both eyes converge on these images.
As a result, the two images 1L 'and 1R are merged and recognized as a stereoscopic image. Further, it is possible to make the right image 1R invisible from the left eye 4L. As a result, the left image viewed by the right eye 4R is arranged on the left of the stereoscopic image, and the observer can see the two images 12R.
You will see.

【0008】ここで2枚の鏡間の距離の影響について述
べる。図3では虚像1L’は右眼4Rの見る画像1Rと
完全には重ならず鏡間の距離だけ遠くに位置しその分小
さく見える筈であるが、鏡間の距離は実際例で18m
m、60cmの視距離に対して無視できる値であるし、
左眼4Lを左に寄せると差は相殺されてしまう。また眼
の特性としてある程度の大きさの差は立体視の妨げにな
らないことが分かっている。
Here, the effect of the distance between the two mirrors will be described. In FIG. 3, the virtual image 1L 'does not completely overlap with the image 1R viewed by the right eye 4R, and is located at a distance between the mirrors, and should appear to be smaller by that distance.
m, a value that can be ignored for a viewing distance of 60 cm,
If the left eye 4L is moved to the left, the difference is offset. Also, it has been found that a certain difference in size as an eye characteristic does not hinder stereoscopic vision.

【0009】次に2枚の平面鏡の作用について図4を参
照して説明する。図に於いて画像からの光線5Lは平面
鏡2LにA点で、平面鏡3LにB点で反射する。平面鏡
2Lへの入射角および反射角をα、平面鏡3Lへの入射
角および反射角をβとする。2枚の平面鏡2L、3Lの
なす角をθ2、その延長線が交わる点をDとする。光線
5Lと視線6Lのなす角をθ1とし、その交点をCとす
る。3角形ABCに於いて 2α+(2∠R−2β)+θ1=2∠R 即ち θ1=2(β−α) 3角形ABDに於いて α+(2∠R−β)+θ2=2∠R 即ち θ2=β−α 故に θ1=2θ2 即ち虚像の見える方向は光線5Lの方向に2枚の平面鏡
2L、3Lのなす角の倍の角度を加えた方向になる。
Next, the operation of the two plane mirrors will be described with reference to FIG. In the figure, a ray 5L from an image is reflected at a point A on a plane mirror 2L and at a point B on a plane mirror 3L. The angle of incidence and the angle of reflection on the plane mirror 2L are α, and the angle of incidence and the angle of reflection on the plane mirror 3L are β. An angle between the two plane mirrors 2L and 3L is θ2, and a point at which the extension line intersects is D. The angle between the ray 5L and the line of sight 6L is θ1, and the intersection is C. In the triangle ABC, 2α + (2∠R−2β) + θ1 = 2∠R or θ1 = 2 (β−α) In the triangle ABD, α + (2∠R−β) + θ2 = 2∠R ie θ2 = β-α Therefore, θ1 = 2θ2, that is, the direction in which the virtual image is seen is a direction obtained by adding an angle twice as large as the angle between the two plane mirrors 2L and 3L to the direction of the light ray 5L.

【0010】図2に示す本光学装置を用いて立体視する
には、これを左手に持ち、切り欠き部8を左眼にあてて
両眼で右画像を注目するが、本光学装置を手に持つ場合
水平軸まわりの角度ずれは画像の傾き誤差、奥行き軸ま
わりの角度ずれは画像の上下位置誤差となり立体視を妨
げるのでこれらを微調して見る必要がある。垂直軸まわ
りの角度ずれは視野の大小に影響があるが画像ずれには
影響しない。
In order to perform stereoscopic viewing using the optical device shown in FIG. 2, the user holds the device in his left hand, puts the notch 8 in the left eye, and looks at the right image with both eyes. In this case, an angle shift about the horizontal axis causes a tilt error of the image, and an angle shift about the depth axis causes a vertical position error of the image, which hinders stereoscopic vision. The angle shift about the vertical axis affects the size of the visual field but does not affect the image shift.

【0011】角度調整された本光学装置を例えば左眼の
左から徐々に左眼の前に移動すると平面の画像は左から
徐々に立体画像に変化する。即ち平面画像はスムーズに
立体画像に移行しまた逆方向にもスムーズに移行する。
本光学装置を使用すると1つの画像を例えば左半分は立
体画像、右半分は平面画像のように立体と平面を共存さ
せることが出来る。
When the optical device whose angle has been adjusted is gradually moved, for example, from the left of the left eye to the front of the left eye, the plane image gradually changes from the left to a stereoscopic image. That is, the plane image smoothly transitions to a stereoscopic image and also smoothly transitions in the opposite direction.
When this optical device is used, one image can be made to coexist with a solid and a plane, for example, a left half is a three-dimensional image and a right half is a two-dimensional image.

【0012】以上の説明では本光学装置を左眼に装着す
る場合について述べたが、右眼に装着しても本発明は成
り立つことは当然である。ただしこの場合装着する光学
装置は左眼に装着する場合と左右を逆にして使用する必
要がある。
In the above description, the case where the optical apparatus is mounted on the left eye has been described. However, it is obvious that the present invention can be realized even if the optical apparatus is mounted on the right eye. However, in this case, it is necessary to use the optical device to be mounted on the left eye with the left and right reversed.

【0013】[0013]

【発明の効果】本発明は以下の効果を生み出す。 1.レンズ等を使用しないため視距離の制限がない。 2.平面鏡の反射を利用しておりプリズム方式に見られ
る色収差や歪曲収差がない。 3.2枚の鏡間の距離は通常の視距離で使用する限り問
題とならず、全く立体視を妨げない。 4.反射像の移動角度を大きく出来るので大きな画像に
対応出来る。 5.光学装置を使用した画像が画質劣化していても他方
の眼が肉眼のため両眼視では画質劣化が補完される。こ
のため両眼に光学装置を装着する方式に比較して良好な
立体画像を観察出来る。 6.本光学装置は片眼用なので両眼用の光学装置に比較
してサイズ、重さ、費用が半分になる。 7.基本サイズが小さいので鏡を大きくして大画面対応
にする余裕がある。 8.片方の眼だけに光学装置をあてるだけで即立体視が
得られる。このため平面視と立体視間の移行が自由であ
る。また立体と平面の共存画像も可能である。 9.片方の眼は常に肉眼なので本光学装置を装着したま
までも他の作業が可能である。
The present invention produces the following effects. 1. There is no restriction on viewing distance because no lens or the like is used. 2. Utilizes the reflection of a plane mirror and eliminates the chromatic aberration and distortion seen in the prism system. 3. The distance between the two mirrors does not matter as long as it is used at a normal viewing distance, and does not hinder stereoscopic vision at all. 4. Since the moving angle of the reflection image can be increased, a large image can be handled. 5. Even if the image using the optical device is degraded in image quality, the other eye is the naked eye, and the degradation in image quality is complemented in binocular vision. For this reason, a better stereoscopic image can be observed as compared with the method in which the optical device is attached to both eyes. 6. Since the present optical device is for one eye, the size, weight and cost are reduced by half compared to the optical device for both eyes. 7. Since the basic size is small, there is room to make the mirror larger and support a large screen. 8. Stereoscopic vision can be obtained immediately by simply applying the optical device to only one eye. Therefore, the transition between the planar view and the stereoscopic view is free. Also, a three-dimensional and two-dimensional coexisting image is possible. 9. Since one eye is always naked, other operations can be performed while the optical device is mounted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による立体視光学装置の実施の形態の斜
視図である。
FIG. 1 is a perspective view of an embodiment of a stereoscopic optical device according to the present invention.

【図2】本発明による立体視光学装置の実施例の斜視図
である。
FIG. 2 is a perspective view of an embodiment of a stereoscopic optical device according to the present invention.

【図3】本発明による立体視光学装置の原理を示す図で
ある。
FIG. 3 is a diagram showing the principle of a stereoscopic optical device according to the present invention.

【図4】本発明に係わる2枚の平面鏡の作用を示す図で
ある。
FIG. 4 is a diagram showing the operation of two plane mirrors according to the present invention.

【図5】従来の2枚の平面鏡を両眼に装着する方式の原
理を示す図である。
FIG. 5 is a diagram showing the principle of a conventional method of mounting two plane mirrors on both eyes.

【符号の説明】[Explanation of symbols]

1L 左画像 1L’左眼で見る左画像の虚像 1R 右画像 1R”右眼で見る右画像の虚像 2L 左眼用平面鏡その1 2R 右眼用平面鏡その1 3L 左眼用平面鏡その2 3R 右眼用平面鏡その2 4L 左眼 4R 右眼 5L 左画像から左眼に到る光線 5R 右画像から右眼に到る光線 6L 左眼による左画像への視線 6R 右眼による右画像への視線 7 ケース 8 切り欠き部 9 平面鏡回転軸 10 回転角調節用つまみ付きねじ 11 ねじ穴付き突起 12 本光学装置を使用したときに見える画像 13 従来の両眼式光学装置を使用したときに見える画
1L Left image 1L 'Virtual image of left image viewed by left eye 1R Right image 1R "Virtual image of right image viewed by right eye 2L Plane mirror for left eye part 1 2R Plane mirror for right eye part 1 3L Plane mirror for left eye part 2 3R Right eye 4L Left eye 4R Right eye 5L Ray from left image to left eye 5R Ray from right image to right eye 6L Line of sight to left image by left eye 6R Line of sight to right image by right eye 7 case Reference Signs List 8 Notch 9 Planar mirror rotation axis 10 Screw with rotation angle adjusting knob 11 Projection with screw hole 12 Image seen when using this optical device 13 Image seen when using conventional binocular optical device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 両眼視差のある左眼用および右眼用画像
を並置し、左眼は左眼用画像を、右眼は右眼用画像を見
るようにした立体視光学装置に於いて、観察者の一方の
眼は肉眼のままとし、観察者の他方の眼に2枚の平面鏡
で構成される光学装置を装着し平面鏡の角度調節によ
り、その眼が見る上記画像を一方の肉眼が見る上記画像
の方向に回転移動させる手段を具備したことを特徴とす
る立体視光学装置。
1. A stereoscopic optical apparatus in which left-eye and right-eye images having binocular parallax are juxtaposed, wherein a left eye views a left-eye image and a right eye views a right-eye image. One of the eyes of the observer remains naked, and the other eye of the observer is equipped with an optical device composed of two plane mirrors, and by adjusting the angle of the plane mirror, the image seen by the eye is seen by one eye. A stereoscopic optical device comprising means for rotating and moving in the direction of the image to be viewed.
JP11122841A 1999-03-25 1999-03-25 Stereoscopsis optical device Pending JP2000275577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11122841A JP2000275577A (en) 1999-03-25 1999-03-25 Stereoscopsis optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11122841A JP2000275577A (en) 1999-03-25 1999-03-25 Stereoscopsis optical device

Publications (1)

Publication Number Publication Date
JP2000275577A true JP2000275577A (en) 2000-10-06

Family

ID=14845966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11122841A Pending JP2000275577A (en) 1999-03-25 1999-03-25 Stereoscopsis optical device

Country Status (1)

Country Link
JP (1) JP2000275577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597446A4 (en) * 2017-03-16 2020-12-23 Garcia Amenos, Jafet Optical device for painters
JP6995294B1 (en) 2020-11-18 2022-01-31 隆志 矢野 A maneuvering system for automobiles where the visibility of the display device image is not obstructed by obstacles such as the steering wheel.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3597446A4 (en) * 2017-03-16 2020-12-23 Garcia Amenos, Jafet Optical device for painters
JP6995294B1 (en) 2020-11-18 2022-01-31 隆志 矢野 A maneuvering system for automobiles where the visibility of the display device image is not obstructed by obstacles such as the steering wheel.
JP2022080433A (en) * 2020-11-18 2022-05-30 隆志 矢野 Maneuvering system for automobiles preventing visibility of image of display device from being obstructed by obstacle such as steering wheel

Similar Documents

Publication Publication Date Title
JP4027898B2 (en) Polarized transmission screen and stereoscopic image display apparatus using the polarized transmission screen
US7144113B2 (en) Virtual image display apparatus
US8253653B2 (en) Image observation system
Kiyokawa et al. An optical see-through display for mutual occlusion with a real-time stereovision system
US5751493A (en) Head-mounted display apparatus with a single image display device
JP3979604B2 (en) display
JP2005215325A (en) Stereoscopic image display device
JP2011197674A (en) Display system and screen
GB2319424A (en) Head-mounted display including single image display device
JPH04339488A (en) Method and device for displaying three-dimensional image
KR100669624B1 (en) The display apparatus of the solid image using circularly polarized light
JP2011095743A (en) Screen system and method of forming three-dimensional display
CA2559920A1 (en) A stereoscopic display
US11009640B2 (en) Transmissive aerial image display
US5225861A (en) Apparatus for projection of three-dimensional images
US4967267A (en) Apparatus for formatting and viewing a stereoscopic video frame
JP2021067909A (en) Stereoscopic display device and head-up display apparatus
JP2000275577A (en) Stereoscopsis optical device
KR20200032895A (en) Cylindrical three-dimensional image projection apparatus using half-mirror
JP2001066696A (en) Three-dimensional image projecting system using regression reflection screen
CN114706224A (en) Double-screen display optical device and head-mounted display equipment
JPH01118814A (en) Stereoscopic image display device stereoscopic image device and stereoscopic image producing method using concave mirror and combined mirror
JP3324695B2 (en) Three-dimensional display method and head-mounted display device
KR102065233B1 (en) Foveated Near-Eye Display System for Relieving Vergence-Accommodation Conflict
JP2001320736A (en) All-around stereoscopic camera