JP2000275273A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JP2000275273A
JP2000275273A JP11083189A JP8318999A JP2000275273A JP 2000275273 A JP2000275273 A JP 2000275273A JP 11083189 A JP11083189 A JP 11083189A JP 8318999 A JP8318999 A JP 8318999A JP 2000275273 A JP2000275273 A JP 2000275273A
Authority
JP
Japan
Prior art keywords
weight
electrode
acceleration sensor
elastic electrode
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11083189A
Other languages
Japanese (ja)
Inventor
Kenji Kuramoto
健次 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP11083189A priority Critical patent/JP2000275273A/en
Publication of JP2000275273A publication Critical patent/JP2000275273A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an acceleration sensor capable of being manufactured at low cost with a small facility investment, easily allowing design changes, and capable of maintaining reliability without being necessarily sealed. SOLUTION: This acceleration sensor is provided with a planar electrode provided on the surface of a case, an elastic electrode 1 fixed with its outer edge to the case and facing the lower face of the planar electrode at a fine gap, and a weight 2 fixed to the upper face of the elastic electrode 1. The acceleration applied to the weight 2 is converted into the change quantity of the electrostatic capacity between the planar electrode and the elastic electrode 1. Pawls 10a, 10b, 10c, 10d pinching the weight 2 and holding the weight 2 on the elastic electrode 1 are provided on the upper face of the elastic electrode 1. The layout and shape of the pawls 10a, 10b, 10c, 10d are selected so that the weight 2 is fitted between the pawls 10a, 10b, 10c, 10d while pushing the pawls 10a, 10b, 10c, 10d outwards against the elastic force of the pawls 10a, 10b, 10c, 10d when the weight 2 is moved vertically to the upper face between the pawls 10a, 10b, 10c, 10d from the upper face side of the elastic electrode 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微小な間隙を隔て
て平行に対面する2つの電極の一方を可撓性に富む弾性
体とし、その弾性電極に重りを固定し、重りが受ける加
速度に応じて2つの電極間の静電容量が変化するのを利
用して、該加速度を検知する静電容量型加速度センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of fixing one of two electrodes facing each other in parallel with a small gap therebetween to a flexible elastic body, fixing a weight to the elastic electrode, and reducing the acceleration applied to the weight. The present invention relates to a capacitance-type acceleration sensor that detects the acceleration by utilizing a change in capacitance between two electrodes in response to the change.

【0002】[0002]

【従来の技術】加速度センサは、自動車のエアーバッグ
を膨らませる必要のある加速度が該自動車に加わったか
否かを検知するためにエアーバッグ装置に搭載し、或い
はゲームの内容と人の動きを一体化させるゲーム装置に
おいて、人の頭部の動きを検知するために該ゲーム装置
を操作する人のヘルメットに搭載する等、様々な用途で
量産されている。加速度センサには、互いに直交するX
軸、Y軸及びZ軸の3軸全ての軸について検知するもの
と、X軸及びY軸の2軸について検知するものと、Z軸
という1つの軸だけについて検知するものとがある。
2. Description of the Related Art An acceleration sensor is mounted on an airbag device to detect whether or not acceleration required to inflate an airbag of a vehicle is applied to the vehicle, or the content of a game and movement of a person are integrated. 2. Description of the Related Art A game device to be converted into a computer has been mass-produced for various uses, for example, mounted on a helmet of a person who operates the game device in order to detect the movement of a human head. The acceleration sensor has X
There are a type that detects all three axes of the axis, the Y axis, and the Z axis, a type that detects two axes of the X axis and the Y axis, and a type that detects only one axis, the Z axis.

【0003】前記のような用途の量産型の加速度センサ
においては、単価の低廉化および信頼性の向上を目指し
て、シリコン加速度センサが主流となりつつある。シリ
コン加速度センサは、重り(振り子)となるマスウエ
ハ、弾性電極となるダイヤフラムウエハ、及び平面電極
となるベースウエハという3枚のシリコンウエハを用い
て、半導体プロセスで製造される。半導体プロセスは既
に技術が確立しているので、信頼性および量産性、ひい
ては単価の低廉性において優れていると言える。
In mass-produced acceleration sensors for the above-mentioned applications, silicon acceleration sensors are becoming mainstream with the aim of reducing the unit price and improving reliability. The silicon acceleration sensor is manufactured by a semiconductor process using three silicon wafers: a mass wafer serving as a weight (a pendulum), a diaphragm wafer serving as an elastic electrode, and a base wafer serving as a plane electrode. Since the technology of the semiconductor process has already been established, it can be said that the semiconductor process is excellent in reliability, mass productivity, and inexpensive unit price.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、シリコ
ン加速度センサの製造には、半導体プロセスを適用する
ための製造設備の導入および維持、並びにマスク設計に
多大な経費を要する。そこで、シリコン加速度センサ
は、同一の仕様のものを数万から数百万個といった膨大
な数量製造するときには、顧客の求める価格にまで単価
を低減できるが、製造数量が大量でないときには、期待
した価格まで製造単価を低減することはできない。一般
に、大衆商品であるエアバッグや、ゲーム機の製造数は
時勢に左右され易く、最終需要数の予測は容易ではな
い。このような事情から、シリコン加速度センサを製造
するための設備投資には多大なリスクを伴う。
However, the manufacture of a silicon acceleration sensor requires a great deal of expense for introducing and maintaining manufacturing equipment for applying a semiconductor process and for designing a mask. Therefore, silicon accelerometers can reduce the unit price to the price required by the customer when producing a large number of tens of thousands to millions of the same specifications, but when the production quantity is not large, the expected price can be reduced. It is not possible to reduce the manufacturing unit price. In general, the number of manufactured airbags and game machines, which are popular products, is easily influenced by the times, and it is not easy to predict the final demand. Under such circumstances, capital investment for manufacturing the silicon acceleration sensor involves a great deal of risk.

【0005】シリコン加速度センサは、量産に適する反
面、仕様の変更には多大な困難を伴う。例えば、加速度
を検出する軸が2軸である2軸加速度センサの製造を一
旦始めてしまうと、3軸の加速度を検出する3軸加速度
センサを製造するように製造設備を変更するには、マス
ク設計に溯って設計変更をする必要があり、多大の費用
を要する。
Although the silicon acceleration sensor is suitable for mass production, changing the specifications involves great difficulty. For example, once manufacturing of a two-axis acceleration sensor having two axes for detecting acceleration is started, manufacturing equipment is changed to manufacture a three-axis acceleration sensor for detecting three-axis acceleration. It is necessary to make a design change retroactively, which requires a great deal of cost.

【0006】また、シリコン加速度センサの単価を低減
するためには、1ウエハ当たりのセンサチップ数をでき
るだけ多くする必要がある。そのためには、重り(振り
子)の可動範囲を数ミクロン(μm)にするといった具
合に、シリコン加速度センサを超高精度、超小形化する
必要が生ずる。これほどに小形化すると、シリコン加速
度センサは密封したパッケージに封入し、湿気の侵入を
厳重に防ぎ、結露を防止しなければ信頼性を確保できな
い。このような密封パッケージの必要性もシリコン加速
度センサの単価低減の妨げとなっている。
In order to reduce the unit price of the silicon acceleration sensor, it is necessary to increase the number of sensor chips per wafer as much as possible. For that purpose, it is necessary to make the silicon acceleration sensor ultra-high-precision and ultra-compact, for example, to make the movable range of the weight (pendulum) several microns (μm). With such a small size, the silicon acceleration sensor is enclosed in a sealed package, and strictly prevents the invasion of moisture, and the reliability cannot be ensured unless dew condensation is prevented. The necessity of such a sealed package also hinders a reduction in the unit price of the silicon acceleration sensor.

【0007】そこで、本発明の目的は、小さい設備投資
で安価に製造でき、設計変更も容易であり、また必ずし
も密封をしなくても信頼性を維持できる加速度センサの
提供にある。
An object of the present invention is to provide an acceleration sensor which can be manufactured at a low cost with a small capital investment, can be easily changed in design, and can maintain reliability without necessarily sealing.

【0008】[0008]

【課題を解決するための手段】前述の課題を解決するた
めに本発明は次の手段を提供する。 筐体の表面に設けられた平面電極と、該筐体に外縁を
固定され、微小な間隙を隔てて該平面電極に一方の板面
で対面する弾性電極と、該弾性電極の他方の板面に固定
された重りとを備え、前記重りが受ける加速度を前記平
面電極と前記弾性電極との間の静電容量の変化量に変換
する加速度センサにおいて、前記弾性電極の前記他方の
板面には、前記重りを挟持し、該重りを該弾性電極に保
持する複数の爪が設けてあることを特徴とする加速度セ
ンサ。 前記弾性電極の前記他方の板面側から該他方の板面に
垂直に前記複数の爪の間に前記重りを近接させるとき、
該重りが該複数の爪の弾力に抗して該複数の爪を外方に
押しながらそれら複数の爪の間に嵌められるように、前
記爪の配置及び形が選択してあることを特徴とする前記
に記載の加速度センサ。 前記弾性電極が燐青銅などの金属製の板状体でなり、
前記爪は、該板状体に切欠きを設け、該切欠きに望む該
板状体の舌状部を前記他方の板面側に曲げ起こしてなる
ことを特徴とする前記又はに記載の加速度センサ。 前記舌状部は、前記他方の板面における一部の領域で
あり、前記平面電極側に位置する側の前記重りの表面が
接触する領域の中心Oから一定距離だけ僅かにそれぞれ
離れた部位から放射状に伸びてなることを特徴とする前
記に記載の加速度センサ。
In order to solve the above-mentioned problems, the present invention provides the following means. A flat electrode provided on the surface of the housing, an elastic electrode having an outer edge fixed to the housing and facing the flat electrode on one plate surface with a small gap therebetween, and the other plate surface of the elastic electrode A weight fixed to the acceleration sensor that converts the acceleration received by the weight into a change in capacitance between the plane electrode and the elastic electrode. And a plurality of claws for holding the weight and holding the weight on the elastic electrode. When approaching the weight between the plurality of claws perpendicular to the other plate surface from the other plate surface side of the elastic electrode,
The arrangement and shape of the claws are selected such that the weight is fitted between the plurality of claws while pushing the plurality of claws outward against the elasticity of the plurality of claws. The acceleration sensor as described above. The elastic electrode is a metal plate such as phosphor bronze,
The acceleration according to claim 1 or 2, wherein the claw is provided with a notch in the plate, and a tongue-shaped portion of the plate desired in the notch is bent and raised toward the other plate surface. Sensor. The tongue-shaped portion is a partial region on the other plate surface, and is separated from a portion slightly apart from the center O of a region where the surface of the weight on the side located on the flat electrode side contacts by a fixed distance. The acceleration sensor according to the above, wherein the acceleration sensor extends radially.

【0009】[0009]

【発明の実施の形態】次に本発明の実施の形態を挙げ、
本発明を一層詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described.
The present invention will be described in more detail.

【0010】図1は、本発明の第1の実施の形態である
静電容量型加速度センサにおける弾性電極1と重り2と
の結合構造を示す斜視図である。図2は、図1の弾性電
極1を示す平面図(A)並びにそのA−A矢視断面図
(B)及びB−B矢視断面図(C)である。図3は、そ
の本発明の第1の実施の形態である静電容量型加速度セ
ンサを組立てる工程を概念的に示す工程図である。図4
は図3の工程図の工程で組立てた静電容量型加速度セン
サを概念的に示す縦断面図である。図6は、その本発明
の第1の実施の形態である静電容量型加速度センサ(図
4)における2軸検出用平面電極4およびリード51〜54
を概念的に示す斜視図である。
FIG. 1 is a perspective view showing a coupling structure of an elastic electrode 1 and a weight 2 in a capacitance type acceleration sensor according to a first embodiment of the present invention. FIG. 2 is a plan view (A) showing the elastic electrode 1 of FIG. 1, and a cross-sectional view (B) and a cross-sectional view (C) of FIG. FIG. 3 is a process chart conceptually showing a process of assembling the capacitance type acceleration sensor according to the first embodiment of the present invention. FIG.
FIG. 4 is a longitudinal sectional view conceptually showing the capacitance type acceleration sensor assembled in the process shown in the process diagram of FIG. FIG. 6 shows a two-axis detecting plane electrode 4 and leads 51 to 54 in a capacitance type acceleration sensor (FIG. 4) according to the first embodiment of the present invention.
It is a perspective view which shows notionally.

【0011】これら図において、1は弾性電極、1a,1b,
1c,1dはヒンジ(振り子の支点)、2は重り、3は筐体、
4は2軸検出用平面電極、5はリード、6はカバー、9
は弾性電極1と重り2とを結合した構造、10a,10b,10c,
10dは重り保持用爪、10e,10f,10g,10hは重り搭載円板13
に設けられた切欠き、11は弾性電極1の外側リング、12
は弾性電極1の内側リング、13は弾性電極1の重り搭載
円板、14,15はスリット、31はカバー6の突起63が嵌ま
る円環状の溝、32は筐体3の底面、41はX軸電極
(+)、42はX軸電極(−)、43はY軸電極(+)、44
はY軸電極(−)、51,52,53,54はリード、61はカバー
6における重り2収容空間部の天井面、62はその重り2
収容空間部の側壁である。
In these figures, 1 is an elastic electrode, 1a, 1b,
1c, 1d are hinges (fulcrum of pendulum), 2 is weight, 3 is housing,
4 is a plane electrode for two-axis detection, 5 is a lead, 6 is a cover, 9
Is a structure in which the elastic electrode 1 and the weight 2 are connected, 10a, 10b, 10c,
10d is the weight holding claw, 10e, 10f, 10g, 10h is the weight mounting disk 13
Notch provided on the outer electrode of the elastic electrode 1;
Is an inner ring of the elastic electrode 1, 13 is a weight mounting disk of the elastic electrode 1, 14 and 15 are slits, 31 is an annular groove into which the projection 63 of the cover 6 is fitted, 32 is a bottom surface of the housing 3, and 41 is X-axis electrode (+), 42 is X-axis electrode (-), 43 is Y-axis electrode (+), 44
Is a Y-axis electrode (-), 51, 52, 53, 54 are leads, 61 is the weight of the cover 6, the ceiling surface of the accommodation space, and 62 is the weight 2
It is a side wall of the accommodation space.

【0012】本発明の第1の実施の形態である静電容量
型加速度センサでは、図1に示すように、弾性電極1は
外側リング11、内側リング12、重り搭載円板13、ヒンジ
(振り子の支点)1a,1b,1c,1d及び重り保持用爪10a,10b,1
0c,10dで構成される。弾性電極1は燐青銅でなる。外側
リング11及び内側リング12はスリット14で隔てられ、ヒ
ンジ1a,1bで連結されている。内側リング12及び重り搭
載円板13はスリット15で隔てられ、ヒンジ1c,1dで連結
されている。
In the capacitive acceleration sensor according to the first embodiment of the present invention, as shown in FIG. 1, an elastic electrode 1 includes an outer ring 11, an inner ring 12, a weight mounting disk 13, a hinge
(Support point of pendulum) 1a, 1b, 1c, 1d and weight holding claws 10a, 10b, 1
It is composed of 0c and 10d. The elastic electrode 1 is made of phosphor bronze. The outer ring 11 and the inner ring 12 are separated by a slit 14 and connected by hinges 1a and 1b. The inner ring 12 and the weight mounting disk 13 are separated by a slit 15 and connected by hinges 1c and 1d.

【0013】爪10a,10b,10c,10dは、重り搭載円板13に
切欠き10e,10f,10g,10hを設け、該切欠き10e,10f,10g,1
0hに望む重り搭載円板13の舌状部を重り2側(前述の他
方の板面側)に曲げ起こしてなる。重り2は、燐青銅製
であり、重り搭載円板13の中央に搭載され、爪10a,10b,
10c,10dで挟持されている。
The claws 10a, 10b, 10c, 10d are provided with notches 10e, 10f, 10g, 10h on the weight mounting disk 13, and the notches 10e, 10f, 10g, 1
The tongue-shaped portion of the weight mounting disk 13 desired at 0h is bent and raised toward the weight 2 (the other plate surface). The weight 2 is made of phosphor bronze and is mounted at the center of the weight mounting disk 13 and has claws 10a, 10b,
It is sandwiched between 10c and 10d.

【0014】この静電容量型加速度センサは、図3の工
程で組立てられる。図3における筐体3はプラスチック
製であり、平面形が円形をなし、中央上部に段差付きの
凹部を有し、底面32の中央部はテーパーをなす凹部とな
っている。筐体3の外側の上部には嵌まり溝31が形成さ
れている。
This capacitance type acceleration sensor is assembled in the process shown in FIG. The casing 3 in FIG. 3 is made of plastic, has a circular planar shape, has a stepped recess at the upper center, and has a tapered recess at the center of the bottom surface 32. A fitting groove 31 is formed in an upper portion on the outside of the housing 3.

【0015】平面電極4は、筐体3の中央上部凹部にお
ける底面に露出して固着されている。平面電極4を筐体
3の外へ接続するためのリード5は、筐体3内に一部を
モールドされ、筐体3の外の部分を筐体3の外側に沿っ
て下方に折り曲げ、筐体3の底面32の面で水平に曲げら
れている。なお、図6では、リード51〜54は模式的に表
現してあり、真っ直ぐに描いてある。
The flat electrode 4 is exposed and fixed to the bottom surface of the upper central recess of the housing 3. The lead 5 for connecting the plane electrode 4 to the outside of the housing 3 is partially molded in the housing 3, and the outer portion of the housing 3 is bent downward along the outside of the housing 3 to form a housing. It is bent horizontally on the surface of the bottom surface 32 of the body 3. In FIG. 6, the leads 51 to 54 are schematically represented, and are drawn straight.

【0016】図3の工程図に示すように、この静電容量
型加速度センサは、平面電極4及びリード5が作り付け
られた筐体3の上方から、まず矢印aの方向から弾性電
極1が嵌められる。弾性電極1は、筐体3の中央上部の
凹部における底面に載せられ、弾性電極1の外周縁は筐
体3の中央上部の凹部における上側の段差の外周壁に密
着して押し込まれ、筐体3に確実に固定される。
As shown in the process diagram of FIG. 3, in this capacitance type acceleration sensor, the elastic electrode 1 is first fitted in the direction of arrow a from above the housing 3 on which the plane electrode 4 and the lead 5 are formed. Can be The elastic electrode 1 is placed on the bottom surface of the recess at the upper center of the housing 3, and the outer peripheral edge of the elastic electrode 1 is pressed into close contact with the outer peripheral wall of the upper step in the recess at the upper center of the housing 3. 3 securely fixed.

【0017】次に、円柱形の重り2が弾性電極1におけ
る爪10a,10b,10c,10dの間に矢印bの方向から押し込ま
れる。矢印bの方向から爪10a,10b,10c,10dの間に重り
2を近接させるとき、重り2が爪10a,10b,10c,10dの弾
力に抗して爪10a,10b,10c,10dを外方に押しながらそれ
ら複数の爪の間に嵌められるように、爪10a,10b,10c,10
dの配置及び形は選択してある。
Next, the cylindrical weight 2 is pushed between the claws 10a, 10b, 10c and 10d of the elastic electrode 1 in the direction of arrow b. When the weight 2 is brought closer between the claws 10a, 10b, 10c, and 10d from the direction of the arrow b, the weight 2 removes the claws 10a, 10b, 10c, and 10d against the elasticity of the claws 10a, 10b, 10c, and 10d. Claw 10a, 10b, 10c, 10 so that
The arrangement and shape of d are selected.

【0018】最後に、カバー6が矢印cの方向から被せ
られ、カバー6の突起63が筐体3の嵌まり溝31に嵌めら
れる。カバー6における重り2収容空間部の天井面61と
重り2の上面との間隙、及びその重り2収容空間部の側
壁62と重り2の側面との間隙が加速度を受けたときに重
り2が移動し得る範囲であり、50μmに設定してある。
重り2の可動範囲は任意に設計でき、一般には10μm〜
100μm程度に選択される。10μm〜100μmという間隙
を重り2とカバー6との間に取ることにより、結露によ
る誤作動は通常生じない。
Finally, the cover 6 is covered from the direction of arrow c, and the projection 63 of the cover 6 is fitted into the fitting groove 31 of the housing 3. The weight 2 moves when acceleration is applied to the gap between the ceiling surface 61 of the weight 2 housing space in the cover 6 and the upper surface of the weight 2 and the gap between the side wall 62 of the weight 2 housing space and the side surface of the weight 2. Is set to 50 μm.
The movable range of the weight 2 can be arbitrarily designed.
It is selected to be about 100 μm. By providing a gap of 10 μm to 100 μm between the weight 2 and the cover 6, malfunction due to dew condensation does not usually occur.

【0019】カバー6は、弾性電極1及び重り2を外部
から保護するとともに、重り2の可動範囲を制限するこ
とにより、弾性電極1及び重り2が過入力で大きく変位
し、弾性電極1がその弾性限界を超えて変形し、破損す
るのを防ぐという作用も果たしている。
The cover 6 protects the elastic electrode 1 and the weight 2 from the outside and limits the movable range of the weight 2, so that the elastic electrode 1 and the weight 2 are greatly displaced by excessive input, and the elastic electrode 1 It also functions to prevent deformation beyond the elastic limit and breakage.

【0020】上述の図3に示した工程は、小型ボタンス
イッチの組立工程と殆ど同じである。小型ボタンスイッ
チの組立工程では、筐体をまず固定し、その筐体上に各
部品を上方から順次に押し込み、全体を単純な動作の繰
り返しで統一している。このような、小型ボタンスイッ
チの組立技術は既に完成しており、この既存の製造設備
を本発明の加速度センサに適用すれば、既存設備の極く
僅かな調整だけで本発明の加速度センサを製造でき、ひ
いてはこの加速度センサの製造単価を低廉にできる。
The above-described process shown in FIG. 3 is almost the same as the process of assembling the small button switch. In the assembling process of the small button switch, the housing is first fixed, each component is sequentially pushed onto the housing from above, and the whole is unified by repeating simple operations. The technology for assembling such a small button switch has already been completed. If this existing manufacturing equipment is applied to the acceleration sensor of the present invention, the acceleration sensor of the present invention can be manufactured with only slight adjustment of the existing equipment. As a result, the manufacturing cost of the acceleration sensor can be reduced.

【0021】図4は、図3の工程で製造された加速度セ
ンサを概念的に示す縦断面図である。この加速度センサ
は、重り2が受けた加速度を弾性電極1と平面電極4と
の間の静電容量の変化としてリード5に取り出す。図6
は、平面電極4及びリード5の構造を概念的に示す斜視
図である。弾性電極1は、平面電極4に対面する接地電
極として作用し、外部へ接地電位を取り出すリードが弾
性電極1にも接続されているが、弾性電極1のリードは
図4では表れていない。
FIG. 4 is a longitudinal sectional view conceptually showing the acceleration sensor manufactured in the process of FIG. This acceleration sensor takes out the acceleration received by the weight 2 to the lead 5 as a change in the capacitance between the elastic electrode 1 and the plane electrode 4. FIG.
FIG. 3 is a perspective view conceptually showing the structure of the planar electrode 4 and the lead 5. The elastic electrode 1 acts as a ground electrode facing the flat electrode 4 and a lead for extracting a ground potential to the outside is also connected to the elastic electrode 1, but the lead of the elastic electrode 1 is not shown in FIG.

【0022】図6に示すように、2軸検出用平面電極4は
X軸電極(+)41、X軸電極(−)42、Y軸電極(+)
43、Y軸電極(−)44でなる。X軸電極(+)41及びX
軸電極(−)42でX軸方向の加速度を検出し、Y軸電極
(+)43、Y軸電極(−)44でY軸方向の加速度を検出
する。
As shown in FIG. 6, the two-axis detecting plane electrode 4 includes an X-axis electrode (+) 41, an X-axis electrode (-) 42, and a Y-axis electrode (+).
43, and a Y-axis electrode (-) 44. X-axis electrode (+) 41 and X
The axis electrode (-) 42 detects the acceleration in the X-axis direction, and the Y-axis electrode (+) 43 and the Y-axis electrode (-) 44 detect the acceleration in the Y-axis direction.

【0023】X軸方向に加速度成分があると、弾性電極
1におけるヒンジ1c,1dが弾性電極1の板面に直交する
方向に、即ち図2において紙面に垂直な方向に、曲が
り、重り搭載円板13がヒンジ1a,1bを軸心にして傾く。
このとき、X軸電極(+)41及びX軸電極(−)42の内
の一方と弾性電極1との間の容量が増大し、他方の電極
と弾性電極1との間の容量が減少する。
When there is an acceleration component in the X-axis direction, the hinges 1c and 1d of the elastic electrode 1 bend and extend in the direction perpendicular to the plate surface of the elastic electrode 1, that is, in the direction perpendicular to the plane of FIG. The plate 13 is tilted about the hinges 1a and 1b.
At this time, the capacity between one of the X-axis electrode (+) 41 and the X-axis electrode (-) 42 and the elastic electrode 1 increases, and the capacity between the other electrode and the elastic electrode 1 decreases. .

【0024】この容量変化は、リード51,52を介してプ
ラス成分及びマイナス成分として外部へ取り出され、例
えば特開平5−346357号公報に記載されている信
号処理回路により、それぞれ電気信号に変換される。電
気信号で現されたプラス成分及びマイナス成分の容量変
化は差動増幅器に与えられ、プラス成分とマイナス成分
の差分が増幅され、取り出される。この差分は、この実
施の形態の加速度センサで検出した加速度を現してい
る。かくして、本実施の形態の加速度センサは、重り2
に受けた加速度を検出できる。
This change in capacitance is taken out to the outside through the leads 51 and 52 as a plus component and a minus component, and is converted into an electric signal by a signal processing circuit described in, for example, JP-A-5-346357. You. The change in the capacitance of the plus component and the minus component expressed by the electric signal is given to the differential amplifier, and the difference between the plus component and the minus component is amplified and extracted. This difference represents the acceleration detected by the acceleration sensor according to the present embodiment. Thus, the acceleration sensor according to the present embodiment has the weight 2
Can be detected.

【0025】Y軸方向に加速度成分があると、弾性電極
1におけるヒンジ1a,1bが弾性電極1の板面に直交する
方向に、即ち図2において紙面に垂直な方向に、曲が
り、重り搭載円板13がヒンジ1c,1dを軸心にして傾く。
このとき、Y軸電極(+)43及びY軸電極(−)44の内
の一方と弾性電極1との間の容量が増大し、他方の電極
と弾性電極1との間の容量が減少する。この容量変化
は、リード53,54を介してプラス成分及びマイナス成分
として外部へ取り出され、X軸方向の容量変化と同様に
加速度を現す電気信号に変換される。
When there is an acceleration component in the Y-axis direction, the hinges 1a and 1b of the elastic electrode 1 bend and extend in a direction perpendicular to the plate surface of the elastic electrode 1, that is, in a direction perpendicular to the plane of FIG. The plate 13 tilts with the hinges 1c and 1d as axes.
At this time, the capacitance between one of the Y-axis electrode (+) 43 and the Y-axis electrode (-) 44 and the elastic electrode 1 increases, and the capacitance between the other electrode and the elastic electrode 1 decreases. . This capacitance change is taken out to the outside via the leads 53 and 54 as a plus component and a minus component, and is converted into an electric signal representing acceleration in the same manner as the capacitance change in the X-axis direction.

【0026】図5は、上に述べた本発明の第1の実施の
形態である静電容量型加速度センサの類型例を概念的に
示す縦断面図である。この類型例では、弾性電極1を筐
体3へ一層確実に固定するために、弾性電極押え環8を
備えている。図5の静電容量型加速度センサの製造工程
では、図3の工程図におけるカバー6を取り付ける前に
弾性電極押え環8を筐体3の上部の凹部に押し込む。弾
性電極押え環8はプラスチック製であり、筐体3の上部
の凹部における上側段差に弾性電極1を堅く固定する。
FIG. 5 is a longitudinal sectional view conceptually showing a typical example of the above-described capacitance type acceleration sensor according to the first embodiment of the present invention. In this type, an elastic electrode pressing ring 8 is provided to more reliably fix the elastic electrode 1 to the housing 3. In the manufacturing process of the capacitance type acceleration sensor shown in FIG. 5, the elastic electrode pressing ring 8 is pressed into the upper concave portion of the housing 3 before attaching the cover 6 in the process drawing of FIG. The elastic electrode pressing ring 8 is made of plastic, and firmly fixes the elastic electrode 1 to the upper step in the concave portion on the upper part of the housing 3.

【0027】図7は、X,Y,Zの3軸方向の加速度を
検出するために、図6に示した2軸検出用平面電極4お
よびリード51〜54に代えて、本発明の第1の実施の形態
(図4)に適用できる3軸検出用平面電極7およびリー
ド51〜55を概念的に示す斜視図である。3軸検出用平面
電極7は、2軸検出用平面電極4におけるものと同様な
X軸方向及びY軸方向加速度検出用の電極71〜74に加え
て、Z軸電極75を備える。Z軸方向は、平面電極7の平
面に直交する方向である。Z軸方向の加速度成分は、Z
軸電極75と弾性電極1との間の容量変化として表れ、こ
の容量変化はリード55と弾性電極1のリードとの間に表
れ、これらリードを介して外部へ取り出され、前掲の信
号処理回路などで電気信号へ変換される。Z軸方向の加
速度成分は、容量の増大又は減少としてだけ検出され
る。
FIG. 7 shows a first embodiment of the present invention in place of the two-axis detection plane electrode 4 and the leads 51 to 54 shown in FIG. 6 for detecting accelerations in three axes directions of X, Y and Z. FIG. 5 is a perspective view conceptually showing a three-axis detection plane electrode 7 and leads 51 to 55 applicable to the embodiment (FIG. 4). The three-axis detection plane electrode 7 includes a Z-axis electrode 75 in addition to the X-axis and Y-axis acceleration detection electrodes 71 to 74 similar to those of the two-axis detection plane electrode 4. The Z-axis direction is a direction orthogonal to the plane of the plane electrode 7. The acceleration component in the Z-axis direction is Z
It appears as a change in capacitance between the shaft electrode 75 and the elastic electrode 1, and this change in capacitance appears between the lead 55 and the lead of the elastic electrode 1, and is taken out through these leads to the signal processing circuit described above. Is converted into an electric signal. The acceleration component in the Z-axis direction is detected only as an increase or decrease in capacity.

【0028】図6を参照して先に説明したX軸及びY軸
方向の加速度検出方式では、容量の増大成分と減少成分
とが同時に検出され、容量の増大成分と減少成分とを差
動増幅器に入力し、雑音成分を除去できた。しかしなが
ら、Z軸方向の加速度成分は容量の増大又は減少として
だけ検出されるので、Z軸方向の加速度成分については
差動増幅器で雑音成分を除去することはできない。
In the acceleration detection method in the X-axis and Y-axis directions described above with reference to FIG. 6, an increase component and a decrease component of the capacitance are detected at the same time, and the increase component and the decrease component of the capacitance are differentially amplified. And the noise component was removed. However, since the acceleration component in the Z-axis direction is detected only as an increase or decrease in capacitance, the noise component cannot be removed from the acceleration component in the Z-axis direction by the differential amplifier.

【0029】図8は、Z軸方向だけのの加速度を検出す
るために、図6に示した2軸検出用平面電極4およびリ
ード51〜54に代えて、本発明の第1の実施の形態(図
4)に適用できるZ軸検出用平面電極76およびリード56
を概念的に示す斜視図である。図8のZ軸検出用平面電
極76を図6の2軸検出用平面電極4に代えて図4の加速
度センサに備えると、1軸方向の加速度だけしか検出で
きないが、電極数を減らせば1軸当たりの静電容量とそ
の変化量が増大するから、検出感度を向上できる。
FIG. 8 shows a first embodiment of the present invention in place of the two-axis detection plane electrode 4 and the leads 51 to 54 shown in FIG. 6 for detecting acceleration only in the Z-axis direction. (FIG. 4) Z-axis detecting flat electrode 76 and lead 56 applicable to FIG.
It is a perspective view which shows notionally. When the Z-axis detection plane electrode 76 of FIG. 8 is provided in the acceleration sensor of FIG. 4 instead of the two-axis detection plane electrode 4 of FIG. 6, only acceleration in one axis direction can be detected. Since the capacitance per axis and the change amount thereof increase, the detection sensitivity can be improved.

【0030】本発明では、図6、図7又は図8のいずれ
かの平面電極から他のいずれかに変更したとしても、筐
体3に設ける平面電極4を変更するだけで足り、仕様変
更の費用は僅かで済む。したがって、検出方向の数と検
出感度とに応じ任意の平面電極を選び、製造すること
は、僅かな経費で既存の製造装置に変更を加えることに
より可能となる。
In the present invention, even if one of the planar electrodes shown in FIG. 6, FIG. 7 or FIG. 8 is changed to another, only the planar electrode 4 provided on the housing 3 needs to be changed. Cost is low. Therefore, it is possible to select and manufacture an arbitrary plane electrode according to the number of detection directions and the detection sensitivity by changing existing manufacturing equipment with a small cost.

【0031】図9は、弾性電極に重り保持用の爪を備え
る本発明の加速度センサには、各種の形状の重りを搭載
できることを示す概念図である。図9(A)には円柱形
の重り2を弾性電極1に嵌めて、弾性電極重り構造9を
構成する工程(前述の図3の工程に同じ。)が、同図
(B)には溝付き円柱でなる重り201を弾性電極101に嵌
めて、弾性電極重り構造901を構成する工程が、また同
図(C)には球でなる重り202を弾性電極102に嵌めて、
弾性電極重り構造902を構成する工程が夫々示してあ
る。なお、図9の(A)は同図(B)及び(C)の工程
との比較のため図3に重複して描いてある。このよう
に、本発明は各種の形状の重りを有する加速度センサに
適用できる。
FIG. 9 is a conceptual diagram showing that weights of various shapes can be mounted on the acceleration sensor of the present invention having a weight holding claw on the elastic electrode. FIG. 9A shows a step of fitting the cylindrical weight 2 to the elastic electrode 1 to form the elastic electrode weight structure 9 (same as the above-described step of FIG. 3), and FIG. 9B shows a groove. A step of forming a resilient electrode weight structure 901 by fitting a weight 201 made of a cylindrical column to the elastic electrode 101, and fitting a weight 202 made of a sphere to the resilient electrode 102 in FIG.
The steps of configuring the elastic electrode weight structure 902 are shown respectively. Note that FIG. 9A is drawn in FIG. 3 for comparison with the steps of FIGS. 9B and 9C. Thus, the present invention can be applied to acceleration sensors having weights of various shapes.

【0032】図10は、弾性電極が燐青銅などの金属製
の板状体でなり、重り保持用の爪は、該板状体に切欠き
を設け、該切欠きに望む該板状体の舌状部を重り側に曲
げ起こしてなると共に、該舌状部は、重りが接触する側
の弾性電極の表面における一部の領域でにあり、平面電
極側に位置する側の重りの表面が接触する領域の中心O
から一定距離だけ僅かにそれぞれ離れた部位から放射状
に伸びてなることを特徴とする加速度センサ(請求項4
に対応)の具体例を示す図である。この具体例は本願発
明の第2の実施の形態である。
FIG. 10 shows that the elastic electrode is made of a metal plate such as phosphor bronze, and the weight holding claw is provided with a notch in the plate, and The tongue is bent and raised to the weight side, and the tongue is a part of the surface of the elastic electrode on the side where the weight contacts, and the surface of the weight located on the side of the flat electrode is Center O of contact area
An acceleration sensor extending radially from portions slightly apart from each other by a fixed distance.
FIG. 9 is a diagram showing a specific example of (corresponding to). This specific example is the second embodiment of the present invention.

【0033】図10の実施の形態では、弾性電極の内で重
り搭載円板130だけを図示してある。図10の実施の形態
における基本的な構造は図1乃至図4に示したものと同様
であり、図1乃至図4に示したものとは重り搭載円板及び
重りだけが相違している(重り搭載円板において形成さ
れる重り保持用爪及び切欠きも相違する)。図10におい
て、130a,130b,130,130dは重り搭載円板130に設けられ
た重り保持用爪、130e,130f,130g,130hは重り搭載円板1
30に設けられた切欠きである。重り保持用爪130a,130b,
130,130dは、舌状部に相当する。中心Oは、重り202が
接触する側の弾性電極の表面における一部の領域であ
り、平面電極側に位置する側の重り202の表面(図10に
おいては重り202の下面)が接触する領域の中心であ
る。
In the embodiment shown in FIG. 10, only the weight mounting disk 130 among the elastic electrodes is shown. The basic structure in the embodiment of FIG. 10 is the same as that shown in FIGS. 1 to 4, and is different from that shown in FIGS. 1 to 4 only in the weight mounting disk and the weight ( The weight holding claw and the notch formed in the weight mounting disk are also different). 10, 130a, 130b, 130, 130d are weight holding claws provided on the weight mounting disk 130, and 130e, 130f, 130g, 130h are weight mounting disks 1
It is a notch provided in 30. Weight holding claws 130a, 130b,
130 and 130d correspond to the tongue. The center O is a part of the surface of the elastic electrode on the side where the weight 202 contacts, and the center O of the area where the surface of the weight 202 on the side of the flat electrode (the lower surface of the weight 202 in FIG. 10) contacts. The center.

【0034】図1乃至図10を参照して説明した本発明
の実施の形態では、重りを弾性電極に固着する手段とし
て、重り保持用の爪10a,10b,10c,10d又は130a,130b,13
0,130dを備える。これらの爪は重りを挟持することによ
り、重りを弾性電極に固定する。このような重り固定構
造では、熱変動により重りに熱歪みが生じ、重りが伸縮
したとき、爪と重りとの間、及び弾性電極における重り
搭載面(例えば、図2における重り搭載円板13の中央領
域)と重りとの間に僅かに摺動が生じ、重りの伸縮が弾
性電極を変形させない。すなわち、重りと弾性電極とが
互いに独立に伸縮し、弾性電極に歪みが生じ難い構造を
本発明は採用している。
In the embodiment of the present invention described with reference to FIGS. 1 to 10, as means for fixing the weight to the elastic electrode, weight holding claws 10a, 10b, 10c, 10d or 130a, 130b, 13
0,130d. These claws clamp the weight to fix the weight to the elastic electrode. In such a weight fixing structure, heat distortion occurs in the weight due to heat fluctuation, and when the weight expands and contracts, between the nail and the weight, and the weight mounting surface of the elastic electrode (for example, the weight mounting disk 13 in FIG. 2). Slight sliding occurs between the (center area) and the weight, and the expansion and contraction of the weight does not deform the elastic electrode. That is, the present invention employs a structure in which the weight and the elastic electrode expand and contract independently of each other, and the elastic electrode is less likely to be distorted.

【0035】もし、重りと弾性電極とを固定する手段と
して接着剤を用いるならば、重りの熱歪みが弾性電極を
変形させ、弾性電極の歪みが静電容量を変動させるか
ら、加速度測定精度が環境温度に大きく依存し、加速度
センサの温度特性が著しく劣化する。また、重りと弾性
電極とを固定する手段として接着剤を用いるならば、弾
性電極に接着剤を付け、その接着剤の上に重り載せる工
程を終えると、接着剤が乾燥するまで、次の工程へ進め
ないから、製造に時間を要し、製造費の増大を招く。
If an adhesive is used as a means for fixing the weight and the elastic electrode, the thermal distortion of the weight deforms the elastic electrode and the distortion of the elastic electrode fluctuates the capacitance. The temperature characteristic greatly depends on the environmental temperature, and the temperature characteristic of the acceleration sensor is significantly deteriorated. Also, if an adhesive is used as a means for fixing the weight and the elastic electrode, after the step of attaching the adhesive to the elastic electrode and placing the weight on the adhesive is completed, the next step is performed until the adhesive is dried. Therefore, it takes time for the production and the production cost is increased.

【0036】図10の構造の加速度センサでは、重り202
が弾性電極の1点で固定されるから、重り202の熱歪み
の影響が図9(A),(B)及び(C)の構造より一層
緩和される。
In the acceleration sensor having the structure shown in FIG.
Is fixed at one point of the elastic electrode, the influence of the thermal distortion of the weight 202 is alleviated more than in the structures of FIGS. 9A, 9B and 9C.

【0037】なお、以上には実施の形態を挙げ、本発明
を具体的に説明したが、本発明がこれら実施の形態に限
定されるものでないことは勿論である。例えば、重り2
は燐青銅であるとしたが、重り2の材料は金属等の比重
の大きいものであれば足り、燐青銅であることは必須で
はない。
Although the present invention has been described in detail with reference to the embodiments, it goes without saying that the present invention is not limited to these embodiments. For example, weight 2
Is phosphor bronze, but the material of the weight 2 is only required to be a material having a large specific gravity such as a metal, and it is not essential to use phosphor bronze.

【0038】[0038]

【発明の効果】本発明によれば、以上に実施の形態を挙
げ詳しく説明したように、小さい設備投資で安価に製造
でき、設計変更も容易であり、また必ずしも密封をしな
くても信頼性を維持でき、しかも環境温度の変動による
測定精度の変動が小さい加速度センサを提供できる。
According to the present invention, as described in detail in the above embodiments, it can be manufactured at a low cost with a small capital investment, the design can be easily changed, and the reliability can be improved without necessarily sealing. Can be provided, and the fluctuation of the measurement accuracy due to the fluctuation of the environmental temperature is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態である静電容量型加
速度センサにおける弾性電極1と重り2との結合構造を
示す斜視図である。
FIG. 1 is a perspective view showing a coupling structure between an elastic electrode 1 and a weight 2 in a capacitive acceleration sensor according to a first embodiment of the present invention.

【図2】図1の弾性電極1を示す平面図(A)並びにそ
のA−A矢視断面図(B)及びB−B矢視断面図(C)
である。
FIG. 2 is a plan view (A) showing the elastic electrode 1 of FIG. 1, and a sectional view taken along the line AA (B) and a sectional view taken along the line BB (C) thereof.
It is.

【図3】本発明の第1の実施の形態である静電容量型加
速度センサを組立てる工程を概念的に示す工程図であ
る。
FIG. 3 is a process chart conceptually showing a process of assembling the capacitive acceleration sensor according to the first embodiment of the present invention.

【図4】図3の工程図の工程で組立てた静電容量型加速
度センサを概念的に示す縦断面図である。
FIG. 4 is a longitudinal sectional view conceptually showing the capacitance type acceleration sensor assembled in the process shown in the process diagram of FIG.

【図5】本発明の第1の実施の形態である静電容量型加
速度センサの類型例を概念的に示す縦断面図である。
FIG. 5 is a longitudinal sectional view conceptually showing a typical example of a capacitance type acceleration sensor according to the first embodiment of the present invention.

【図6】本発明の第1の実施の形態である静電容量型加
速度センサ(図4)における2軸検出用平面電極4およ
びリード51〜54を概念的に示す斜視図である。
FIG. 6 is a perspective view conceptually showing a two-axis detection plane electrode 4 and leads 51 to 54 in the capacitance type acceleration sensor (FIG. 4) according to the first embodiment of the present invention.

【図7】X,Y,Zの3軸方向の加速度を検出するため
に、図6に示した2軸検出用平面電極4およびリード51
〜54に代えて、本発明の第1の実施の形態(図4)に適
用できる3軸検出用平面電極7およびリード51〜55を概
念的に示す斜視図である。
7 shows a two-axis detection plane electrode 4 and a lead 51 shown in FIG. 6 for detecting accelerations in three axes directions of X, Y and Z.
FIG. 5 is a perspective view conceptually showing a three-axis detection plane electrode 7 and leads 51 to 55 applicable to the first embodiment (FIG. 4) of the present invention instead of FIGS.

【図8】Z軸方向だけの加速度を検出するために、図6
に示した2軸検出用平面電極4およびリード51〜54に代
えて、本発明の第1の実施の形態(図4)に適用できる
Z軸検出用平面電極76およびリード56を概念的に示す
斜視図である。
FIG. 8 is a diagram showing a configuration of FIG. 6 for detecting acceleration only in the Z-axis direction.
A Z-axis detection plane electrode 76 and a lead 56 that can be applied to the first embodiment of the present invention (FIG. 4) are conceptually shown in place of the two-axis detection plane electrode 4 and the leads 51 to 54 shown in FIG. It is a perspective view.

【図9】本発明の静電容量型加速度センサに適用できる
各種の重り及びそれら重りを弾性電極に取り付ける構造
の例を概念的に示す図である。
FIG. 9 is a diagram conceptually showing an example of various weights applicable to the capacitance type acceleration sensor of the present invention and a structure for attaching the weights to the elastic electrodes.

【図10】本発明の第2の実施の形態である静電容量型加
速度センサにおける重り搭載円板130と重り202との結合
構造を示す断面図(A)、並びにその重り搭載円板130
の平面図(B)及びC−C断面図(C)である。
FIG. 10A is a cross-sectional view showing a coupling structure between the weight mounting disk 130 and the weight 202 in the capacitive acceleration sensor according to the second embodiment of the present invention, and the weight mounting disk 130.
3B is a plan view and FIG. 3C is a cross-sectional view taken along CC.

【符号の説明】[Explanation of symbols]

1,101,102,103・・・・・弾性電極 1a,1b,1c,1d・・・・・ヒンジ(振り子の支点) 2,201,202・・・・・重り 3・・・・・筐体 4・・・・・2軸検出用平面電極 5・・・・・リード 6・・・・・カバー 7・・・・・3軸検出用平面電極 8・・・・・弾性電極押え環 9,901,902・・・・・弾性電極重り結合構造 10a,10b,10c,10d・・・・・重り保持用爪 10e,10f,10g,10h・・・・・重り搭載円板13に設けられ
た切欠き 11・・・・・弾性電極1の外側リング 12・・・・・弾性電極1の内側リング 13,130・・・・・弾性電極1の重り搭載円板 14,15・・・・・スリット 31・・・・・カバー6の突起63が嵌まる円環状の溝 32・・・・・筐体3の底面 41,71・・・・・X軸電極(+) 42,72・・・・・X軸電極(−) 43,73・・・・・Y軸電極(+) 44,74・・・・・Y軸電極(−) 51,52,53,54,55,56・・・・・リード 61・・・・・カバー6における重り2収容空間部の天井
面 62・・・・・カバー6における重り2収容空間部の側壁 76・・・・・Z軸電極 130a,130b,130,130d・・・・・重り搭載円板130に設け
られた重り保持用爪 130e,130f,130g,130h・・・・・重り搭載円板130に設け
られた切欠き
1, 101, 102, 103 ... Elastic electrode 1a, 1b, 1c, 1d ... Hinge (fulcrum of pendulum) 2, 201, 202 ... Weight 3 ... Housing 4 ... ·····························································································・ Elastic electrode weight coupling structure 10a, 10b, 10c, 10d ・ ・ ・ ・ Claws for holding weights 10e, 10f, 10g, 10h ・ ・ ・ ・ Notches 11 provided on weight mounting disk 13 ・ ・ ・ ・· Outer ring of elastic electrode 1 ····· Inner ring of elastic electrode 1 ····························· Slit 31 ··· An annular groove 32 into which the projection 63 is fitted 32..., The bottom surface of the housing 3 41,71... X-axis electrode (+) 42,72. , 73 ... Y-axis electrode (+) 44,74 ... Y-axis electrode (-) 51,5 2, 53, 54, 55, 56 ······················································································································· ····· Z-axis electrodes 130a, 130b, 130, 130d ··· Weight holding claws 130e, 130f, 130g, 130h provided on the weight mounting disk 130 ··· Provided on the weight mounting disk 130 Cutout

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】筐体の表面に設けられた平面電極と、該筐
体に外縁を固定され、微小な間隙を隔てて該平面電極に
一方の板面で対面する弾性電極と、該弾性電極の他方の
板面に固定された重りとを備え、前記重りが受ける加速
度を前記平面電極と前記弾性電極との間の静電容量の変
化量に変換する加速度センサにおいて、 前記弾性電極の前記他方の板面には、前記重りを挟持
し、該重りを該弾性電極に保持する複数の爪が設けてあ
ることを特徴とする加速度センサ。
1. A flat electrode provided on a surface of a housing, an elastic electrode having an outer edge fixed to the housing, and facing the flat electrode on one plate surface with a minute gap therebetween; A weight fixed to the other plate surface of the elastic electrode, the acceleration sensor converts the acceleration received by the weight into a change in capacitance between the planar electrode and the elastic electrode; An acceleration sensor, wherein a plurality of claws for holding the weight and holding the weight on the elastic electrode are provided on a plate surface of the acceleration sensor.
【請求項2】前記弾性電極の前記他方の板面側から該他
方の板面に垂直に前記複数の爪の間に前記重りを近接さ
せるとき、該重りが該複数の爪の弾力に抗して該複数の
爪を外方に押しながらそれら複数の爪の間に嵌められる
ように、前記爪の配置及び形が選択してあることを特徴
とする請求項1に記載の加速度センサ。
2. The method according to claim 1, wherein when the weight is made to approach the plurality of claws perpendicularly to the other plate surface from the other plate surface side of the elastic electrode, the weight resists the elasticity of the plurality of claws. 2. The acceleration sensor according to claim 1, wherein the positions and shapes of the claws are selected such that the claws are fitted between the claws while pushing the claws outward.
【請求項3】前記弾性電極が燐青銅などの金属製の板状
体でなり、 前記爪は、該板状体に切欠きを設け、該切欠きに望む該
板状体の舌状部を前記他方の板面側に曲げ起こしてなる
ことを特徴とする請求項1又は2に記載の加速度セン
サ。
3. The elastic electrode is formed of a metal plate such as phosphor bronze, and the claw is provided with a notch in the plate, and a tongue of the plate desired in the notch is provided. The acceleration sensor according to claim 1, wherein the acceleration sensor is bent and raised toward the other plate surface.
【請求項4】前記舌状部は、前記他方の板面における一
部の領域であり、前記平面電極側に位置する側の前記重
りの表面が接触する領域の中心Oから一定距離だけ僅か
にそれぞれ離れた部位から放射状に伸びてなることを特
徴とする請求項3に記載の加速度センサ。
4. The tongue-shaped portion is a partial area on the other plate surface, and is slightly apart from a center O of an area where the surface of the weight on the side located on the flat electrode side contacts with a predetermined distance. The acceleration sensor according to claim 3, wherein the acceleration sensor radially extends from the distant portions.
JP11083189A 1999-03-26 1999-03-26 Acceleration sensor Withdrawn JP2000275273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083189A JP2000275273A (en) 1999-03-26 1999-03-26 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083189A JP2000275273A (en) 1999-03-26 1999-03-26 Acceleration sensor

Publications (1)

Publication Number Publication Date
JP2000275273A true JP2000275273A (en) 2000-10-06

Family

ID=13795388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083189A Withdrawn JP2000275273A (en) 1999-03-26 1999-03-26 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP2000275273A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1635179A1 (en) * 2004-09-13 2006-03-15 Hosiden Corporation Acceleration sensor
EP1635180A1 (en) * 2004-09-14 2006-03-15 Hosiden Corporation Acceleration sensor
KR101266210B1 (en) 2011-09-22 2013-05-21 성균관대학교산학협력단 Six-axis sensor measuring power and torque

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1635179A1 (en) * 2004-09-13 2006-03-15 Hosiden Corporation Acceleration sensor
EP1635180A1 (en) * 2004-09-14 2006-03-15 Hosiden Corporation Acceleration sensor
US7194905B2 (en) 2004-09-14 2007-03-27 Hosiden Corporation Acceleration sensor
KR101266210B1 (en) 2011-09-22 2013-05-21 성균관대학교산학협력단 Six-axis sensor measuring power and torque

Similar Documents

Publication Publication Date Title
US7258011B2 (en) Multiple axis accelerometer
JP6580804B2 (en) Integrated structure of MEMS pressure sensor and MEMS inertial sensor
JP3941694B2 (en) Acceleration sensor
CN112739642B (en) 3-axis accelerometer
US6928872B2 (en) Integrated gyroscope of semiconductor material with at least one sensitive axis in the sensor plane
CN106597014B (en) MEMS sensor device with reduced stress sensitivity
US20090152654A1 (en) Micromechanical system
US6598483B2 (en) Capacitive vacuum sensor
JPH05249138A (en) Triaxial accelerometer
US6761070B2 (en) Microfabricated linear accelerometer
JP2015021786A (en) Functional element, electronic device, and mobile body
CN217180964U (en) Micro-electromechanical sensor device and electronic system
JP6258977B2 (en) Sensor and manufacturing method thereof
JP2006349613A (en) Capacitive detection type acceleration sensor
JP2000275273A (en) Acceleration sensor
Rödjegård et al. Capacitive slanted-beam three-axis accelerometer: I. Modelling and design
US9612254B2 (en) Microelectromechanical systems devices with improved lateral sensitivity
US9963339B2 (en) Sensor device
CN115248034A (en) Inertial sensor
JPH11248737A (en) Capacitance-type multi-axial acceleration sensor
KR102528214B1 (en) 3-axis MEMS acceleration sensor based on single mass
KR102534682B1 (en) 3-axis acceleration sensor based on MEMS
US20210263067A1 (en) Acceleration sensing structure and accelerometer
CN220490859U (en) Micro accelerometer and electronic equipment
JPH0419568A (en) Acceleration sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606