JP2000274261A - Gas turbine - Google Patents

Gas turbine

Info

Publication number
JP2000274261A
JP2000274261A JP11079168A JP7916899A JP2000274261A JP 2000274261 A JP2000274261 A JP 2000274261A JP 11079168 A JP11079168 A JP 11079168A JP 7916899 A JP7916899 A JP 7916899A JP 2000274261 A JP2000274261 A JP 2000274261A
Authority
JP
Japan
Prior art keywords
tube
coolant
disk
refrigerant
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11079168A
Other languages
Japanese (ja)
Other versions
JP3952629B2 (en
JP2000274261A5 (en
Inventor
Manabu Matsumoto
学 松本
Shinya Marushima
信也 圓島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP07916899A priority Critical patent/JP3952629B2/en
Publication of JP2000274261A publication Critical patent/JP2000274261A/en
Publication of JP2000274261A5 publication Critical patent/JP2000274261A5/ja
Application granted granted Critical
Publication of JP3952629B2 publication Critical patent/JP3952629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve efficiency, while reducing consumption of the dynamic blade coolant by interposing tubes having a flange at one end thereof so to be fitted in a groove formed in a dub tail part of a root of a dynamic blade between the coolant flow passage of the dynamic blade and the coolant flow passage of a disk. SOLUTION: A dynamic blade 21 of a gas turbine is formed with a coolant flow passage extended in the radial direction inside thereof, and a root of the dynamic blade is formed with a coolant lead-in port 24 and a coolant lead-out port 25. A fastening part of a rotor is formed with a coolant supply flow passage, and a coolant recovery flow passage are formed in the axial direction, and a flow-out port 33 and a flow-in port 34 of each flow passage end are opened in the periphery of a disk 11. Tubes 41, 42 are interposed between the flow-out port 33, the flow-in port 34 and the coolant lead-in port 24, the coolant lead-out port 25, and the flow passage is formed through these tubes 41, 42. Each tube 41, 42 houses a rectangular flange 43 formed in one end thereof with a spring 53 in a groove 51 formed in the root of the dynamic blade, whereas a spherical tube seal 44 provided at the other end is fitted in the flow-out port 33 and the flow-in port 34 for airtight holding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒を用いて翼を
冷却するガスタービンに係り、特に動翼を支持している
ディスクと動翼間の冷媒流路接続構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine for cooling blades by using a refrigerant, and more particularly, to a structure for connecting a refrigerant passage between a disk supporting the moving blades and the moving blades.

【0002】[0002]

【従来の技術】ガスタービンの動翼は、高温の燃焼ガス
から翼を保護するために内部に冷却流路を形成して冷却
されている。一般に、冷媒には燃焼用圧縮空気の一部が
利用されるが、冷却した後は燃焼ガスパス中に放出され
るために、燃焼ガスの温度が低下するばかりでなく、ガ
スパスの流れが乱されるために、ガスタービンの効率が
低下する。
2. Description of the Related Art A moving blade of a gas turbine is cooled by forming a cooling flow path therein to protect the blade from high-temperature combustion gas. Generally, a part of the compressed air for combustion is used as the refrigerant, but after cooling, the compressed air is discharged into the combustion gas path, so that not only the temperature of the combustion gas decreases, but also the flow of the gas path is disturbed. Therefore, the efficiency of the gas turbine decreases.

【0003】そこで、翼を冷却した後の冷媒を回収す
る、いわゆるクローズド冷却ガスタービンが提案されて
いる。冷媒としては空気に限らず、例えば特開平9−139
02号公報のように、蒸気を使用することもできる。
[0003] Therefore, a so-called closed cooling gas turbine for recovering the refrigerant after cooling the blades has been proposed. The refrigerant is not limited to air.
Steam can also be used, as in the '02 publication.

【0004】クローズド冷却ガスタービンでは、冷媒は
動翼の根本の導入出口から供給,回収され、ロータ内の
供給,回収流路を介して外部に接続される。
In a closed cooling gas turbine, a refrigerant is supplied and recovered from a root inlet / outlet of a rotor blade, and is connected to the outside via a supply / recovery flow passage in a rotor.

【0005】[0005]

【発明が解決しようとする課題】動翼は、高速回転によ
る強大な遠心力に耐えるように、翼の根元とロータディ
スクの外周に形成された波状面を有するダブテールのは
め合いによって支持されている。動翼とディスクの熱膨
張差を吸収するために、ダブテールはめ合い部にはすき
まが形成されている。
The moving blade is supported by a dovetail fitting having a wavy surface formed on the root of the blade and the outer periphery of the rotor disk so as to withstand a strong centrifugal force due to high speed rotation. . In order to absorb the difference in thermal expansion between the rotor blade and the disk, a clearance is formed in the dovetail fitting portion.

【0006】動翼根本の導入出口は上記のダブテールす
きまを横断してディスクの流入出口に接続されるため
に、同すきまを通して冷媒がロータ外部に流出し、動翼
の冷却能力が低下するばかりでなく、冷媒の消費によっ
てガスタービンの効率低下を来すことになる。特に蒸気
冷却式ガスタービンでは、常時冷媒としての純水を補給
することが必要になり、補給設備の拡充も必要になる。
[0006] Since the inlet / outlet of the rotor blade root is connected to the inlet / outlet of the disk across the above-mentioned dovetail clearance, the refrigerant flows out of the rotor through the clearance to reduce the cooling ability of the rotor blade. In other words, the efficiency of the gas turbine decreases due to the consumption of the refrigerant. In particular, in a steam-cooled gas turbine, it is necessary to constantly supply pure water as a refrigerant, and it is necessary to expand a supply facility.

【0007】この問題を解決するための一つの手段とし
て、動翼根本の導入出口とディスクの流入出口をチュー
ブで接続する方法が考えられるが、チューブ装着によっ
てダブテールはめあい部のなじみや熱伸びに対する動翼
の動きを拘束しない構造にする必要がある。
As one means for solving this problem, a method of connecting the inlet / outlet of the blade root and the inlet / outlet of the disk with a tube can be considered. It is necessary to have a structure that does not restrict the movement of the wing.

【0008】またチューブ両端の流路との接続部にシー
ルが必要となるが、動翼とディスクが相対変位すること
によってシール面に隙間が発生してはならない。
[0008] Further, a seal is required at the connecting portion between the both ends of the tube and the flow path.

【0009】更に、動翼をディスクに組み立てる際に
は、動翼根元のダブテールをディスクのダブテール溝に
軸方向に挿入するが、この際、チューブが妨げになって
はならない。
Further, when assembling the moving blade to the disk, the dovetail at the root of the moving blade is inserted into the dovetail groove of the disk in the axial direction, but the tube must not be obstructed.

【0010】本発明は、上述した問題を解決して動翼冷
媒の消費を軽減し、高効率のガスタービンを提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to reduce the consumption of the moving blade refrigerant to provide a highly efficient gas turbine.

【0011】[0011]

【課題を解決するための手段】そこで本発明では、動翼
の冷媒流路とディスクの冷媒流路との間にチューブを介
し、該チューブの一端に鍔を形成する。また、動翼根元
のダブテール部に、前記チューブ鍔部の断面と同じ形状
をした溝をタービンの軸方向に形成する。
Therefore, according to the present invention, a flange is formed at one end of the tube between the refrigerant flow path of the moving blade and the refrigerant flow path of the disk via a tube. Further, a groove having the same shape as the cross section of the tube flange portion is formed in the dovetail portion at the root of the moving blade in the axial direction of the turbine.

【0012】組立ての際には、チューブをディスク流路
に挿入した状態で、鍔部を動翼根元の溝内に含ませなが
ら軸方向に移送させることにより、ダブテールのはめ合
わせ作業が可能となり、動翼とディスクの冷媒流路が接
続される。
At the time of assembling, while the tube is inserted into the disk flow path, the collar is transferred in the axial direction while being included in the groove at the root of the bucket, so that the dovetail can be fitted. The moving blade and the coolant flow path of the disk are connected.

【0013】また、前記動翼根元に形成した溝外側のフ
レームと、チューブの鍔との間にバネを装着し、チュー
ブ端面と動翼の流路端面をバネ力によって圧接すること
により、チューブと流路の接続部をシールできるほか、
チューブが動翼の動きに追従して変位するようになり、
動翼がディスクと相対的に変位してもシール面間にすき
間が形成される心配がなくなる。
Further, a spring is mounted between the frame outside the groove formed at the root of the moving blade and the flange of the tube, and the tube end face and the flow path end face of the moving blade are pressed against each other by a spring force, so that the tube is brought into contact with the tube. In addition to sealing the connection of the flow path,
The tube will be displaced following the movement of the bucket,
Even if the rotor blade is displaced relative to the disk, there is no fear that a gap is formed between the sealing surfaces.

【0014】一方、チューブとディスク流路間には、流
路内に含まれるチューブの外周部に球体の弾性変形を利
用したチューブシール等を形成することにより、チュー
ブシールが変位してもリークが極めて少ないシールがで
きる。
On the other hand, by forming a tube seal or the like utilizing the elastic deformation of a sphere on the outer peripheral portion of the tube included in the flow path between the tube and the disk flow path, a leak is generated even if the tube seal is displaced. Very few seals can be made.

【0015】[0015]

【発明の実施の形態】以下、図1により本発明の一実施
例を詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to FIG.

【0016】図1は本発明による鍔付のチューブを装着
したクローズド冷却ガスタービンロータの部分断面を示
しており、ディスク11,12、スペーサ13,14及
びディスタントピース15によって構成されたロータ1
0の外周に、動翼21及び22が装着されている。
FIG. 1 shows a partial cross section of a closed-cooled gas turbine rotor equipped with a flanged tube according to the present invention, in which a rotor 1 constituted by disks 11 and 12, spacers 13 and 14 and a distant piece 15.
The rotor blades 21 and 22 are mounted on the outer periphery of the zero.

【0017】動翼の内部には冷却流路23が形成されて
おり、冷媒の導入口24と導出口25が動翼の根元に形
成されている。一方、ロータの締結部には冷媒の供給流
路31と回収流路32が形成され、流路端部の流出孔3
3と流入孔34がディスクの外周に開口されており、該
流出口33,流入口34と、前記動翼根元の冷媒導入口
24,導出口25間にチューブ41,42が装着されて
いる。
A cooling channel 23 is formed inside the moving blade, and a refrigerant inlet 24 and a outlet 25 are formed at the root of the moving blade. On the other hand, a coolant supply flow path 31 and a recovery flow path 32 are formed at the fastening portion of the rotor, and the outflow holes 3 at the flow path end are formed.
3 and an inlet 34 are opened on the outer periphery of the disk, and tubes 41 and 42 are mounted between the outlet 33 and the inlet 34 and the refrigerant inlet 24 and outlet 25 at the root of the moving blade.

【0018】ロータの軸端から供給された冷媒は、矢印
91で示すように供給流路31,流出孔33,チューブ
41,導入口24を経て動翼の冷却流路23に供給さ
れ、冷却後は導出口25,チューブ42,流入孔34,
回収流路32を経て、軸端から機外に回収される。
The refrigerant supplied from the shaft end of the rotor is supplied to the cooling flow path 23 of the rotor blade through the supply flow path 31, the outflow hole 33, the tube 41, and the introduction port 24 as shown by an arrow 91. Is the outlet 25, the tube 42, the inflow hole 34,
Through the recovery channel 32, it is recovered outside the machine from the shaft end.

【0019】図2は、図1のA部拡大図であり、図3は
図2のA−A断面を示している。
FIG. 2 is an enlarged view of a portion A in FIG. 1, and FIG. 3 is a sectional view taken along the line AA in FIG.

【0020】チューブ41と42は全く同一形状をして
おり、チューブの一端に矩型状の鍔43が形成され、他
端には球状のチューブシール44が形成されている。
The tubes 41 and 42 have exactly the same shape. A rectangular flange 43 is formed at one end of the tube, and a spherical tube seal 44 is formed at the other end.

【0021】動翼の根元側には側面が波状のダブテール
26が形成されており、端部には片側が開口された溝5
1がタービンの軸方向に向けて形成されている。チュー
ブの鍔43の部分は同溝51の内部に収納されており、
溝外側のフレーム52と鍔43間に装着したバネ53の
バネ力によって、動翼の冷媒導入口24が開口された溝
51の内壁に圧接されている。本実施例では、バネは鍔
43の背面に、スポット溶接等の手段により固着されて
いる。
A dovetail 26 having a wavy side surface is formed at the root side of the rotor blade, and a groove 5 having an open end at one end is formed at the end.
1 are formed in the axial direction of the turbine. The portion of the flange 43 of the tube is housed inside the groove 51,
The refrigerant introduction port 24 of the moving blade is pressed against the inner wall of the opened groove 51 by the spring force of a spring 53 mounted between the frame 52 and the flange 43 outside the groove. In this embodiment, the spring is fixed to the back surface of the flange 43 by means such as spot welding.

【0022】一方、チューブ他端のチューブシール44
はディスク11外周の冷媒流出孔33に、シールの外側
球面が孔の内壁に接するように挿入されている。
On the other hand, a tube seal 44 at the other end of the tube.
Is inserted into the refrigerant outlet hole 33 on the outer periphery of the disk 11 such that the outer spherical surface of the seal contacts the inner wall of the hole.

【0023】動翼を組み立てる際には、先ずチューブ4
1,42をディスク外周の流入出孔33,34に挿入す
る。その後、チューブの鍔部が溝にはまるように露出高
さを調整し、動翼を軸方向に移送してダブテールをかん
合させる。リングワイヤ16は、軸方向の位置決めのた
めに装着されている。
When assembling the moving blade, first, the tube 4
1, 42 are inserted into the inflow / outflow holes 33, 34 on the outer periphery of the disk. After that, the exposure height is adjusted so that the flange of the tube fits into the groove, and the blade is transferred in the axial direction to engage the dovetail. The ring wire 16 is mounted for positioning in the axial direction.

【0024】動翼のダブテールとディスクのダブテール
溝は、両者の熱伸び差を吸収するためにすきまが形成さ
れており、回転で遠心力が作用したときに波の片側が接
するように設計されている。このため、ガスタービンの
起動,停止の過程で、動翼はディスクに対して半径方向
に相対変位する。
The dovetail of the rotor blade and the dovetail groove of the disk are formed with a clearance to absorb the difference in thermal expansion between the two, and are designed so that one side of the wave comes into contact when a centrifugal force is applied by rotation. I have. For this reason, in the process of starting and stopping the gas turbine, the moving blade is displaced relative to the disk in the radial direction.

【0025】しかし本構造によれば、チューブは動翼と
一体になって変位するようになるため、チューブと導入
出口間のシール面にすき間が形成されることはなく、ま
たディスク孔側の中部シールはチューブが孔の軸方向に
変位してもシール性能が変わることはない。
However, according to this structure, since the tube is displaced integrally with the rotor blade, no gap is formed on the sealing surface between the tube and the inlet / outlet, and the center of the disk hole is not formed. The sealing performance does not change even if the tube is displaced in the axial direction of the hole.

【0026】したがってチューブをディスク側に追従し
て変位する構造の場合のように、運転状況によって同シ
ール面間に間隙が生じるようなことはなく、リークを大
幅に低減できる。
Therefore, unlike the case of the structure in which the tube is displaced following the disk side, no gap is generated between the sealing surfaces depending on the operating condition, and the leak can be greatly reduced.

【0027】なお、ディスクの流路孔とチューブの芯ず
れによってチューブシールのシール面が片当たりしリー
クが発生する懸念があるが、チューブシール自身が間隙
45によって偏芯吸収機能をもっているほか、チューブ
の鍔外縁と溝51の側壁との間にすきま54が形成され
ているのと、溝の軸方向に段差が無いために、ロータの
周方向及び軸方向の動きが拘束されないため、芯ずれが
吸収され、リークが発生する心配は無い。
There is a fear that the seal surface of the tube seal may be partially hit due to the misalignment between the flow passage hole of the disk and the tube, thereby causing a leak. Since the gap 54 is formed between the outer edge of the flange and the side wall of the groove 51 and there is no step in the axial direction of the groove, the movement of the rotor in the circumferential direction and the axial direction is not restricted, so that misalignment is caused. There is no worry about absorption and leakage.

【0028】図4は、シール構造に対する他の実施例を
示している。この場合、前述した鍔の背面に装着したバ
ネの代わりにスペーサ61を装着し、シール面にシール
リング62を装着した。
FIG. 4 shows another embodiment of the seal structure. In this case, a spacer 61 was mounted instead of the spring mounted on the back surface of the above-mentioned flange, and a seal ring 62 was mounted on the sealing surface.

【0029】図5は図4のY−Y矢視図であり、スペー
サ61はU字形状をしている。また溝64の外側のフレ
ーム65は必ずしもディスク全幅に渡って形成する必要
はなく、例えばロータの構造上、供給経路と回収経路を
接続するチューブを同一形状にできない場合等のよう
に、中央部を切除しても何ら差し支え無い。
FIG. 5 is a view taken in the direction of arrows Y in FIG. 4, and the spacer 61 is U-shaped. Further, the frame 65 outside the groove 64 does not necessarily need to be formed over the entire width of the disk. For example, in the case where the tube connecting the supply path and the recovery path cannot be formed in the same shape due to the structure of the rotor, the center part is not formed. There is no problem with resection.

【0030】組立ては、チューブ60にシールリング6
2を載せて動翼を装着した後に、スペーサ61を軸方向
に圧入し、シールリングと動翼導入口のシール面66を
密着させる。この場合、動翼をディスクに組入れる際に
スペーサ部分にすきまがあるために、前実施例のように
バネ力による摩擦力が作用せず、動翼を移送し易い利点
がある。スペーサ61の厚みは、金属のシールリング6
2の復元量が少ないため、チューブの鍔63と動翼先端
溝64の内壁間に、シールリングの弾性変形を越えない
範囲のわずかなすきま66を形成するように板厚を調整
すれば良い。
Assembling is performed by attaching the seal ring 6 to the tube 60.
After mounting the bucket 2 and mounting the bucket, the spacer 61 is press-fitted in the axial direction, and the seal ring and the sealing surface 66 of the bucket introduction port are brought into close contact with each other. In this case, since there is a gap in the spacer portion when the moving blade is incorporated into the disk, there is an advantage that the moving blade is easily transferred without the frictional force due to the spring force acting as in the previous embodiment. The thickness of the spacer 61 is the thickness of the metal seal ring 6.
Since the amount of restoration is small, the plate thickness may be adjusted between the flange 63 of the tube and the inner wall of the blade tip groove 64 so as to form a small gap 66 that does not exceed the elastic deformation of the seal ring.

【0031】このすきま66は、ごくわずかな熱伸びを
除き、ガスタービンの運転状況によって設定値以上に開
くことはなく、安定したシール効果が得られるほか、動
翼がすきまによって拘束されないため、ダブテールはめ
合いのなじみを良くする効果も得られる。
Except for a very small thermal elongation, the clearance 66 does not open beyond a set value depending on the operating condition of the gas turbine, a stable sealing effect is obtained, and the dovetail is not restricted because the rotor blade is not restrained by the clearance. It also has the effect of improving the fit of the fit.

【0032】回転中にスペーサ61が抜け出す恐れがあ
るが、組立て後にスペーサの端部をかしめることによっ
てディスクを損傷することなく防止できる。また、動翼
を組み替える際には、敢えて先にスペーサを抜き取る必
要はなく、動翼を抜き取るだけで全体が分解できる。
While the spacer 61 may come off during rotation, it can be prevented without damaging the disk by caulking the end of the spacer after assembly. Also, when rearranging the moving blades, it is not necessary to first remove the spacer, and the whole can be disassembled simply by extracting the moving blades.

【0033】なお、以上に示した実施例は冷媒の種類に
関係なく適用でき、またクローズド冷却式のガスタービ
ンに限らず、従来の冷媒を回収しないガスタービンに対
しても適用できる。
The embodiment described above can be applied irrespective of the type of refrigerant, and can be applied not only to a closed cooling type gas turbine but also to a conventional gas turbine which does not collect refrigerant.

【0034】[0034]

【発明の効果】以上に説明したように、本発明によれ
ば、動翼根元の冷媒導入出口とディスクの流入出孔を鍔
付のチューブで接続し、該チューブを動翼に支持する構
造にすることによって接続部からの冷媒のリークを低減
し、冷媒消費の少ない、高効率のガスタービンが得られ
る。
As described above, according to the present invention, the refrigerant inlet / outlet at the base of the moving blade and the inlet / outlet of the disk are connected by a tube with a flange, and the tube is supported by the moving blade. By doing so, the leakage of the refrigerant from the connection portion is reduced, and a highly efficient gas turbine with low refrigerant consumption is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すガスタービンロータの
部分断面図。
FIG. 1 is a partial sectional view of a gas turbine rotor showing one embodiment of the present invention.

【図2】図1のA部拡大図。FIG. 2 is an enlarged view of a portion A in FIG.

【図3】図1のX−X矢視断面図。FIG. 3 is a sectional view taken along line XX of FIG. 1;

【図4】他の実施例を示す図1のA部拡大図。FIG. 4 is an enlarged view of a portion A in FIG. 1 showing another embodiment.

【図5】図4のY−Y断面図。FIG. 5 is a sectional view taken along line YY of FIG. 4;

【符号の説明】[Explanation of symbols]

10…ガスタービンロータ、11…ディスク、21…動
翼、24…導入口、25…導出口、31…冷媒供給流
路、32…冷媒回収流路、33…流出口、34…流入
口、40…静翼、41,42…チューブ、43…鍔、4
4…チューブシール、51,64…溝、52,65…フ
レーム、53…バネ、61…スペーサ、62…シールリ
ング。
DESCRIPTION OF SYMBOLS 10 ... Gas turbine rotor, 11 ... Disk, 21 ... Blade, 24 ... Inlet, 25 ... Outlet, 31 ... Refrigerant supply channel, 32 ... Refrigerant recovery channel, 33 ... Outlet, 34 ... Inlet, 40 ... Static wings, 41,42 ... Tube, 43 ... Tsubame, 4
4. Tube seal, 51, 64 groove, 52, 65 frame, 53 spring, 61 spacer, 62 seal ring.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮機,燃焼器,タービン等で構成され、
タービンの少なくとも初段動翼が冷媒を用いて冷却され
ており、該冷媒を、動翼を支持しているディスクに形成
された流路を経て供給もしくは回収するように構成され
たガスタービンにおいて、 前記ディスクに形成された流路と、前記動翼の冷媒導入
出口の間にチューブを介し、該チューブの一端に鍔を形
成するとともに、動翼根元に前記チューブの鍔と同一断
面形状の溝に挿入して、動翼とディスクの冷媒流路を接
続するようにしたことを特徴とするガスタービン。
A compressor, a combustor, a turbine, etc.,
A gas turbine, wherein at least the first stage rotor blades of the turbine are cooled using a refrigerant, and the refrigerant is supplied or recovered through a flow path formed in a disk supporting the rotor blades, A flange is formed at one end of the tube via a tube between the flow path formed in the disk and the refrigerant introduction / exit of the moving blade, and is inserted into a groove having the same cross-sectional shape as the flange of the tube at the root of the moving blade. A gas turbine wherein the rotor blades are connected to the refrigerant flow path of the disk.
【請求項2】前記チューブの一端に形成した鍔の背面
と、前記動翼の根元に形成した溝外側のフレームとの間
にバネを装着したことを特徴とする請求項1記載のガス
タービン。
2. The gas turbine according to claim 1, wherein a spring is mounted between a back surface of a flange formed at one end of the tube and a frame outside a groove formed at a root of the rotor blade.
【請求項3】前記チューブの一端に形成した鍔と前記動
翼の冷媒導入出口との間にシール部材を介するととも
に、該鍔の背面と前記動翼の根元に形成した溝外側のフ
レームとの間にスペーサを装着したことを特徴とする請
求項1記載のガスタービン。
3. A seal member is interposed between a flange formed at one end of the tube and a refrigerant inlet / outlet of the moving blade, and a back surface of the flange and a frame outside a groove formed at a root of the moving blade. The gas turbine according to claim 1, wherein a spacer is mounted between the gas turbines.
JP07916899A 1999-03-24 1999-03-24 gas turbine Expired - Lifetime JP3952629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07916899A JP3952629B2 (en) 1999-03-24 1999-03-24 gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07916899A JP3952629B2 (en) 1999-03-24 1999-03-24 gas turbine

Publications (3)

Publication Number Publication Date
JP2000274261A true JP2000274261A (en) 2000-10-03
JP2000274261A5 JP2000274261A5 (en) 2005-08-04
JP3952629B2 JP3952629B2 (en) 2007-08-01

Family

ID=13682452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07916899A Expired - Lifetime JP3952629B2 (en) 1999-03-24 1999-03-24 gas turbine

Country Status (1)

Country Link
JP (1) JP3952629B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769867B2 (en) 2001-09-10 2004-08-03 Mitsubishi Heavy Industries, Ltd. Joint structure of coolant passage, tube seal, and gas turbine
FR2883599A1 (en) * 2005-03-23 2006-09-29 Snecma Moteurs Sa CONNECTION DEVICE BETWEEN A COOLING AIR PASSING ENCLOSURE AND A DISTRIBUTOR'S TANK IN A TURBOMACHINE
JP2009185810A (en) * 2008-02-04 2009-08-20 General Electric Co <Ge> System and method for internally cooling wheel of steam turbine
JP2011085036A (en) * 2009-10-14 2011-04-28 Kawasaki Heavy Ind Ltd Seal structure for turbine
JP2012062895A (en) * 2011-10-31 2012-03-29 Kawasaki Heavy Ind Ltd Seal structure for turbine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769867B2 (en) 2001-09-10 2004-08-03 Mitsubishi Heavy Industries, Ltd. Joint structure of coolant passage, tube seal, and gas turbine
FR2883599A1 (en) * 2005-03-23 2006-09-29 Snecma Moteurs Sa CONNECTION DEVICE BETWEEN A COOLING AIR PASSING ENCLOSURE AND A DISTRIBUTOR'S TANK IN A TURBOMACHINE
US7540707B2 (en) 2005-03-23 2009-06-02 Snecma Link device between an enclosure for passing cooling air and a stator nozzle in a turbomachine
US7625175B2 (en) 2005-03-23 2009-12-01 Snecma Link device between an enclosure for passing cooling air and a stator nozzle in a turbomachine
JP2009185810A (en) * 2008-02-04 2009-08-20 General Electric Co <Ge> System and method for internally cooling wheel of steam turbine
JP2011085036A (en) * 2009-10-14 2011-04-28 Kawasaki Heavy Ind Ltd Seal structure for turbine
EP2312124A3 (en) * 2009-10-14 2011-11-16 Kawasaki Jukogyo Kabushiki Kaisha Sealing arrangement for use with gas turbine engine
US8562294B2 (en) 2009-10-14 2013-10-22 Kawasaki Jukogyo Kabushiki Kaisha Sealing arrangement for use with gas turbine engine
JP2012062895A (en) * 2011-10-31 2012-03-29 Kawasaki Heavy Ind Ltd Seal structure for turbine

Also Published As

Publication number Publication date
JP3952629B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP5210804B2 (en) Sealing the rotor ring in the turbine stage
CN101845996B (en) Device and system for reducing second air flow in gas turbine
JP4130321B2 (en) Gas turbine engine components
JP3105277B2 (en) Axial gas turbine
US6537023B1 (en) Supplemental seal for the chordal hinge seal in a gas turbine
US8118548B2 (en) Shroud for a turbomachine
US9145788B2 (en) Retrofittable interstage angled seal
US7963746B2 (en) Turbine blade and gas turbine equipped with a turbine blade
JP4494658B2 (en) Gas turbine stationary blade shroud
JPH04252824A (en) Sealing assembly for division type turbine engine structure
US6341938B1 (en) Methods and apparatus for minimizing thermal gradients within turbine shrouds
JP2019052641A (en) Turbocharger
JPH1181910A (en) Sealing device between bolt and bolt hole for fastening within gas turbine disk
JPH06102989B2 (en) Gap seal structure between adjacent circumferential segments of turbine nozzle and shroud
JP4248870B2 (en) Auxiliary seal for string hinge seal in gas turbine
JP2003222030A (en) Supplemental seal for chordal hinge seal in gas turbine and method of installation
US5074111A (en) Seal plate with concentrate annular segments for a gas turbine engine
JP2000274261A (en) Gas turbine
JP3970156B2 (en) Turbine blade ring structure
JP3901828B2 (en) Steam cooled gas turbine
JP2013209981A (en) Seal structure and turbine device having the same
JP2600955B2 (en) Double-flow steam turbine
JP2000045705A (en) Gas turbine
JPH0660702U (en) Gas turbine split ring seal structure
JPH09329003A (en) Turbine shroud attached with a gas sealing device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term