JP2000266974A - Tensile strength body and spacer for optical fiber cable, and manufacture thereof - Google Patents

Tensile strength body and spacer for optical fiber cable, and manufacture thereof

Info

Publication number
JP2000266974A
JP2000266974A JP11075432A JP7543299A JP2000266974A JP 2000266974 A JP2000266974 A JP 2000266974A JP 11075432 A JP11075432 A JP 11075432A JP 7543299 A JP7543299 A JP 7543299A JP 2000266974 A JP2000266974 A JP 2000266974A
Authority
JP
Japan
Prior art keywords
spacer
coating layer
fiber
optical fiber
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11075432A
Other languages
Japanese (ja)
Other versions
JP3502287B2 (en
Inventor
Akira Hidaka
章 日高
Takakiyo Kato
孝清 加藤
Toku Ishii
徳 石井
Hideyuki Iwata
秀行 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Ube Exsymo Co Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Ube Nitto Kasei Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP07543299A priority Critical patent/JP3502287B2/en
Publication of JP2000266974A publication Critical patent/JP2000266974A/en
Application granted granted Critical
Publication of JP3502287B2 publication Critical patent/JP3502287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid stress lowering at the time of 0.2% elongation. SOLUTION: This spacer 10 is provided with a tensile strength body 15 arranged in its central part, a first precoat layer 16, a second precoat layer 17 and a third precoat layer 18 provided respectively in an outer circumference of the tensile strength body 15, and a spacer main body coating 20 provided in an outer circumference of the third layer 18. The tensile strength body 15 has a fiber-reinforced synthetic resin rod 12, and a primary coating layer 14 for coating an outer circumference of the rod 12. A PBO(poly-benzbis-oxazole) fiber having a high tensile elastic modulus is used as a reinforcing fiber in the rod 12. A volume content of the PBO reinforcing fiber is made 50% or more. A cross-sectional area of the precoat layers 16, 17, 18 is made larger than that of the fiber-reinforced synthetic resin rod 12. An elastic modulus of the spacer 10 keeps 80% or more of the tensile elastic modulus inherent to the PBO reinforcing fiber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバケーブ
ル用抗張力体並びにスペーサおよびその製造方法に関
し、とりわけ、スペーサの引張性能を向上させる技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strength member for an optical fiber cable, a spacer, and a method of manufacturing the same, and more particularly, to a technique for improving the tensile performance of the spacer.

【0002】[0002]

【従来の技術】光ファイバケーブルは、作業上の安全を
確保するため、あるいは、高圧電力線付近での電界,磁
界の影響を受けないようにするため、ケーブル部材の非
金属(ノンメタリック)化が求められている。
2. Description of the Related Art Optical fiber cables are required to be made of non-metallic (non-metallic) cable members in order to ensure work safety or to prevent the effects of electric and magnetic fields near high-voltage power lines. It has been demanded.

【0003】また、鋼線等の比重の大きい金属製の抗張
力体に代えて、繊維強化合成樹脂等のノンメタリック製
抗張力体とすれば、全体が軽量化され、ケーブルの敷設
長を伸ばすことが可能となり、工事の省力化、工費の削
減にも寄与する。
[0003] If a non-metallic tensile strength member such as a fiber reinforced synthetic resin is used instead of a metal tensile strength member having a large specific gravity such as a steel wire, the whole can be reduced in weight and the cable laying length can be extended. It will be possible to save labor and reduce construction costs.

【0004】このようなノンメタリックケーブルの抗張
力体には、高度の引張特性が要求されるため、15,0
00 kg/mm2以上の引張弾性率を有するポリベンツビ
スオキサゾール(以下、PBOと称す)繊維を補強繊維
とする繊維強化合成樹脂ロッド(以下、FRPないしは
PFRPということがある)が適している。
[0004] Since the tensile strength of such a non-metallic cable is required to have a high tensile property, the strength of the non-metallic cable is increased to 15.0%.
A fiber-reinforced synthetic resin rod (hereinafter sometimes referred to as FRP or PFRP) using polybenzbisoxazole (hereinafter, referred to as PBO) fibers having a tensile modulus of 00 kg / mm 2 or more as reinforcement fibers is suitable.

【0005】[0005]

【発明が解決しようとする課題】しかし、PFRPを抗
張力体とするスペーサにおいて、軽量化については、大
幅に改善され、ケーブル敷設の作業性は向上したが、抗
張力性すなわち引張性能は、PBO繊維の有する引張弾
性率から計算される引張性能と比較して、低下する傾向
にあった。
However, in the spacer using PFRP as the tensile strength member, the weight reduction has been greatly improved, and the workability of laying the cable has been improved. However, the tensile strength, that is, the tensile performance, is lower than that of the PBO fiber. As compared with the tensile performance calculated from the tensile modulus of the rubber composition, there was a tendency to decrease.

【0006】この原因として、抗張力体の外周に溝形状
精度を確保するため予備被覆を施す際あるいは、溝を形
成すべくスペーサ本体被覆を施す際に、溶融押出された
被覆樹脂の冷却固化に伴う熱収縮により、抗張力体の長
手方向に亘って、圧縮力が作用し、PFRPが圧縮応力
を受けていることが考えられる。
The reason for this is that when the outer periphery of the tensile strength member is preliminarily coated to secure the groove shape accuracy, or when the spacer body is coated to form the groove, the melt-extruded coating resin is cooled and solidified. It is considered that a compressive force acts on the tensile member in the longitudinal direction due to the heat shrinkage, and the PFRP receives a compressive stress.

【0007】つまり、従来においては、PFRPロッド
を抗張力体として用いても、光ファイバケーブルの重要
な仕様である、0.2%伸張時の応力が低下し、光ファ
イバを有効に保護できないという問題があった。
That is, conventionally, even if a PFRP rod is used as a tensile strength member, the stress at the time of 0.2% elongation, which is an important specification of an optical fiber cable, is reduced, and the optical fiber cannot be effectively protected. was there.

【0008】そこで、PFRP線を抗張力体とする光フ
ァイバケーブル用スペーサにおいて、引張性能に優れた
ものを提供することを目的として鋭意研究し本発明を完
成した。
Accordingly, the present inventors have made intensive studies to provide a spacer for an optical fiber cable using a PFRP wire as a strength member and having excellent tensile performance, and completed the present invention.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、ポリベンツビスオキサゾール繊維からな
る補強繊維に熱硬化性樹脂を含浸,硬化させた繊維強化
合成樹脂ロッドの外周に、予備被覆層を形成した光ファ
イバケーブル用抗張力体において、前記予備被覆層の断
面積が前記繊維強化合成樹脂ロッドの断面積よりも大き
く、前記補強繊維の体積含有率が50%以上で、かつ、
引張弾性率が前記補強繊維固有の引張弾性率の80%以
上を保持するようにした。前記繊維強化合成樹脂ロッド
は、前記補強繊維に前記熱硬化性樹脂を含浸し、その外
周に熱可塑性樹脂からなる一次被覆層を形成した後に、
前記熱硬化性樹脂を硬化させたものとすることができ
る。また、本発明は、光ファイバケーブル用スペーサに
おいて、ポリベンツビスオキサゾール繊維からなる補強
繊維に熱硬化性樹脂を含浸,硬化させた繊維強化合成樹
脂ロッドの外周に、予備被覆層を形成した請求項1又は
2記載の要件を満たす抗張力体の外周にスペーサ本体部
を形成する合成樹脂被覆を施すようにした。さらに、本
発明は、ポリベンツビスオキサゾール繊維からなる補強
繊維に熱硬化性樹脂を含浸,硬化させた繊維強化合成樹
脂ロッドの外周に、予備被覆層を形成した後に、前記予
備被覆層の外周にスペーサ本体部を形成する合成樹脂被
覆を施すことを特徴とする光ファイバケーブル用スペー
サの製造方法において、前記予備被覆層の断面積をA
(mm2)とし、同予備被覆層の単位面積当たりの圧縮
応力をα(kgf/mm2)としたときに、α×Aで求
められる前記繊維強化合成樹脂ロッドの長手方向に作用
する圧縮強力Fの1/4以上のテンションTが加わるよ
うにして前記予備被覆層を形成するようにした。また、
この光ファイバケーブル用スペーサの製造方法におい
て、前記テンションTが、T≧0.5Aの関係を満足す
るようにして、前記予備被覆層を形成することができ
る。さらに、本発明の光ファイバケーブル用スペーサの
製造方法では、前記スペーサ本体部形成用の合成樹脂被
覆を施す際に、前記予備被覆層の外周にダイを回転させ
ながら溶融状態の樹脂を押出すことができる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a fiber reinforced synthetic resin rod in which a reinforcing fiber made of polybenzbisoxazole fiber is impregnated with a thermosetting resin and cured. In the tensile strength member for an optical fiber cable in which a coating layer is formed, a cross-sectional area of the preliminary coating layer is larger than a cross-sectional area of the fiber-reinforced synthetic resin rod, a volume content of the reinforcing fiber is 50% or more, and
The tensile elasticity was maintained at 80% or more of the tensile elasticity inherent in the reinforcing fiber. After the fiber-reinforced synthetic resin rod is impregnated with the thermosetting resin into the reinforcing fibers and forms a primary coating layer made of a thermoplastic resin on the outer periphery thereof,
The thermosetting resin may be cured. Further, in the present invention, in a spacer for an optical fiber cable, a pre-coating layer is formed on an outer periphery of a fiber-reinforced synthetic resin rod obtained by impregnating and curing a thermosetting resin in a reinforcing fiber made of polybenzbisoxazole fiber. The outer periphery of the tensile strength member satisfying the requirements described in 1 or 2 is coated with a synthetic resin for forming a spacer main body. Further, the present invention provides a method for forming a pre-coating layer on the outer periphery of a fiber-reinforced synthetic resin rod in which a thermosetting resin is impregnated and cured with a reinforcing fiber made of polybenzbisoxazole fiber, and then forming the pre-coating layer on the outer periphery of the pre-coating layer. In a method for manufacturing a spacer for an optical fiber cable, a synthetic resin coating for forming a spacer main body portion is applied.
(Mm 2 ), and when the compressive stress per unit area of the preliminary coating layer is α (kgf / mm 2 ), the compressive strength acting in the longitudinal direction of the fiber reinforced synthetic resin rod determined by α × A The preliminary coating layer was formed such that a tension T of 1/4 or more of F was applied. Also,
In this method of manufacturing a spacer for an optical fiber cable, the pre-coating layer can be formed such that the tension T satisfies the relationship of T ≧ 0.5A. Further, in the method of manufacturing a spacer for an optical fiber cable according to the present invention, when applying the synthetic resin coating for forming the spacer main body portion, the molten resin is extruded while rotating a die around the preliminary coating layer. Can be.

【0010】[0010]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。図1は、本発明にかかる抗張力体を用い
た光ファイバケーブル用スペーサの一実施例を示してい
る。同図に示した光ファイバケーブル用スペーサ10
は、中央に配置された抗張力体15と、この抗張力体1
5の外周に設けられた第一予備被覆層16,第二予備被
覆層17,第三予備被覆層18および第三予備被覆層1
8の外周に設けられたスペーサ本体被覆20とを備えて
いる。
Embodiments of the present invention will be described below. FIG. 1 shows an embodiment of an optical fiber cable spacer using the tensile strength member according to the present invention. The optical fiber cable spacer 10 shown in FIG.
Is a tensile member 15 arranged at the center, and the tensile member 1
5, the first pre-coating layer 16, the second pre-coating layer 17, the third pre-coating layer 18, and the third pre-coating layer 1
8 and a spacer main body covering 20 provided on the outer periphery of the main body 8.

【0011】抗張力体15は、繊維強化合成樹脂ロッド
12と、このロッド12の外周を被覆する一次被覆層1
4とを有している。繊維強化合成樹脂ロッド12は、補
強繊維に、高引張弾性率を有するポリベンツビスオキサ
ゾール(PBO)繊維を用いている。
The tensile strength member 15 includes a fiber-reinforced synthetic resin rod 12 and a primary coating layer 1 covering the outer periphery of the rod 12.
And 4. The fiber reinforced synthetic resin rod 12 uses a polybenzbisoxazole (PBO) fiber having a high tensile modulus as a reinforcing fiber.

【0012】PBO繊維を用いることによって、PBO
繊維が高引張弾性率を有しているので、所要の繊維断面
積が少なくて済み、その結果、FRPの細径化、軽量化
が図られるからである。
By using PBO fibers, PBO
Because the fiber has a high tensile modulus, the required fiber cross-sectional area can be reduced, and as a result, the diameter and weight of the FRP can be reduced.

【0013】また、補強繊維を結着するマトリックス樹
脂には、熱硬化性樹脂を用い、熱硬化性樹脂としては、
不飽和ポリエステル樹脂、ビニルエステル樹脂が一般的
であるが、エポキシ樹脂、フェノール樹脂などであって
も良く、これらの樹脂に過酸化物等の触媒を添加して、
PBO補強繊維に含浸される。
Further, a thermosetting resin is used as the matrix resin for binding the reinforcing fibers, and the thermosetting resin is
Unsaturated polyester resin, vinyl ester resin is generally used, but epoxy resin, phenol resin, etc. may be used, and a catalyst such as peroxide is added to these resins,
Impregnated into PBO reinforcing fibers.

【0014】PBO補強繊維の体積含有率は、50%未
満の場合には、要求性能を満足することができないの
で、50%以上にする必要がある。なお、マトリックス
樹脂として、ビニルエステル樹脂を使用すれば、FRP
の耐熱性が図られる。
If the volume content of the PBO reinforcing fiber is less than 50%, the required performance cannot be satisfied, so it must be at least 50%. If a vinyl ester resin is used as the matrix resin, FRP
Heat resistance.

【0015】PBO補強繊維に熱硬化性樹脂を含浸し、
所定の外径に絞り成形した後、溶融状熱可塑性樹脂で環
状に被覆して、一次被覆層14を設けた未硬化状FRP
ロッドとし、その後に内部の熱硬化性樹脂を硬化させる
ことで、繊維強化合成樹脂ロッド12を有する抗張力体
15とすることができる。
Impregnating the PBO reinforcing fiber with a thermosetting resin,
After being drawn and formed to a predetermined outer diameter, the uncured FRP coated with a molten thermoplastic resin in an annular shape and provided with a primary coating layer 14
By forming a rod and then curing the thermosetting resin inside, a tensile strength member 15 having a fiber-reinforced synthetic resin rod 12 can be obtained.

【0016】なお、この場合、繊維強化合成樹脂ロッド
12の外周に一次被覆層14を必ずしも設ける必要はな
く、被覆層14を設けない繊維強化合成樹脂ロッド12
を抗張力体15として用いることも可能である。
In this case, it is not always necessary to provide the primary coating layer 14 on the outer periphery of the fiber reinforced synthetic resin rod 12, and the fiber reinforced synthetic resin rod 12 without the coating layer 14 is not required.
Can be used as the tensile member 15.

【0017】一次被覆層14を設ける場合には、熱可塑
性樹脂は、後のスペーサ本体被覆20に先立ち、螺旋状
溝の形状精度を確保するために施される予備被覆層1
6,17,18の熱可塑性樹脂と相溶性を有するものを
選択して使用され、被覆厚みは概ね、0.5〜1.5m
mである。
In the case where the primary coating layer 14 is provided, the thermoplastic resin is applied to the preliminary coating layer 1 to be applied before the subsequent spacer body coating 20 in order to secure the shape accuracy of the spiral groove.
6, 17 and 18 having compatibility with the thermoplastic resin are selected and used, and the coating thickness is generally 0.5 to 1.5 m.
m.

【0018】被覆厚みが、0.5mm未満では、ピンホ
ール等で内部の未硬化状樹脂が漏出する危惧があり、
1.5mmを超えると、一次被覆層形成時の熱で部分的
に硬化して、FRPの物性が低下するなどの問題があ
る。
If the coating thickness is less than 0.5 mm, there is a concern that the uncured resin inside may leak out through pinholes and the like,
If it exceeds 1.5 mm, there is a problem that the material is partially cured by heat at the time of forming the primary coating layer, and the physical properties of FRP are reduced.

【0019】また、第三予備被覆層18と、スペーサ本
体被覆20とは、強度保持のため相互に融着させる必要
があり、この点から、相互に相溶性を有するものを選択
する。
Further, the third preliminary coating layer 18 and the spacer main body coating 20 need to be fused to each other in order to maintain strength. From this point, those having mutual compatibility are selected.

【0020】一次被覆層14には、直鎖状低密度ポリエ
チレン(LLDPE)等がPFRPの界面においてアン
カー接着し易い点で好適であり、予備被覆層16〜1
8、スペーサ本体被覆20には、低温物性に優れること
から高密度ポリエチレン(以下HDPEと称す)等のポ
リエチレン系樹脂が一般的に奨用される。
The primary coating layer 14 is preferably made of linear low-density polyethylene (LLDPE) or the like because it easily adheres to the anchor at the PFRP interface.
8. For the spacer body coating 20, a polyethylene resin such as high-density polyethylene (hereinafter referred to as HDPE) is generally recommended because of its excellent low-temperature properties.

【0021】予備被覆層16,17,18の合計断面積
は、繊維強化合成樹脂ロッド12の断面積よりも大きく
する必要がある。この理由は、予備被覆層18の外径
は、スペーサ本体被覆20の溝深さの関係から決定され
る一方、繊維強化合成樹脂ロッド12の断面積が大にな
ると、剛性が大きくなりすぎて可撓性が乏しくなり、か
つコストの上昇を来すので、出来るだけ予備被覆層の比
率を大とするからである。
The total cross-sectional area of the pre-coating layers 16, 17, 18 needs to be larger than the cross-sectional area of the fiber-reinforced synthetic resin rod 12. The reason is that the outer diameter of the pre-coating layer 18 is determined from the relationship of the groove depth of the spacer main body coating 20, while if the cross-sectional area of the fiber-reinforced synthetic resin rod 12 becomes large, the rigidity becomes too large. This is because the ratio of the pre-coating layer is increased as much as possible because the flexibility becomes poor and the cost increases.

【0022】スペーサ本体被覆20は、第三予備被覆層
18の外周に、溶融状の熱可塑性樹脂を押出して、冷却
固化することにより形成される。このとき、ダイを回転
させながら溶融状の熱可塑性樹脂を押出すと、スペーサ
本体被覆20の外周に光ファイバ収納用の螺旋溝22を
複数形成することができる。
The spacer main body coating 20 is formed by extruding a molten thermoplastic resin on the outer periphery of the third preliminary coating layer 18 and solidifying it by cooling. At this time, if the molten thermoplastic resin is extruded while rotating the die, a plurality of spiral grooves 22 for accommodating optical fibers can be formed on the outer periphery of the spacer body coating 20.

【0023】また、本発明にかかる光ファイバケーブル
用スペーサの製造方法では、予備被覆層16,17,1
8の合計断面積をA(mm2)とし、同予備被覆層1
6,17,18の単位面積当たりの圧縮応力をα(kg
f/mm2)としたときに、α×Aで求められる繊維強
化合成樹脂ロッド12の長手方向に作用する圧縮強力F
の1/4以上のテンションTが加わるようにして予備被
覆層16,17,18を形成する必要がある。
In the method for manufacturing a spacer for an optical fiber cable according to the present invention, the pre-coating layers 16, 17, 1
8 is A (mm 2 ), and the preliminary coating layer 1
Α, (kg)
f / mm 2 ), the compressive strength F acting in the longitudinal direction of the fiber-reinforced synthetic resin rod 12 determined by α × A
It is necessary to form the preliminary coating layers 16, 17, 18 so that the tension T of 1 / or more is applied.

【0024】この理由は、予備被覆層16,17,18
に加わるテンションTが、繊維強化合成樹脂ロッド12
の長手方向に作用する圧縮強力Fの1/4未満になる
と、製造された光ファイバケーブル用スペーサの引張弾
性率が、PBO繊維固有の弾性率の80%以上を保持す
ることができなくなるからである。
The reason for this is that the preliminary coating layers 16, 17, 18
Is applied to the fiber reinforced synthetic resin rod 12
If the compressive strength F acting in the longitudinal direction is less than 1/4, the tensile elastic modulus of the manufactured optical fiber cable spacer cannot maintain 80% or more of the elastic modulus inherent in the PBO fiber. is there.

【0025】また、本発明の光ファイバケーブル用スペ
ーサの製造方法において、前記テンションTが、T≧
0.5Aの関係を満足するようにして、予備被覆層1
6,17,18を形成することが望ましい。
Further, in the method of manufacturing a spacer for an optical fiber cable according to the present invention, the tension T is such that T ≧ T.
0.5A so as to satisfy the relation of 0.5A.
It is desirable to form 6,17,18.

【0026】このようなテンションに設定すると、ポリ
エチレン等の結晶性熱可塑性樹脂により予備被覆層を形
成するに際して予備被覆層からの熱による影響、該予備
被覆層の冷却固化による収縮力等の影響を排除できる。
When such a tension is set, the influence of heat from the pre-coating layer when forming the pre-coating layer with a crystalline thermoplastic resin such as polyethylene and the effect of shrinkage force due to cooling and solidification of the pre-coating layer are reduced. Can be eliminated.

【0027】以下に、本発明の内容をより具体的な例に
より説明する。具体例1. PBO繊維(東洋紡績(株)製 ザイロン)
に過酸化物系触媒を含むビニルエステル樹脂(三井化学
(株)製エスターH8100)を含浸し、これを絞りノ
ズルにより、PBO繊維の含有率が約60%で、外径が
φ4.8mmになるように絞ることで未硬化状ロッドを
得た。
Hereinafter, the contents of the present invention will be described with more specific examples. Specific example 1. PBO fiber (Zylon manufactured by Toyobo Co., Ltd.)
Ester resin containing peroxide-based catalysts (Mitsui Chemicals)
The product was impregnated with Estar H8100 (manufactured by Co., Ltd.) and squeezed with a squeezing nozzle so that the PBO fiber content was about 60% and the outer diameter was 4.8 mm to obtain an uncured rod.

【0028】これを押出機のクロスヘッドに導入し、そ
の外周に溶融状のLLDPE樹脂(日本ユニカー(株)
製NUCG5350)を、外径がφ6mmとなるように
線速度6m/minにて押出被覆して一次被覆層14を
形成し、その後、加熱硬化槽に導き硬化させて、繊維強
化合成樹脂ロッド12を有する抗張力体15を得た。
This was introduced into a crosshead of an extruder, and a molten LLDPE resin (Nippon Unicar Co., Ltd.)
NUCG5350) is extruded at a linear velocity of 6 m / min so as to have an outer diameter of 6 mm to form a primary coating layer 14, which is then guided to a heat-curing tank and cured to form a fiber-reinforced synthetic resin rod 12. A tensile strength body 15 having the following was obtained.

【0029】次にこの、この一次被覆層14を有する
抗張力体15を押出機のクロスヘッドに導入し、樹脂被
覆断面積の単位当たりのテンションが、0.51kg/
mm 2となるように、引取の際に押出機の前後で荷重を
かけた。
Next, this primary coating layer 14 is provided.
The tensile member 15 is introduced into the crosshead of the extruder, and the resin coating is applied.
The tension per unit of the cross-sectional area is 0.51 kg /
mm TwoSo that the load before and after the extruder is
I took it.

【0030】そして、この高テンションを加えた状態
で、溶融状のHDPE樹脂(日本ポリオレフィン(株)
製 KKZ51C)で被覆して、厚みが1.5mmの第
一予備被覆層16を形成し、約15℃の水を冷媒とする
長さ1mの冷却槽に通して、樹脂を固化させることでφ
9mmの丸棒を得た。
Then, in a state where the high tension is applied, a molten HDPE resin (Nippon Polyolefin Co., Ltd.)
KKZ51C) to form a first pre-coating layer 16 having a thickness of 1.5 mm, and passing it through a cooling tank having a length of 1 m using water at a temperature of about 15 ° C. as a refrigerant to solidify the resin.
A 9 mm round bar was obtained.

【0031】引続いて、同様な方法で、この丸棒にテン
ションが樹脂被覆断面積当り0.51kg/mm2とな
る条件で、再度HDPE樹脂の第二予備被覆層17を形
成し、外径をφ12mmとした。
Subsequently, a second pre-coating layer 17 of HDPE resin is again formed on the round bar under the condition that the tension is 0.51 kg / mm 2 per resin-coated cross-sectional area by the same method. Was set to φ12 mm.

【0032】この場合、第一予備被覆層16の断面積A
は、35.34mm2であり、この第一予備被覆層16
の圧縮応力αが、1.18kg/mm2なので、繊維強
化合成樹脂ロッド12に作用する圧縮強力F(=α×
A)は、41.7kgとなり、この圧縮強力Fに対する
1/4以上のテンションとして、18.2kgを設定し
た。
In this case, the sectional area A of the first preliminary coating layer 16
Is 35.34 mm 2 and this first pre-coating layer 16
Is 1.18 kg / mm 2 , the compressive strength F acting on the fiber reinforced synthetic resin rod 12 (= α ×
A) was 41.7 kg, and 18.2 kg was set as a tension of 1/4 or more of the compressive strength F.

【0033】なお、このような圧縮強力Fとテンション
Tとの関係は、第二予備被覆層17を形成する際にも同
じことが言える。また、本具体例の場合には、繊維強化
合成樹脂ロッド12の断面積が18.1mm2なので、
断面積が49.48mm2の第二予備被覆層16を形成
すると、予備被覆層の断面積の総和がロッド12の断面
積よりも大きくなる。
The relationship between the compressive strength F and the tension T is the same when the second preliminary coating layer 17 is formed. In the case of this specific example, since the cross-sectional area of the fiber-reinforced synthetic resin rod 12 is 18.1 mm 2 ,
When the second pre-coating layer 16 having a cross-sectional area of 49.48 mm 2 is formed, the sum of the cross-sectional areas of the pre-coating layers becomes larger than the cross-sectional area of the rod 12.

【0034】さらに、この丸棒物をスペーサ本体被覆2
0の螺旋部被覆用回転ダイに導き、同様のテンションの
条件でHDPE樹脂を回転させながら押出して、リブ部
の径がφ17mmで、溝数16,溝深さ2.6mmの3
00心タイプのインダクションフリー(IF)スペーサ
10を得た。
Further, this round bar is coated with a spacer body coating 2.
0, and extruded while rotating the HDPE resin under the same tension conditions. The diameter of the rib was 17 mm, the number of grooves was 16, and the groove depth was 2.6 mm.
A 100-core induction-free (IF) spacer 10 was obtained.

【0035】このスペーサ10の引張り性能を測定した
ところ、0.2%伸張時の応力は390kgであった。
このスペーサ10の抗張力体に用いたPBO繊維単体の
0.2%伸張時の応力値は482kgであることから、
応力値の比較により得られたIFスペーサの性能保持率
は80.9%であった。
When the tensile performance of the spacer 10 was measured, the stress at 0.2% elongation was 390 kg.
Since the stress value at the time of 0.2% elongation of the PBO fiber used alone as the strength member of the spacer 10 is 482 kg,
The performance retention of the IF spacer obtained by comparing the stress values was 80.9%.

【0036】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると10800kg/mm2であっ
た。
The apparent tensile modulus was calculated from the stress at 0.2% elongation and found to be 10800 kg / mm 2 .

【0037】具体例2.PBO繊維の含有率が68%、
繊維強化合成樹脂ロッド12の外径をφ4.6mmに変
更したこと以外は、具体例1と同様の条件により、LL
DPE樹脂でφ6mmの一次被覆層14を設けた抗張力
体15を作成した。
Specific Example 2 68% PBO fiber content,
LL was obtained under the same conditions as in Example 1 except that the outer diameter of the fiber-reinforced synthetic resin rod 12 was changed to φ4.6 mm.
A tensile strength member 15 provided with a primary coating layer 14 having a diameter of 6 mm was made of DPE resin.

【0038】この抗張力体15に具体例1と同様に、被
覆樹脂の単位断面積当たりのテンションが、0.51k
g/mm2となる条件で、φ9mm,φ12mmの順に
逐次第一および第二予備被覆層16,17を形成し、さ
らに、同条件のテンションで螺旋被覆を施して、16
溝,φ17mmのIFスペーサを得た。
As in the first embodiment, the tension member 15 has a tension per unit sectional area of 0.51 k of the coating resin.
Under the condition of g / mm 2 , the first and second preliminary coating layers 16 and 17 are sequentially formed in the order of φ9 mm and φ12 mm.
An IF spacer having a groove and a diameter of 17 mm was obtained.

【0039】このスペーサの引張性能を測定したとこ
ろ、0.2%伸張時の応力は400kgであり、PBO
繊維単体の0.2%伸張時の応力値との比較から、引張
性能保持率は83.0%と算出された。
When the tensile performance of this spacer was measured, the stress at the time of 0.2% elongation was 400 kg.
The tensile performance retention was calculated to be 83.0% from a comparison with the stress value of the single fiber at the time of 0.2% elongation.

【0040】また、この値からスペーサの見掛けの引張
弾性率を算出すると11100kg/mm2であった。
The apparent tensile modulus of the spacer was calculated from this value to be 11,100 kg / mm 2 .

【0041】具体例3.具体例1と同様の条件にて、P
BO繊維の含有率が60%、繊維強化合成樹脂ロッド1
2の外径がφ4.8mm、LLDPE樹脂でφ6mmの
一次被覆層14を設けた抗張力体15を作成した。
Specific Example 3 Under the same conditions as in Example 1, P
BO fiber content 60%, fiber reinforced synthetic resin rod 1
A tensile strength member 15 having an outer diameter of φ4.8 mm and a primary coating layer 14 of φ6 mm made of LLDPE resin was prepared.

【0042】この抗張力体15に具体例1と同様に、被
覆樹脂の単位断面積当たりのテンションが、1.181
kg/mm2となる条件で、φ9mm,φ12mmの順
に逐次第一および第二予備被覆層16,17を形成し、
さらに、同条件のテンションで螺旋被覆を施して、16
溝,φ17mmのIFスペーサを得た。
As in the first embodiment, the tension member 15 has a tension per unit sectional area of 1.181 of the coating resin.
Under the condition of kg / mm 2 , the first and second preliminary coating layers 16 and 17 are sequentially formed in the order of φ9 mm and φ12 mm,
Further, a spiral coating is applied under the same tension, and
An IF spacer having a groove and a diameter of 17 mm was obtained.

【0043】このスペーサの引張性能を測定したとこ
ろ、0.2%伸張時の応力は410kgであり、PBO
繊維単体の0.2%伸張時の応力値との比較から、引張
性能保持率は85.1%と算出された。
When the tensile performance of this spacer was measured, the stress at the time of 0.2% elongation was 410 kg.
The tensile performance retention was calculated to be 85.1% from a comparison with the stress value of the single fiber at the time of 0.2% elongation.

【0044】また、この値からスペーサの見掛けの引張
弾性率を算出すると11400kg/mm2であった。
The apparent tensile modulus of the spacer was calculated from this value to be 11,400 kg / mm 2 .

【0045】具体例4.具体例2と同様の条件にて、P
BO繊維の含有率が68%、繊維強化合成樹脂ロッド1
2の外径がφ4.6mm、LLDPE樹脂でφ6mmの
一次被覆層14を設けた抗張力体15を作成した。
Example 4 Under the same conditions as in Example 2, P
BO fiber content 68%, fiber reinforced synthetic resin rod 1
A tensile strength member 15 having an outer diameter of φ4.6 mm and a primary coating layer 14 of φ6 mm made of LLDPE resin was prepared.

【0046】この抗張力体15に、被覆樹脂の単位断面
積当たりのテンションが、1.18kg/mm2となる
条件で、φ9mm,φ12mmの順に逐次第一および第
二予備被覆層16,17を形成し、さらに、同条件のテ
ンションで螺旋被覆を施して、16溝,φ17mmのI
Fスペーサを得た。
Under the condition that the tension per unit sectional area of the coating resin is 1.18 kg / mm 2 , the first and second preliminary coating layers 16 and 17 are sequentially formed on the tensile strength member 15 in the order of φ9 mm and φ12 mm. Then, spiral coating is performed with the tension of the same conditions, and I 16 grooves, φ17 mm I
An F spacer was obtained.

【0047】このスペーサの引張性能を測定したとこ
ろ、0.2%伸張時の応力は440kgであり、PBO
繊維単体の0.2%伸張時の応力値との比較から、引張
性能保持率は91.3%と算出された。
When the tensile performance of this spacer was measured, the stress at the time of 0.2% elongation was 440 kg.
The tensile performance retention was calculated to be 91.3% from a comparison with the stress value of the single fiber at the time of 0.2% elongation.

【0048】また、この値からスペーサの見掛けの引張
弾性率を算出すると12200kg/mm2であった。
From this value, the apparent tensile modulus of the spacer was calculated to be 12,200 kg / mm 2 .

【0049】具体例5.PBO繊維の含有率を68体積
%、繊維強化合成樹脂ロッド12の外径をφ6.4mm
とし、その他の条件は、具体例1と同様にして、LLD
PE樹脂の一次被覆層14を施したφ8mmの抗張力体
15を得た。
Specific Example 5 The content ratio of the PBO fiber is 68% by volume, and the outer diameter of the fiber-reinforced synthetic resin rod 12 is φ6.4 mm.
The other conditions were the same as in Example 1, and the LLD
A tensile strength member 15 having a diameter of 8 mm to which the primary coating layer 14 of the PE resin was applied was obtained.

【0050】この抗張力体15に、具体例1と同様に、
被覆樹脂の単位断面積当たりのテンションが、0.51
kg/mm2となる条件で、φ11mm,φ13.5m
m,φ16mmの順に逐次第一および第二,第三予備被
覆層16,17,18を形成し、さらに、同条件のテン
ションで螺旋被覆を施して、13溝,φ24mmの10
00心タイプのIFスペーサを得た。
In the same way as in the first embodiment,
The tension per unit sectional area of the coating resin is 0.51
kg / mm 2 , φ11mm, φ13.5m
The first, second, and third pre-coating layers 16, 17, and 18 are sequentially formed in the order of m and φ16 mm, and spiral coating is performed under the same conditions of tension to obtain 13 grooves and 10 mm of φ24 mm.
A 00-core type IF spacer was obtained.

【0051】この場合、第一予備被覆層16の断面積A
は、44.77mm2であり、この第一予備被覆層16
の圧縮応力αが、1.18kg/mm2なので、繊維強
化合成樹脂ロッド12に作用する圧縮強力F(=α×
A)は、52.83kgとなり、この圧縮強力Fに対す
る1/4以上のテンションとして、22.83kgを設
定した。
In this case, the sectional area A of the first preliminary coating layer 16
Is 44.77 mm 2 and the first pre-coating layer 16
Is 1.18 kg / mm 2 , the compressive strength F acting on the fiber reinforced synthetic resin rod 12 (= α ×
A) was 52.83 kg, and 22.83 kg was set as a tension of 1/4 or more of the compressive strength F.

【0052】なお、このような圧縮強力Fとテンション
との関係は、第二予備被覆層17,第三予備被覆層18
を形成する際にも同じことが言える。
The relationship between the compressive strength F and the tension is determined by the second preliminary coating layer 17 and the third preliminary coating layer 18.
The same can be said when forming.

【0053】このスペーサの引張性能を測定したとこ
ろ、0.2%伸張時の応力は850kgであり、PBO
繊維単体の0.2%伸張時の応力値との比較から、引張
性能保持率は81.9%と算出された。
When the tensile performance of this spacer was measured, the stress at the time of 0.2% elongation was 850 kg.
The tensile performance retention was calculated to be 81.9% from a comparison with the stress value of the fiber alone at the time of 0.2% elongation.

【0054】また、この値からスペーサの見掛けの引張
弾性率を算出すると13200kg/mm2であった。
The apparent tensile modulus of the spacer was calculated from this value to be 13,200 kg / mm 2 .

【0055】具体例6.予備被覆層を被覆成形する際の
被覆樹脂単位面積当たりのテンションを1.18kg/
mm2に変更した以外は、具体例5と同様の条件にて、
繊維強化合成樹脂ロッド12の外径をφ6.4mmと
し、一次被覆層14を施したφ8mmの抗張力体15を
得、これにφ11mm,φ13.5mm,φ16mmの
順に逐次第一および第二,第三予備被覆層16,17,
18を形成し、さらに、螺旋被覆を施して、13溝,φ
24mmの1000心タイプのIFスペーサを得た。
Specific Example 6 The tension per unit area of the coating resin when the preliminary coating layer is formed by coating is 1.18 kg /
mm 2 under the same conditions as in Example 5,
The outer diameter of the fiber reinforced synthetic resin rod 12 is φ6.4 mm, and a tensile strength member 15 of φ8 mm provided with the primary coating layer 14 is obtained, and the first, second, and third are successively arranged in the order of φ11 mm, φ13.5 mm, and φ16 mm. The preliminary coating layers 16, 17,
18 is formed, and a spiral coating is applied to form 13 grooves, φ.
A 24-mm, 1000-core type IF spacer was obtained.

【0056】このスペーサの引張性能を測定したとこ
ろ、0.2%伸張時の応力は940kgであり、PBO
繊維単体の0.2%伸張時の応力値との比較から、引張
性能保持率は90.6%と算出された。
When the tensile performance of this spacer was measured, the stress at the time of 0.2% elongation was 940 kg,
The tensile performance retention was calculated to be 90.6% from a comparison with the stress value of the fiber alone at the time of 0.2% elongation.

【0057】また、この値からスペーサの見掛けの引張
弾性率を算出すると14600kg/mm2であった。
The apparent tensile modulus of the spacer was calculated from this value to be 14,600 kg / mm 2 .

【0058】比較例1.予備被覆層を被覆成形する際の
被覆樹脂単位面積当たりのテンションを0.07kg/
mm2に変更した以外は、具体例1と同じ条件で、繊維
強化合成樹脂ロッド12の径がφ4.8mm、抗張力体
15の径をφ6mmとし、その外周にφ9mm,φ12
mmの第一および第二予備被覆層16,17を設け、そ
の後にφ17mmで16溝の螺旋被覆を施したIFスペ
ーサを得た。
Comparative Example 1 The tension per unit area of the coating resin when coating and forming the preliminary coating layer is 0.07 kg /
It was changed to mm 2 in the same conditions as in example 1, the diameter of the fiber reinforced synthetic resin rod 12 and 6mm Fai4.8Mm, the diameter of the strength members 15, 9 mm in its outer periphery, .phi.12
The first and second preliminary coating layers 16 and 17 mm were provided, and then an IF spacer having a φ17 mm spiral coating with 16 grooves was obtained.

【0059】このスペーサの引張性能は、0.2%伸張
時応力で320kgであり、PBO繊維単体の引張性能
との比較から、性能保持率は66.4%と算出された。
The tensile performance of this spacer was 320 kg at a 0.2% elongation stress, and the performance retention was calculated to be 66.4% from a comparison with the tensile performance of the PBO fiber alone.

【0060】また、この値からスペーサの見掛けの引張
弾性率を算出すると8900kg/mm2であった。
From this value, the apparent tensile modulus of the spacer was calculated to be 8,900 kg / mm 2 .

【0061】比較例2.予備被覆層を被覆成形する際の
被覆樹脂単位面積当たりのテンションを0.07kg/
mm2に変更した以外は、具体例2と同じ条件で、繊維
強化合成樹脂ロッド12の径がφ4.6mm、抗張力体
15の径をφ6mmとし、その外周にφ9mm,φ12
mmの第一および第二予備被覆層16,17を設け、そ
の後にφ17mmで16溝の螺旋被覆を施したIFスペ
ーサを得た。
Comparative Example 2 The tension per unit area of the coating resin when coating and forming the preliminary coating layer is 0.07 kg /
It was changed to mm 2 in the same conditions as in example 2, the diameter of the fiber reinforced synthetic resin rod 12 and 6mm Fai4.6Mm, the diameter of the strength members 15, 9 mm in its outer periphery, .phi.12
The first and second preliminary coating layers 16 and 17 mm were provided, and then an IF spacer having a φ17 mm spiral coating with 16 grooves was obtained.

【0062】このスペーサの引張性能は、0.2%伸張
時応力で370kgであり、PBO繊維単体の引張性能
との比較から、性能保持率は76.8%と算出された。
The tensile performance of this spacer was 370 kg at a 0.2% elongation stress, and the performance retention was calculated to be 76.8% from a comparison with the tensile performance of the PBO fiber alone.

【0063】また、この値からスペーサの見掛けの引張
弾性率を算出すると10300kg/mm2であった。
When the apparent tensile modulus of the spacer was calculated from this value, it was 10300 kg / mm 2 .

【0064】比較例3.予備被覆層を被覆成形する際の
被覆樹脂単位面積当たりのテンションを0.07kg/
mm2に変更した以外は、具体例5と同じ条件で、繊維
強化合成樹脂ロッド12の径がφ6.4mm、抗張力体
15の径をφ8mmとし、その外周にφ11mm,φ1
3.5mm,φ16mmの第一および第二,第三予備被
覆層16,17,18を設け、その後にφ24mmで1
3溝の螺旋被覆を施したIFスペーサを得た。
Comparative Example 3 The tension per unit area of the coating resin when coating and forming the preliminary coating layer is 0.07 kg /
The diameter of the fiber reinforced synthetic resin rod 12 was φ6.4 mm, the diameter of the tensile strength member 15 was φ8 mm, and the outer circumference thereof was φ11 mm, φ1 except that the diameter was changed to mm 2.
First, second, and third pre-coating layers 16, 17, and 18 of 3.5 mm and φ16 mm are provided, and then 1 mm at φ24 mm.
An IF spacer having a spiral coating of three grooves was obtained.

【0065】このスペーサの引張性能は、0.2%伸張
時応力で800kgであり、PBO繊維単体の引張性能
との比較から、性能保持率は77.1%と算出された。
The tensile performance of this spacer was 800 kg at a 0.2% elongation stress, and the performance retention was calculated to be 77.1% from a comparison with the tensile performance of the PBO fiber alone.

【0066】また、この値からスペーサの見掛けの引張
弾性率を算出すると12400kg/mm2であった。
When the apparent tensile modulus of the spacer was calculated from this value, it was 12400 kg / mm 2 .

【0067】以上の具体例および比較例の予備被覆条
件、得られたスペーサの0.2%伸張時応力、PBO繊
維性能保持率、引張弾性率などをまとめて以下の表1,
2に示している。
The preliminary coating conditions of the above specific examples and comparative examples, the stress at the time of 0.2% elongation of the obtained spacers, the PBO fiber performance retention, the tensile elasticity, and the like are summarized in Table 1 below.
It is shown in FIG.

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【発明の効果】以上、実施例および比較例で詳細に説明
したように、本発明では、光ファイバケーブル用スペー
サの中央に配置する抗張力体の外周に予備被覆をするに
際し、予備被覆層の断面積をA(mm2)とし、該予備
被覆層の単位面積当たりの圧縮応力をα(kgf/mm
2)としたときに、α×Aで求められる前記繊維強化合
成樹脂ロッドの長手方向に作用する圧縮強力Fの1/4
以上のテンションTが加わるようにして前記予備被覆層
を形成することにより、被覆時の冷却固化に起因する抗
張力体の長手方向の圧縮作用を抑制することができる。
As described above in detail in the examples and comparative examples, according to the present invention, when the outer periphery of the strength member disposed at the center of the optical fiber cable spacer is preliminarily coated, the pre-coating layer is cut off. The area is A (mm 2 ), and the compressive stress per unit area of the preliminary coating layer is α (kgf / mm
2 ) When と し た, 圧 縮 of the compressive strength F acting in the longitudinal direction of the fiber reinforced synthetic resin rod determined by α × A
By forming the preliminary coating layer so that the above-described tension T is applied, it is possible to suppress the compressive action in the longitudinal direction of the tensile strength member due to cooling and solidification during coating.

【0071】この結果、抗張力体の低伸度時における低
弾性率化が緩和され、引張性能に優れた光ファイバケー
ブル用スペーサを得ることができる。
As a result, the lowering of the elastic modulus at the time of low elongation of the tensile strength member is eased, and a spacer for an optical fiber cable having excellent tensile performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる光ファイバケーブル用スペーサ
の一実施例の横断面図。
FIG. 1 is a cross-sectional view of one embodiment of an optical fiber cable spacer according to the present invention.

【符号の説明】[Explanation of symbols]

10 光ファイバケーブル用スペーサ 12 PFRP 14 一次被覆層 15 抗張力体 16 第一予備被覆層 17、18 第二、第三予備被覆層 20 スペーサ本体被覆 22 溝 Reference Signs List 10 spacer for optical fiber cable 12 PFRP 14 primary coating layer 15 tensile strength member 16 first preliminary coating layer 17, 18 second and third preliminary coating layer 20 spacer main body coating 22 groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 孝清 岐阜県岐阜市藪田西2丁目1番1号 宇部 日東化成株式会社内 (72)発明者 石井 徳 岐阜県岐阜市藪田西2丁目1番1号 宇部 日東化成株式会社内 (72)発明者 岩田 秀行 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 2H001 BB09 DD04 DD10 KK08 KK12 MM01 PP01  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Takayoshi Kato 2-1-1, Yabuta Nishi, Gifu City, Gifu Prefecture Inside Ube Nitto Kasei Co., Ltd. (72) Inventor Toku Ishii 2-1-1, Yabuta Nishi, Gifu City, Gifu Prefecture No. 1 Ube Nitto Kasei Co., Ltd. (72) Inventor Hideyuki Iwata 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Nippon Telegraph and Telephone Corporation F-term (reference) 2H001 BB09 DD04 DD10 KK08 KK12 MM01 PP01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ポリベンツビスオキサゾール繊維からな
る補強繊維に熱硬化性樹脂を含浸,硬化させた繊維強化
合成樹脂ロッドの外周に、予備被覆層を形成した光ファ
イバケーブル用抗張力体において、 前記予備被覆層の断面積が前記繊維強化合成樹脂ロッド
の断面積よりも大きく、前記補強繊維の体積含有率が5
0%以上で、かつ、引張弾性率が前記補強繊維固有の引
張弾性率の80%以上を保持することを特徴とする光フ
ァイバケーブル用抗張力体。
1. A tensile strength member for an optical fiber cable in which a preliminary coating layer is formed on the outer periphery of a fiber-reinforced synthetic resin rod obtained by impregnating and curing a thermosetting resin in a reinforcing fiber made of polybenzbisoxazole fiber. The cross-sectional area of the coating layer is larger than the cross-sectional area of the fiber reinforced synthetic resin rod, and the volume content of the reinforcing fibers is 5%.
A tensile strength member for an optical fiber cable, wherein the tensile modulus is 0% or more and the tensile modulus is 80% or more of the tensile modulus unique to the reinforcing fiber.
【請求項2】 前記繊維強化合成樹脂ロッドは、前記補
強繊維に前記熱硬化性樹脂を含浸し、その外周に熱可塑
性樹脂からなる一次被覆層を形成した後に、前記熱硬化
性樹脂を硬化させることを特徴とする請求項1記載の光
ファイバケーブル用抗張力体。
2. The fiber-reinforced synthetic resin rod impregnates the reinforcing fiber with the thermosetting resin, forms a primary coating layer of a thermoplastic resin on the outer periphery thereof, and then cures the thermosetting resin. The tensile strength member for an optical fiber cable according to claim 1, wherein:
【請求項3】 請求項1又は2記載の光ファイバケーブ
ル用抗張力体の外周にスペーサ本体部を形成する合成樹
脂被覆を施してなることを特徴とする光ファイバケーブ
ル用スペーサ。
3. A spacer for an optical fiber cable, wherein the outer periphery of the tensile strength member for an optical fiber cable according to claim 1 or 2 is coated with a synthetic resin for forming a spacer body.
【請求項4】 ポリベンツビスオキサゾール繊維からな
る補強繊維に熱硬化性樹脂を含浸,硬化させた繊維強化
合成樹脂ロッドの外周に、予備被覆層を形成した後に、
前記予備被覆層の外周にスペーサ本体部を形成する合成
樹脂被覆を施すことを特徴とする光ファイバケーブル用
スペーサの製造方法において、 前記予備被覆層の断面積をA(mm2)とし、同予備被
覆層の単位面積当たりの圧縮応力をα(kgf/m
2)としたときに、α×Aで求められる前記繊維強化
合成樹脂ロッドの長手方向に作用する圧縮強力Fの1/
4以上のテンションTが加わるようにして前記予備被覆
層を形成することを特徴とする光ファイバケーブル用ス
ペーサの製造方法。
4. After forming a preliminary coating layer on the outer periphery of a fiber-reinforced synthetic resin rod obtained by impregnating and curing a thermosetting resin into a reinforcing fiber made of polybenzbisoxazole fiber,
In a method of manufacturing a spacer for an optical fiber cable, a cross-sectional area of the preliminary coating layer is set to A (mm 2 ), wherein a synthetic resin coating for forming a spacer main body portion is applied to an outer periphery of the preliminary coating layer. The compressive stress per unit area of the coating layer is α (kgf / m
m 2 ), the compressive strength F acting in the longitudinal direction of the fiber reinforced synthetic resin rod determined by α × A is 1 /
A method for manufacturing a spacer for an optical fiber cable, wherein the preliminary coating layer is formed so that four or more tensions T are applied.
【請求項5】 請求項4記載の光ファイバケーブル用ス
ペーサの製造方法において、 前記テンションTが、T≧0.5Aの関係を満足するよ
うにして、前記予備被覆層を形成することを特徴とする
光ファイバケーブル用スペーサの製造方法。
5. The method for manufacturing an optical fiber cable spacer according to claim 4, wherein the pre-coating layer is formed such that the tension T satisfies the relationship of T ≧ 0.5A. Of manufacturing optical fiber cable spacers.
【請求項6】 前記スペーサ本体部形成用の合成樹脂被
覆を施す際に、前記予備被覆層の外周にダイを回転させ
ながら溶融状態の樹脂を押出すことを特徴とする請求項
4または5記載の光ファイバケーブル用スペーサの製造
方法。
6. The molten resin is extruded while rotating a die around the outer periphery of the preliminary coating layer when applying the synthetic resin coating for forming the spacer body. Manufacturing method of an optical fiber cable spacer.
JP07543299A 1999-03-19 1999-03-19 Manufacturing method of spacer for optical fiber cable Expired - Fee Related JP3502287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07543299A JP3502287B2 (en) 1999-03-19 1999-03-19 Manufacturing method of spacer for optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07543299A JP3502287B2 (en) 1999-03-19 1999-03-19 Manufacturing method of spacer for optical fiber cable

Publications (2)

Publication Number Publication Date
JP2000266974A true JP2000266974A (en) 2000-09-29
JP3502287B2 JP3502287B2 (en) 2004-03-02

Family

ID=13576068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07543299A Expired - Fee Related JP3502287B2 (en) 1999-03-19 1999-03-19 Manufacturing method of spacer for optical fiber cable

Country Status (1)

Country Link
JP (1) JP3502287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343536A (en) * 2005-06-09 2006-12-21 Ube Nitto Kasei Co Ltd Spacer for plastic optical fiber cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343536A (en) * 2005-06-09 2006-12-21 Ube Nitto Kasei Co Ltd Spacer for plastic optical fiber cable

Also Published As

Publication number Publication date
JP3502287B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US5727357A (en) Composite reinforcement
US3980808A (en) Electric cable
JP3176390B2 (en) Method of manufacturing reinforced plastic armored cable
JPS626211A (en) Reinforcing member made of resin with high orientation property and its manufacture
JP2007527098A (en) Aluminum conductor composite core reinforced cable and manufacturing method thereof
JPS6290229A (en) Continuous molding method for cylindrical molded material
WO2022007705A1 (en) Elastomer-bonded fiber-reinforced composite wire material and preparation method therefor
US5892873A (en) Optical cable with extruded peripheral reinforcements
US4813221A (en) Flexible tension members
US4781432A (en) Optical fibre transmission cable reinforcement
US4984869A (en) Optical fibre cable and method of making same
JP2008309219A (en) Tank and its manufacturing method
JP2002023030A (en) Production method for optical cable for sensing distortion
JP2000266974A (en) Tensile strength body and spacer for optical fiber cable, and manufacture thereof
JP2659110B2 (en) Fiber reinforced resin composite pipe and method for producing the same
JP2869130B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
GB2118735A (en) Optical fibre transmission cable reinforcement
JPH11323749A (en) Composite wiry material
JP2772795B2 (en) Intermediate of fiber-reinforced synthetic resin linear material
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP3176389B2 (en) Method of manufacturing waterproof fiber-reinforced thermosetting resin twisted structure for optical cable
JPH1160286A (en) Optical fiber core resistant to tension
CN203260968U (en) Special warning anti-theft tube for communication cables
JP3502273B2 (en) Fiber optic cable spacer
JP3472149B2 (en) Spacer for optical fiber cable and method of manufacturing the same

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees