JP2000266516A - Device for detecting un-hot-scarfed length of end section of slab - Google Patents

Device for detecting un-hot-scarfed length of end section of slab

Info

Publication number
JP2000266516A
JP2000266516A JP11070950A JP7095099A JP2000266516A JP 2000266516 A JP2000266516 A JP 2000266516A JP 11070950 A JP11070950 A JP 11070950A JP 7095099 A JP7095099 A JP 7095099A JP 2000266516 A JP2000266516 A JP 2000266516A
Authority
JP
Japan
Prior art keywords
slab
image
luminance
image data
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11070950A
Other languages
Japanese (ja)
Inventor
Takanori Kajiya
治 屋 孝 則 加
Shuji Naito
藤 修 治 内
Masahito Sugiura
浦 雅 人 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11070950A priority Critical patent/JP2000266516A/en
Publication of JP2000266516A publication Critical patent/JP2000266516A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the automatic detecting accuracy of the un-hot-scarfed length of the end section of a slab after hot scarfing work completes with a hot scarfer. SOLUTION: A device for detecting un-hot-scarfed length is provided with an illuminator 5a which obliquely projects illuminating light upon a slab 1 transported in the (y) direction toward the upstream side of the slab 1 from the downstream side; a linear or slit-like line camera 6a which obliquely picks up the image of the illuminated surface of the slab 1 toward the downstream side from the upstream side and the visual field of which is extended in the width direction (x) of the slab 1; a picture processor 8a which writes the picture data of the camera 6a in a memory before the front end of the slab 1 enters the visual field of the camera 6a, displays a picture data group containing two-dimensionally distributed backgrounds not containing the front end of the slab 1 and slab images containing the front end and hot-scarfed area of the slab 1 on a CRT 10a after storing the picture data group, and calculates the un-hot-scarfed length Ly of the front end of the slab 1 by detecting the position y1 of the front end (y) of the slab 1 showing first luminance variation and the position y2 of a hot-scarfing starting point by showing second luminance variation based on the picture data group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面の一部を溶削
したスラブの未溶削領域の検出に関し、特に、これに限
定する意図ではないが、ホットスカ−ファで長手方向y
に溶削したスラブ先端部の、先端から溶削始点部までの
未溶削長さの検出に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the detection of an uncut area of a slab having a part of its surface cut, and particularly, but not exclusively, to a hot scuffer in a longitudinal direction y.
The present invention relates to the detection of the uncut length of the slab tip portion from the tip to the starting point of the slab.

【0002】[0002]

【従来の技術】スラブ先端の未溶削領域は、例えばホッ
トスカ−ファによる溶削手入れ工程の下工程で、熱間グ
ラインダによって研削される。グラインダは、回転砥石
をスラブ幅方向xに往復駆動しながら自動研削する。こ
の種の研削方法および研削機が、特開平4−28306
5号公報および特開昭57−41157号公報に開示さ
れている。
2. Description of the Related Art An uncut area at the tip of a slab is ground by a hot grinder in a lower step of a cutting and caring process using, for example, a hot scarer. The grinder performs automatic grinding while reciprocatingly driving the rotary grindstone in the slab width direction x. This type of grinding method and grinding machine is disclosed in Japanese Patent Application Laid-Open No. 4-28306.
No. 5 and JP-A-57-41157.

【0003】[0003]

【発明が解決しようとする課題】長手方向の、スラブ先
端から溶削始点までの実距離すなわち未溶削長が与えら
れない場合、自動研削機の研削長(y方向)はオペレ−
タが設定する。設定値が短いと研削漏れを生ずるので、
十分な長さが設定される。したがって回転砥石の往復回
数が比較的に多く、自動研削に時間がかかる。よって、
前工程のホットスカ−ファによる溶削で残った、スラブ
先端から溶削始点までの未溶削長さ(y方向)を自動検
出して自動研削機に研削目標長さとして与えるのが好ま
しい。
If the actual distance from the tip of the slab to the start of cutting in the longitudinal direction, that is, the uncut length, is not given, the grinding length (y direction) of the automatic grinding machine is the operating length.
Data is set. If the set value is short, grinding leakage will occur.
A sufficient length is set. Therefore, the number of reciprocations of the rotating grindstone is relatively large, and it takes time for automatic grinding. Therefore,
It is preferable to automatically detect the uncut length (y direction) from the slab tip to the starting point of the slab remaining in the cutting by the hot scuffer in the previous step and to give the same to the automatic grinding machine as the grinding target length.

【0004】本発明は、スラブ先端から溶削始点までの
距離すなわち未溶削長を自動検出することを第1の目的
とし、この検出精度を高くすることを第2の目的とす
る。
A first object of the present invention is to automatically detect the distance from the tip of the slab to the starting point of cutting, ie, the uncut length, and to improve the detection accuracy.

【0005】[0005]

【課題を解決するための手段】(1)本発明のスラブ端
部の未溶削長さ検出装置は、y方向に搬送されるスラブ
(1)に対して、搬送方向の下流側から上流側に向けて斜
めに照明光を投射する照明手段(5a);該照明手段(5a)が
光を投射したスラブ表面を、搬送方向の上流側から下流
側に向けて斜めに撮影する、視野がスラブ幅方向xに延
びる直線状又はスリット状のラインカメラ(6a);スラブ
先端が前記ラインカメラ(6a)の視野に入る前から、ライ
ンカメラ(6a)の画像デ−タをメモリに書込み、該メモリ
に、2次元分布の、スラブの先端が存在しない背景なら
びにスラブ先端および溶削領域を含むスラブ像、の画像
デ−タ群を記憶する画像読込み手段(8a);および、前記
画像デ−タ群に基づいて、低輝度背景から、背景より高
輝度の未溶削部であるスラブ先端への第1輝度変化のy
位置(y1)と、未溶削部から、それより低輝度の溶削始点
部への第2輝度変化のy位置(y2)と、を検出し両位置(y
1,y2)の差(Ly=y2-y1)を未溶削長さとして算出する輝度
変化検出手段(8a);を備える。
(1) The apparatus for detecting the uncut length at the end of a slab according to the present invention is a slab conveyed in the y direction.
(1), illuminating means (5a) for projecting illumination light obliquely from the downstream side to the upstream side in the transport direction; the slab surface on which the illumination means (5a) has projected light is moved upstream in the transport direction. A linear or slit line camera (6a) whose field of view extends obliquely in the slab width direction x from the side to the downstream side; a line camera before the slab tip enters the field of view of the line camera (6a) The image data of (6a) is written into a memory, and in the memory, a group of image data of a two-dimensionally distributed background having no slab tip and a slab image including the slab tip and the ablated area is stored. Image reading means (8a); and, based on the image data group, y of the first luminance change from the low luminance background to the tip of the slab which is an uncut portion having higher luminance than the background.
The position (y1) and the y-position (y2) of the second luminance change from the uncut portion to the lower-intensity cutting start point are detected, and both positions (y
1, y2) (Ly = y2-y1) as the uncut length.

【0006】なお、理解を容易にするためにカッコ内に
は、図面に示し後述する実施例の対応要素の符号を、参
考までに付記した。
[0006] In order to facilitate understanding, the reference numerals of the corresponding elements in the embodiments shown in the drawings and described later are added in parentheses for reference.

【0007】照明手段(5a)がスラブ(1)に対して、搬送
方向yの下流側から上流側に向けて斜めに照明光を投射
するので、スラブの未溶削部と溶削部の境目の深ぼれ部
分に暗い影ができる。ラインカメラ(6a)が、スラブ表面
の照明部を、搬送方向yの上流側から下流側に向けて斜
めに撮影するので、カメラ(6a)は、スラブ先端がカメラ
視野に入るときスラブ先端面(x,z平面)を撮影せ
ず、撮影画像においてスラブ先端は、光反射のない低輝
度背景に対して高輝度の明確なエッジとして現われ、エ
ッジを正確に把握しうる。ラインカメラ(6a)の視野がス
ラブ幅方向xに延びる直線状又はスリット状であるの
で、スラブの未溶削部と溶削部の境目の深ぼれ部分は、
撮影画像においてスラブ先端の未溶削部より低輝度の明
確な影として現われ、溶削始点を正確に把握しうる。
Since the illuminating means (5a) irradiates the slab (1) with illumination light obliquely from the downstream side to the upstream side in the conveying direction y, the boundary between the uncut portion and the cut portion of the slab is provided. There is a dark shadow in the deep part. Since the line camera (6a) obliquely shoots the illuminating portion on the slab surface from the upstream side to the downstream side in the transport direction y, the camera (6a) operates when the slab tip enters the camera field of view. (x, z plane) is not photographed, and the slab tip appears in the photographed image as a clear edge of high luminance against a low luminance background without light reflection, and the edge can be grasped accurately. Since the field of view of the line camera (6a) is linear or slit extending in the slab width direction x, the deep portion of the boundary between the uncut portion and the cut portion of the slab is:
In the photographed image, a clear shadow having a lower luminance than that of the uncut portion at the tip of the slab appears, and the starting point of the cut can be accurately grasped.

【0008】このような撮影画像に基づいて、輝度変化
検出手段(8a)が、低輝度背景から、背景より高輝度の未
溶削部であるスラブ先端への第1輝度変化のy位置(y1)
と、未溶削部から、それより低輝度の溶削始点部への第
2輝度変化のy位置(y2)と、を検出し両位置(y1,y2)の
差(Ly=y2-y1)を未溶削長さとして算出するので、正確な
未溶削長さが得られる。この未溶削長を目標研削長さと
して、下工程の自動研削機に与えることにより、自動研
削機が所要長さのみ研削するので、未溶削部の研削時間
が短縮し、また自動研削機の研削作業効率が向上する。
On the basis of such a photographed image, the luminance change detecting means (8a) detects the y position (y1) of the first luminance change from the low luminance background to the slab tip which is an uncut portion having a higher luminance than the background. )
And the y position (y2) of the second luminance change from the uncut portion to the cutting start point portion having a lower brightness than that, and the difference (Ly = y2-y1) between the two positions (y1, y2) is detected. Is calculated as the uncut length, an accurate uncut length can be obtained. By giving this uncut length as the target grinding length to the automatic grinding machine in the downstream process, the automatic grinding machine grinds only the required length. Grinding work efficiency is improved.

【0009】[0009]

【発明の実施の形態】(2)スラブ(1)の到来を検知す
るスラブ検出手段(4);および、該スラブ到来の検知か
らスラブ搬送距離計測を開始して、計測値が、スラブ先
端が前記ラインカメラ(6a)の視野より設定距離分手前と
なる値(La)になったときに計測指令を、前記画像読込み
手段(8a)に与える計測制御手段(12);を更に備え、前記
画像読込み手段(8a)は該計測指令に応答して、所定ピッ
チで設定ライン分、前記ラインカメラ(6a)がライン単位
で発生するビデオ信号のデジタル変換デ−タすなわち画
像デ−タを、前記メモリに書込む、スラブ端部の未溶削
長さ検出装置。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (2) Slab detecting means (4) for detecting the arrival of a slab (1); and starting the measurement of the slab conveyance distance from the detection of the arrival of the slab, the measured value is determined by the slab tip. A measurement control unit (12) for giving a measurement command to the image reading unit (8a) when the value (La) becomes a value that is a set distance before the field of view of the line camera (6a); In response to the measurement command, the reading means (8a) stores digitally converted data, i.e., image data, of a video signal generated by the line camera (6a) for each set line at a predetermined pitch in line units. To detect the uncut length at the end of the slab.

【0010】これによれば実質上オペレ−タの介在な
く、自動的に、スラブ先端部およびその前方の背景を含
む画像デ−タ群がメモリに書込まれる。 (3)前記輝度変化検出手段(8a)は、前記メモリの画像
デ−タ群が表わす2次元平面上の画像の一部領域を指定
するウィンドウ領域を定め、該ウィンドウ領域に属する
画像デ−タ群に基づいて、低輝度背景から、背景より高
輝度の未溶削部であるスラブ先端への第1輝度変化のy
位置(y1)と、未溶削部から、それより低輝度の溶削始点
部への第2輝度変化のy位置(y2)と、を検出し両位置(y
1,y2)の差(Ly=y2-y1)を未溶削長さとして算出する、ス
ラブ端部の未溶削長さ検出装置。
According to this, the image data group including the front end of the slab and the background in front of the slab is automatically written into the memory substantially without the intervention of the operator. (3) The brightness change detecting means (8a) determines a window area for designating a partial area of an image on a two-dimensional plane represented by the image data group in the memory, and determines image data belonging to the window area. Based on the group, y of the first luminance change from the low-luminance background to the slab tip, which is an uncut portion with higher luminance than the background,
The position (y1) and the y-position (y2) of the second luminance change from the uncut portion to the lower-intensity cutting start point are detected, and both positions (y
An apparatus for detecting the uncut length at the end of the slab, which calculates the difference (Ly = y2-y1) of (1, y2) as the uncut length.

【0011】これによれば、未溶削長さを得るための処
理対象画像デ−タ量が少く、画像処理が容易で未溶削長
さ算出に要する時間が短い。 (3)前記画像読込み手段(8a)は読込んだ画像デ−タ群
が表わす画像を2次元ディスプレイ(10a)に表示し、前
記輝度変化検出手段(8a)は前記ウィンドウ領域を表わす
指標を、前記2次元ディスプレイ(10a)の、前記画像の
対応位置に表示する、スラブ端部の未溶削長さ検出装
置。
According to this, the amount of image data to be processed for obtaining the uncut length is small, the image processing is easy, and the time required for calculating the uncut length is short. (3) The image reading means (8a) displays an image represented by the read image data group on a two-dimensional display (10a), and the luminance change detecting means (8a) displays an index representing the window area. A device for detecting an uncut length of an end of a slab, which is displayed at a position corresponding to the image on the two-dimensional display (10a).

【0012】撮影画像上にウィンドウ指標が現われるの
で、オペレ−タは、スラブ像に対するウィンドウ領域の
相対位置およびサイズを容易に認識しうる。輝度変化検
出手段(8a)を、オペレ−タ入力に応じてウィンドウ位置
およびサイズを変更するものとすれば、オペレ−タは、
未溶削長さ算出の精度が高いと見込める位置に、未溶削
長さ算出処理効率が高い小サイズのウィンドウを容易に
設定しうる。 (4)前記画像読込み手段(8a)は読込んだ画像デ−タ群
が表わす画像を2次元ディスプレイ(10a)に表示し、前
記輝度変化検出手段(8a)は、第1および第2輝度変化の
y位置(y1,y2)を表わす標識を、前記2次元ディスプレ
イ(10a)の、前記画像の対応位置に表示する、スラブ端
部の未溶削長さ検出装置。
Since the window index appears on the photographed image, the operator can easily recognize the relative position and size of the window area with respect to the slab image. If the luminance change detecting means (8a) changes the window position and the size in accordance with the operator's input, the operator can:
A small-sized window with high uncut length calculation efficiency can be easily set at a position where high accuracy of the uncut length calculation is expected. (4) The image reading means (8a) displays an image represented by the read image data group on a two-dimensional display (10a), and the luminance change detecting means (8a) performs first and second luminance change. A mark indicating the y position (y1, y2) of the slab end at the corresponding position of the image on the two-dimensional display (10a).

【0013】撮影画像上にスラブ始端位置(y1)を表わす
標識と溶削始点位置(y2)を表わす標識が現われるので、
オペレ−タは、輝度変化検出手段(8a)の処理が正常か否
か、未溶削部検出の正否および正確度を視認判定するこ
とができる。
A sign indicating the slab start position (y1) and a sign indicating the cutting start position (y2) appear on the photographed image.
The operator can visually determine whether or not the processing of the luminance change detecting means (8a) is normal, and whether or not the uncut portion has been detected is correct and its accuracy.

【0014】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0015】[0015]

【実施例】図1に本発明の一実施例の概要を示す。スラ
ブ1の上,下面は、上工程(図1で右方向)の図示しな
いホットスカ−ファにより、先端(左端)から数cm又
は10数cm程度スラブ表面に進入した位置から尾端
(右端)まで溶削されて、搬送テ−ブルによって、下工
程(図1で左方向)の図示しない熱間グラインダに送ら
れる。搬送テ−ブルの下方には、スラブ1の下面を撮影
するための照明器5aおよびラインカメラ6aがあり、
搬送テ−ブルの上方には、スラブ1の上面を撮影するた
めの照明器5bおよびラインカメラ6bがある。
FIG. 1 shows an outline of an embodiment of the present invention. The upper and lower surfaces of the slab 1 are moved from a position of several cm or several tens cm from the tip (left end) to the tail end (right end) by a hot scuffer (not shown) in the upper step (right direction in FIG. 1). It is then cut by a transport table and sent to a hot grinder (not shown) in a lower step (to the left in FIG. 1). Below the transport table are an illuminator 5a and a line camera 6a for photographing the lower surface of the slab 1,
Above the transport table, there are an illuminator 5b and a line camera 6b for photographing the upper surface of the slab 1.

【0016】照明器5aは、スラブ1の先端部の未溶削
部と溶削部の境目の深ぼれ部分に暗い影を現わすよう
に、搬送テ−ブルのロ−ラ列の各ロ−ラのスラブ支持点
が含まれる搬送面(x,y平面)に対して、搬送方向y
の下流側から上流側に向けて斜めに照明光を投射する。
ラインカメラ6aは、スラブ幅方向xに延びる直線状又
はスリット状の視野を有し、照明器5aが照明した搬送
面を、搬送方向yの上流側から下流側に向けて斜めに撮
影する。スラブ1の先端がラインカメラ6aの視野より
も上流側にあるときには、照明器5aの光は斜め上方に
直進し、カメラ6aの視野には入らないので、ラインカ
メラ6aの撮影信号レベル(輝度)は極く低い。
The illuminator 5a is arranged so that a dark shadow appears at the boundary between the uncut portion and the cut portion at the tip of the slab 1 so that each roller in the row of rollers of the transport table can be seen. The transfer direction y with respect to the transfer surface (x, y plane) including the slab support point of
The illumination light is projected obliquely from the downstream side to the upstream side.
The line camera 6a has a linear or slit-shaped field of view extending in the slab width direction x, and photographs the transport surface illuminated by the illuminator 5a obliquely from the upstream side to the downstream side in the transport direction y. When the tip of the slab 1 is located on the upstream side of the visual field of the line camera 6a, the light of the illuminator 5a travels obliquely upward and does not enter the visual field of the camera 6a. Is extremely low.

【0017】スラブ1の先端がラインカメラ6aの視野
に入ると、スラブ1上のラインカメラ6aの視野領域に
よって反射された光の一部が、ラインカメラ6aに向
い、ラインカメラ6aの撮影信号レベル(輝度)は上昇
するが、先端部は未溶削であるので、比較的に低い。ス
ラブ1の先端がカメラ視野を通過し、カメラ視野に未溶
削部と溶削部の境目の深ぼれ部分の始点が到達すると、
スラブ1上のカメラ視野領域でのカメラに向かう反射光
が激減し、これによりカメラ6aの撮影信号レベルが低
下する。深ぼれの下り傾斜面がスラブ1上のカメラ視野
領域を通過している間、カメラ6aの撮影信号レベルは
低下したままとなる。次に、深ぼれの底がカメラ視野領
域を通過している間は、カメラ6aの撮影信号レベルは
上昇し溶削平面(高反射面)での撮影信号レベルに近く
なる。次に深ぼれの上り傾斜面がカメラ視野領域を通過
している間は、照明光が照明器5a側に反射するので、
カメラ6aの撮影信号レベルは低下する。そして、略平
らな定常溶削面がカメラ視野領域に入ると撮影信号レベ
ルはきわめて高くなる。
When the tip of the slab 1 enters the field of view of the line camera 6a, part of the light reflected by the field of view of the line camera 6a on the slab 1 is directed to the line camera 6a, and the image signal level of the line camera 6a (Brightness) increases, but is relatively low because the tip is uncut. When the tip of the slab 1 passes through the camera field of view and the start point of the deep part at the boundary between the uncut portion and the cut portion reaches the camera field of view,
The reflected light toward the camera in the camera field of view on the slab 1 is drastically reduced, thereby lowering the image signal level of the camera 6a. While the deep downward slope passes through the camera field of view on the slab 1, the photographing signal level of the camera 6a remains low. Next, while the bottom of the deep depression is passing through the camera view area, the photographing signal level of the camera 6a rises and approaches the photographing signal level on the fusing plane (high reflection surface). Next, while the upwardly inclined surface of the deep depression passes through the camera viewing area, the illumination light is reflected toward the illuminator 5a, so that
The photographing signal level of the camera 6a decreases. Then, when the substantially flat steady-cut surface enters the visual field of the camera, the photographing signal level becomes extremely high.

【0018】上述の、スラブ1の先端がカメラ視野に入
る直前から、定常溶削面のかなりの部位まで連続的にラ
イン(スリット)撮影し、2次元画像に集成したスラブ
撮影画像を、図4に示し、上述の撮影信号レベル(輝
度)の変化の概要を図3のステップ38の左側に示す。
FIG. 4 shows a slab photographed image obtained by continuously photographing a line (slit) from a point just before the tip of the slab 1 enters the visual field of the camera to a considerable portion of the steady cutting surface and forming a two-dimensional image. The outline of the change of the photographing signal level (luminance) described above is shown on the left side of step 38 in FIG.

【0019】リニアカメラ6aは定周期で繰返し撮影
し、ライン(又はスリット)画像信号を該定周期で繰返
し出力する。画像処理装置8aは、ロ−タリエンコ−ダ
3がパルスを発生する度に、その直後の1ライン画像信
号を画素単位でデジタル変換し、デジタルデ−タ(画像
デ−タ)を、その内部の原画像メモリ(以下1次メモリ
と称す)に、書込み、1次メモリ上に、図4に示す2次
元画面を表わす画像デ−タ群を集成する。なお、正しく
は、図4に示す画像は、図示を簡単にするために、1次
メモリ上の画像デ−タ群の全体が表わす広い2次元画面
のx方向幅の一部を摘出して示すものである。搬送面に
おけるカメラ6aのx方向視野長は1800mmであ
り、通例の、1800mm幅より狭いx幅のスラブを撮
影した場合、1次メモリ上の画像デ−タ群の全体が表わ
す広い2次元画面には、スラブのx方向全幅が現われ
る。
The linear camera 6a repeatedly shoots at a fixed period, and repeatedly outputs a line (or slit) image signal at the fixed period. Each time the rotary encoder 3 generates a pulse, the image processing device 8a converts the immediately following one-line image signal into digital data in pixel units, and converts digital data (image data) therein. An original image memory (hereinafter referred to as a primary memory) is written, and an image data group representing a two-dimensional screen shown in FIG. 4 is collected on the primary memory. In order to simplify the illustration, the image shown in FIG. 4 is shown by extracting a part of the width in the x direction of a wide two-dimensional screen representing the entire image data group on the primary memory. Things. The field of view of the camera 6a in the x-direction on the transport surface is 1800 mm. When a slab having an x width smaller than 1800 mm is photographed as usual, a wide two-dimensional screen representing the entire image data group on the primary memory is obtained. Indicates the entire width of the slab in the x direction.

【0020】分配器9aは、画像処理装置8aが出力す
るデ−タを、CRT(2次元陰極線管ディスプレイ)1
0a又はレ−ザプリンタ11aに与える。いずれに与え
るかは、計測コントロ−ラ12が指定する。
The distributor 9a transmits data output from the image processing device 8a to a CRT (two-dimensional cathode ray tube display) 1.
0a or the laser printer 11a. The measurement controller 12 designates which one to give.

【0021】上述の照明器5a〜レ−ザプリンタ11a
の組体と実質上同一構成のもう1組の組体5b〜11b
が、スラブ1の上面撮影用に備えられている。第2組の
照明器5bとラインカメラ6bは、y軸に関して第1組
の照明器5aおよびラインカメラ6aと対称であるが、
スラブ1の存否にかかわらず、第1組の照明器5aが発
する光がカメラ6bに入らないように、また第2組の照
明器5bが発する光がカメラ6aに入らないように、y
方向に位置をずらしている。
The above-described illuminator 5a to laser printer 11a
Another set 5b to 11b having substantially the same configuration as the set
Are provided for photographing the upper surface of the slab 1. The second set of illuminators 5b and line cameras 6b are symmetric with respect to the y-axis with the first set of illuminators 5a and line cameras 6a,
Irrespective of the presence or absence of the slab 1, y such that the light emitted from the first set of illuminators 5a does not enter the camera 6b, and the light emitted from the second set of illuminators 5b does not enter the camera 6a.
The position is shifted in the direction.

【0022】搬送テ−ブルの1つのロ−ラ2にはロ−タ
リエンコ−ダ3が結合されており、ロ−ラ2の所定小角
度の回転(スラブ1の所定短距離の移動)につき1パル
スの電気信号を発生し計測コントロ−ラ12に与える。
ロ−ラ2の少し下流に、反射型光センサであるスラブセ
ンサ4が設置されており、その直下にスラブがあるか否
を表わす信号を計測コントロ−ラ12に与える。
A rotary encoder 3 is connected to one of the rollers 2 of the transport table, and is rotated by a predetermined small angle (movement of the slab 1 over a predetermined short distance) by one. A pulse electric signal is generated and supplied to the measurement controller 12.
A slab sensor 4, which is a reflection-type optical sensor, is provided slightly downstream of the roller 2, and a signal indicating whether or not a slab exists immediately below the slab sensor 4 is given to a measurement controller 12.

【0023】画像処理装置8a,8bおよび計測コント
ロ−ラ12には、入出力ボ−ドが備わっており、オペレ
−タは、デ−タおよび指令を入力することができる。
The image processing devices 8a and 8b and the measurement controller 12 are provided with an input / output board, and an operator can input data and commands.

【0024】図2に、計測コントロ−ラ12の「計測」
制御の概要を示す。計測コントロ−ラ12は計測モ−ド
が指定され実行が指示されると、終了又は停止が入力さ
れるまで、図2に示す「計測」制御を行なう。その中の
入力読取(ステップ1)では、入出力ボ−ドおよび画像
処理装置8a,8bからの入力を読取る。なお、以下に
おいては、カッコ内には、ステップという語を省略し
て、ステップNo.数字のみを記す。
FIG. 2 shows “measurement” of the measurement controller 12.
An outline of the control will be described. When the measurement mode is designated and execution is instructed, the measurement controller 12 performs the "measurement" control shown in FIG. 2 until an end or stop is input. In the input reading (step 1), the input from the input / output board and the input from the image processing devices 8a and 8b are read. In the following, the word “step” is omitted in parentheses, and step No. Write only numbers.

【0025】入力読取(1)で入出力ボ−ドからの入力
すなわちオペレ−タ入力を読取ると、計測コントロ−ラ
12は、入力対応のデ−タ処理,設定を行なう。その中
に、オペレ−タ入力に応じた計測ウィンドウの位置,サ
イズの設定が含まれる。入力読取(1)で画像処理装置
8a,8bからのデ−タ転送レディを読取ると画像処理
装置8a,8bからデ−タを読込んでCRT10a,1
0bに転送する処理が含まれる。入力が無いときには、
ステップ6以下を行なう。
When an input from the input / output board, that is, an operator input is read in the input reading (1), the measurement controller 12 performs data processing and setting corresponding to the input. This includes the setting of the position and size of the measurement window according to the operator input. When the data transfer ready from the image processing devices 8a and 8b is read in the input reading (1), the data is read from the image processing devices 8a and 8b and the CRTs 10a and 1 are read.
0b is included. When there is no input,
Perform step 6 and subsequent steps.

【0026】すなわち、スラブセンサ4の電気信号がス
ラブ無しからスラブ有りに切換わるのを待ち(6−7−
1〜6−7・・・の繰返し)、スラブ有りに切換わる
と、レジスタSDF(計測コントロ−ラ12の内部メモ
リの一領域)に、スラブ検知中を表わす1を書込み(6
−8−9)、スラブNo.レジスタSNo.のデ−タ
を、1大きい値を示すものに更新し(10)、ロ−タリ
エンコ−ダ3が発生するパルスのカウントアップを開始
する。すなわちスラブ1の移動量の計測を開始する(1
1)。
That is, it waits for the electric signal of the slab sensor 4 to switch from the absence of the slab to the presence of the slab (6-7-).
(1-6-7...), And when it is switched to the presence of a slab, 1 indicating that a slab is being detected is written to the register SDF (one area of the internal memory of the measurement controller 12) (6).
-8-9), Slab No. Register SNo. Is updated to a value indicating one greater value (10), and counting of the pulse generated by the rotary encoder 3 is started. That is, the measurement of the movement amount of the slab 1 is started (1
1).

【0027】次に、パルスカウント値(スラブ移動量)
が、第1設定値Lb(スラブ先端がカメラ6bの視野よ
り所定値分上流側に位置する値)になるのを待って、そ
うなると、画像処理装置8bに計測指令を与え、レジス
タBFに、カメラ6bによる撮影を開始したことを表わ
す1を書込む(13〜16)。
Next, the pulse count value (the amount of slab movement)
Waits for the first set value Lb (the value at which the tip of the slab is located a predetermined value upstream of the field of view of the camera 6b), and then, gives a measurement command to the image processing device 8b, and sets the camera 1 indicating that the shooting by 6b has started is written (13-16).

【0028】次に、パルスカウント値が、第2設定値L
a(スラブ先端がカメラ6aの視野より所定値分上流側
に位置する値)になるのを待って、そうなると、画像処
理装置8aに計測指令を与え、レジスタAFに、カメラ
6aによる撮影を開始したことを表わす1を書込む(1
7〜20)。
Next, when the pulse count value is equal to the second set value L
a (a value at which the tip of the slab is located a predetermined value upstream of the field of view of the camera 6a), and then, a measurement command is given to the image processing device 8a, and photographing by the camera 6a is started to the register AF. Is written (1
7-20).

【0029】画像処理装置8b,8aは、計測指令に応
答して、撮影信号の読込みを開始し、2次元一画面分の
読込みを終了すると画像デ−タ処理を開始して、未溶削
長Lyの算出を行なう。この内容は、図3を参照して後
述する。
In response to the measurement command, the image processing devices 8b and 8a start reading the photographing signal, and when reading of one two-dimensional screen is completed, start the image data processing and start the uncut length. The calculation of Ly is performed. This content will be described later with reference to FIG.

【0030】その後計測コントロ−ラ12は、スラブセ
ンサ4の電気信号がスラブ有りからスラブ無しに切換わ
るのを待ち(6〜8−13−17−1〜8−13・・・
の繰返し)、スラブ無しに切換わると、レジスタSD
F,BF,AFをクリアして(22〜24)、次のスラ
ブの先端がスラブセンサ4直下に到達するのを待つ(1
〜7−1〜7−・・・の繰返し)。なお、「入力読取」
(1)にて、オペレ−タ入力又は画像処理装置8b,8
aからの入力を読取ると、入力に対応した処理(3,
5)を行なう。
Thereafter, the measurement controller 12 waits for the electric signal of the slab sensor 4 to switch from the presence of the slab to the absence of the slab (6 to 8-13-17-1 to 8-13...).
), When switching without slab, register SD
F, BF, and AF are cleared (22 to 24), and the process waits until the tip of the next slab reaches directly below the slab sensor 4 (1).
-7-1 to 7 -... repeated). "Input reading"
In (1), an operator input or an image processing device 8b, 8
When the input from a is read, the processing corresponding to the input (3,
Perform 5).

【0031】図3に、画像処理装置8aの「未溶削長計
測」の内容を示す。画像処理装置8aは、未溶削長計測
モ−ドが指定され実行が指示されると、終了又は停止が
入力されるまで、図3に示す「未溶削長計測」を行な
う。そこではまず、計測コントロ−ラ12から計測指令
が与えられるのを待つ(31)。計測指令が与えられる
と、画像処理装置8aは、ビデオコントロ−ラ7aに画
像信号出力を指示し、ビデオコントロ−ラ7aが定周期
で繰返し出力するライン画像信号を、画素単位で画像デ
−タ(デジタルデ−タ)に変換して1次メモリに書込
む。この実施例では、ライン画像信号の最低輝度レベル
を0、最高輝度レベルを255とする、256階調の画
像デ−タにA/D変換する。
FIG. 3 shows the contents of "measurement of uncut length" of the image processing device 8a. When the uncut length measurement mode is designated and execution is instructed, the image processing device 8a performs "uncut length measurement" shown in FIG. 3 until an end or stop is input. First, it waits for a measurement command from the measurement controller 12 (31). When a measurement command is given, the image processing device 8a instructs the video controller 7a to output an image signal, and outputs a line image signal repeatedly output by the video controller 7a at regular intervals in image data in units of pixels. (Digital data) and writes it to the primary memory. In this embodiment, A / D conversion is performed on image data of 256 gradations where the minimum luminance level of the line image signal is 0 and the maximum luminance level is 255.

【0032】画像処理装置8aは、書込んだライン数を
カウントして、カウント値が設定値になると、計測コン
トロ−ラ12に画像デ−タレディを報知し、計測コント
ロ−ラ12がCRT10aへのデ−タ転送を指示し、画
像処理装置8aは1次メモリの画像デ−タをCRT10
aに出力する(32)。このとき画像処理装置8aは、
計測ウィンドウ位置およびサイズを表わす指標画像を画
像デ−タに重ね合せて転送する(33)。これによりC
RT10aにスラブ先端前後の画像と計測ウィンドウ
(例えば図4)が表示される。オペレ−タはここで、画
像処理装置8aの入出力ボ−ドを操作して、計測ウィン
ドウの位置およびサイズを調整することができる。
The image processing device 8a counts the number of written lines, and when the count value reaches a set value, notifies the measurement controller 12 of the image data ready, and the measurement controller 12 sends the image data ready to the CRT 10a. Data transfer is instructed, and the image processing device 8a transfers the image data of the primary memory to the CRT 10
Output to a (32). At this time, the image processing device 8a
The index image representing the measurement window position and size is transferred while being superimposed on the image data (33). This gives C
An image before and after the slab tip and a measurement window (for example, FIG. 4) are displayed on the RT 10a. Here, the operator can operate the input / output board of the image processing device 8a to adjust the position and size of the measurement window.

【0033】次に画像処理装置8aは、ウィンドウ領域
およびそのy平行辺2辺の外側x方向32画素幅の領域
を含む広幅領域の画像デ−タをチェックして、それが2
0以下の値を示すものであると、0(最低輝度)を表わ
すデ−タに書替えて、21以上の値を示すものであると
そのまま、2次メモリに書込む(34)。次に、ウィン
ドウ領域内画素のそれぞれにつき、それ(注目画素)を
中央とするx方向64画素の画像デ−タの平均値を算出
して、注目画素の画像デ−タを平均値を示すものに書換
える。そして2次メモリ上の処理対象画像デ−タを、ウ
ィンドウ領域内のみに規定する(35)。次に画像処理
装置8aは、2次メモリ上のウィンドウ領域内の画像デ
−タのピ−ク値を検索して、ピ−ク値(高輝度溶削面の
反射輝度)が存在するライン(y値)の画像デ−タの平
均値(x方向並びの平均値:溶削面輝度レベル)を算出
し、2次メモリ上のウィンドウ領域内の画像デ−タのう
ち、この平均値以上の画像デ−タをすべて255(最高
輝度)を表わすデ−タに書替える(36)。
Next, the image processing device 8a checks the image data of the wide area including the window area and the area of the width of 32 pixels in the x direction outside the two sides parallel to the y direction.
If it indicates a value of 0 or less, it is rewritten to data representing 0 (lowest luminance), and if it indicates a value of 21 or more, it is written to the secondary memory as it is (34). Next, for each of the pixels in the window area, the average value of the image data of the 64 pixels in the x direction centered on the pixel of interest (the pixel of interest) is calculated, and the average value of the image data of the pixel of interest is shown. To be rewritten. Then, the processing target image data on the secondary memory is defined only in the window area (35). Next, the image processing device 8a searches for the peak value of the image data in the window area on the secondary memory, and finds the line (y) where the peak value (reflection luminance of the high-luminance welding surface) exists. ) Of the image data in the window area on the secondary memory, and calculates an average value of the image data of the window area on the secondary memory. Rewrite all data to data representing 255 (highest luminance) (36).

【0034】次に画像処理装置8aは、2次メモリ上の
ウィンドウ領域内の画像デ−タの、同一y位置にあるも
のの総和(積算値)を算出し、y位置宛てにテ−ブル
(内部メモリの一領域)に書込む(37)。そしてy位
置のそれぞれにつき、それ(注目位置)を中央とするy
方向3位置の積算値の平均値を算出して、テ−ブル上の
注目位置の積算値を平均値に書換える(38)。これに
よって得られたy各位置の積算値をグラフ表示すると、
図3のステップ38の左側に示すようなグラフが得られ
る。
Next, the image processing device 8a calculates the sum (integrated value) of the image data in the window area on the secondary memory at the same y position, and sends a table (internal) to the y position. (One area of the memory) (37). Then, for each of the y positions, y with its (target position) as the center
The average of the integrated values at the three positions in the direction is calculated, and the integrated value at the target position on the table is rewritten to the average (38). When the integrated value of each y position obtained by this is displayed in a graph,
A graph as shown on the left side of step 38 in FIG. 3 is obtained.

【0035】次に画像処理装置8aは、テ−ブル上の積
算値(平均値)のy方向微分値(隣り合うy位置のy方
向上流側位置の積算値−下流側位置の積算値:正は輝度
立上り、負は輝度立下り)を算出し、最下流(スラブ先
端)側から上流(スラブ尾端)側に微分値をチェックし
て、微分値が設定値以上の正値になって値が上昇してい
る領域のピ−ク値のy位置y1すなわち第1変化点を、
スラブ先端と決定し、次に微分値が負となってその絶対
値が設定値以上で上昇している領域のピ−ク値のy位置
y2すなわち第2変化点を、スラブ上の溶削開始点と決
定し、未溶削長Ly=y2−y1を算出する(39)。
そして計測コントロ−ラ12にデ−タレディを報知す
る。計測コントロ−ラ12はこれに応答して未溶削長L
yデ−タを画像処理装置8aから受けて(40)、それ
にスラブNo.レジスタSNo.のデ−タを付して、下
工程の、図示しない自動研削機に転送する。
Next, the image processing unit 8a calculates the derivative value of the integrated value (average value) on the table in the y direction (the integrated value of the adjacent y position at the upstream position in the y direction−the integrated value of the downstream position: positive). Is the luminance rise, negative is the luminance fall), and the differential value is checked from the most downstream (slab tip) side to the upstream (slab tail end) side. Is the y-position y1 of the peak value in the region where
The slab tip is determined, then the y-position y2 of the peak value in the region where the differential value becomes negative and its absolute value rises above the set value, that is, the second change point, starts the cutting on the slab. The point is determined, and the uncut length Ly = y2-y1 is calculated (39).
Then, the data ready is notified to the measurement controller 12. The measuring controller 12 responds to this by sending the uncut length L
y data is received from the image processing device 8a (40), and the slab No. Register SNo. The data is transferred to an automatic grinding machine (not shown) in the lower step.

【0036】次に画像処理装置8aは、1次メモリにあ
る画像デ−タ群が表わすスラブ画像上の、計測ウィンド
ウ対応位置ならびに算出値y1およびy2に基づいて、
スラブ画像上のy1対応位置(先端と認識した位置)お
よびy2対応位置(溶削始点と認識した位置)を算出
し、それらの位置に表示する標準像および算出した未溶
削長Lyの表示を1次メモリの画像デ−タに重ね合せ
て、CRT10aに出力する(41)。これによりCT
R10aには、図4に示すように、ウィンドウ枠に加え
てスラブ先端標識および溶削始点標識が表示される。以
上の処理を終えると画像処理装置8aは、次の計測指令
を待つ(31)。
Next, the image processing device 8a determines the position corresponding to the measurement window and the calculated values y1 and y2 on the slab image represented by the image data group in the primary memory.
The y1-corresponding position (the position recognized as the tip) and the y2-corresponding position (the position recognized as the cutting start point) on the slab image are calculated, and the standard image displayed at those positions and the display of the calculated uncut length Ly are displayed. The data is superimposed on the image data in the primary memory and output to the CRT 10a (41). This allows CT
As shown in FIG. 4, a slab tip marker and a fusing start marker are displayed on R10a in addition to the window frame. When the above processing is completed, the image processing device 8a waits for the next measurement command (31).

【0037】以上に説明した「未溶削長計測」(図3)
と同様な処理をもう1組の画像処理装置8bが実行す
る。したがってCRT10aにはスラブ1の先端部の下
面像が例えば図4に示すように表示され、CRT10b
にはスラブ1の先端部の上面像が同様に表示される。下
工程の図示しない自動研削機には、スラブ1の先端部の
下面および上面の未溶削長Lyが与えられる。自動研削
機は、与えられた下面の未溶削長をスラブ下面の、先端
からの研削目標長さとして下面の先端部を研削し、ま
た、与えられた上面の未溶削長をスラブ上面の、先端か
らの研削目標長さとして上面の先端部を研削する。
The above-described “measurement of uncut length” (FIG. 3)
Another set of image processing devices 8b executes the same processing as the above. Therefore, a lower surface image of the tip portion of the slab 1 is displayed on the CRT 10a, for example, as shown in FIG.
, A top image of the tip of the slab 1 is similarly displayed. The unmilled length Ly of the lower surface and the upper surface of the leading end of the slab 1 is given to an automatic grinding machine (not shown) in the lower step. The automatic grinding machine grinds the tip of the lower surface with the given uncut length of the lower surface as the target grinding length from the tip of the lower surface of the slab, and also gives the uncut length of the given upper surface to the upper surface of the slab. Then, the top end portion is ground as a target grinding length from the front end.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の構成概要を示すブロック
図であり、スラブ搬送ラインの側面を示す。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention, showing a side surface of a slab transfer line.

【図2】 図1に示す計測コントロ−ラ12の、「計
測」制御の内容を示すフロ−チャ−トである。
FIG. 2 is a flowchart showing the contents of "measurement" control of a measurement controller 12 shown in FIG.

【図3】 図1に示す画像処理装置8aの、「未溶削長
計測」の内容を示すフロ−チャ−トである。
FIG. 3 is a flowchart showing the contents of “measurement of uncut length” of the image processing apparatus 8a shown in FIG. 1;

【図4】 図1に示すCRT10aに表示される画像の
一部分を示す平面図である。
FIG. 4 is a plan view showing a part of an image displayed on the CRT 10a shown in FIG.

【符号の説明】[Explanation of symbols]

1:スラブ 2:ロ−ラ 3:ロ−タリエンコ−ダ 4:スラブセンサ 5a,5b:照明器 6a,6b:ラインカメ
1: Slab 2: Roller 3: Rotary encoder 4: Slab sensor 5a, 5b: Illuminator 6a, 6b: Line camera

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉 浦 雅 人 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 2F065 AA09 AA12 AA21 AA51 BB05 BB11 BB15 CC06 DD06 FF42 FF67 HH12 JJ02 JJ05 JJ08 JJ25 MM03 PP16 QQ03 QQ13 QQ24 QQ25 QQ27 QQ36 QQ42 QQ45 QQ51 SS02 SS06 SS13 TT07  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masato Sugiura 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division F-term (reference) 2F065 AA09 AA12 AA21 AA51 BB05 BB11 BB15 CC06 DD06 FF42 FF67 HH12 JJ02 JJ05 JJ08 JJ25 MM03 PP16 QQ03 QQ13 QQ24 QQ25 QQ27 QQ36 QQ42 QQ45 QQ51 SS02 SS06 SS13 TT07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】y方向に搬送されるスラブに対して、搬送
方向の下流側から上流側に向けて斜めに照明光を投射す
る照明手段;該照明手段が光を投射したスラブ表面を、
搬送方向の上流側から下流側に向けて斜めに撮影する、
視野がスラブ幅方向xに延びる直線状又はスリット状の
ラインカメラ;スラブ先端が前記ラインカメラの視野に
入る前から、ラインカメラの画像デ−タをメモリに書込
み、該メモリに、2次元分布の、スラブの先端が存在し
ない背景ならびにスラブ先端および溶削領域を含むスラ
ブ像、の画像デ−タ群を記憶する画像読込み手段;およ
び、 前記画像デ−タ群に基づいて、低輝度背景から、背景よ
り高輝度の未溶削部であるスラブ先端への第1輝度変化
のy位置と、未溶削部から、それより低輝度の溶削始点
部への第2輝度変化のy位置と、を検出し両位置の差を
未溶削長さとして算出する輝度変化検出手段;を備える
スラブ端部の未溶削長さ検出装置。
An illumination means for projecting illumination light obliquely from a downstream side to an upstream side in a transport direction with respect to a slab transported in a y-direction;
Shoot diagonally from the upstream side to the downstream side in the transport direction,
A linear or slit line camera whose field of view extends in the slab width direction x; before the slab tip enters the field of view of the line camera, image data of the line camera is written to a memory, and a two-dimensional distribution of the data is stored in the memory. Image reading means for storing image data of a slab image including a slab tip and a slab image including a slab tip and an ablated region; and a low-brightness background based on the image data. The y position of the first luminance change to the slab tip, which is the unblown part having a higher luminance than the background, and the y position of the second luminance change from the non-blown part to the fusing start point having a lower luminance, And a brightness change detecting means for calculating a difference between the two positions as an uncut length, and a slab end uncut length detecting device.
【請求項2】スラブの到来を検知するスラブ検出手段;
および、該スラブ到来の検知からスラブ搬送距離計測を
開始して、計測値が、スラブ先端が前記ラインカメラの
視野より設定距離分手前となる値になったときに計測指
令を、前記画像読込み手段に与える計測制御手段;を更
に備え、 前記画像読込み手段は該計測指令に応答して、所定ピッ
チで設定ライン分、前記ラインカメラがライン単位で発
生するビデオ信号のデジタル変換デ−タすなわち画像デ
−タを、前記メモリに書込む、請求項1記載のスラブ端
部の未溶削長さ検出装置。
2. Slab detecting means for detecting the arrival of a slab;
The slab conveyance distance measurement is started from the detection of the arrival of the slab, and when the measured value becomes a value that is a set distance before the slab tip from the visual field of the line camera, the measurement command is sent to the image reading unit. The image reading means responds to the measurement command and converts the video signal generated by the line camera into line units for a set line at a predetermined pitch, that is, image data. 2. The apparatus for detecting an uncut length at the end of a slab according to claim 1, wherein the data is written into the memory.
【請求項3】前記輝度変化検出手段は、前記メモリの画
像デ−タ群が表わす2次元平面上の画像の一部領域を指
定するウィンドウ領域を定め、該ウィンドウ領域に属す
る画像デ−タ群に基づいて、低輝度背景から、背景より
高輝度の未溶削部であるスラブ先端への第1輝度変化の
y位置と、未溶削部から、それより低輝度の溶削始点部
への第2輝度変化のy位置と、を検出し両位置の差を未
溶削長さとして算出する、請求項1記載のスラブ端部の
未溶削長さ検出装置。
3. The brightness change detecting means determines a window area for designating a partial area of an image on a two-dimensional plane represented by the image data group in the memory, and the image data group belonging to the window area. From the low-luminance background, the y-position of the first luminance change from the low-luminance background to the slab tip, which is an uncut portion having a higher luminance than the background, The uncut length detection device at the end of the slab according to claim 1, wherein the y position of the second luminance change is detected, and the difference between the two positions is calculated as the uncut length.
【請求項4】前記画像読込み手段は読込んだ画像デ−タ
群が表わす画像を2次元ディスプレイに表示し、前記輝
度変化検出手段は前記ウィンドウ領域を表わす指標を、
前記2次元ディスプレイの、前記画像の対応位置に表示
する、請求項3記載のスラブ端部の未溶削長さ検出装
置。
4. The image reading means displays an image represented by the read image data group on a two-dimensional display, and the luminance change detecting means displays an index representing the window area.
The apparatus for detecting an uncut length of an end portion of a slab according to claim 3, wherein the apparatus displays the uncut length at a position corresponding to the image on the two-dimensional display.
【請求項5】前記画像読込み手段は読込んだ画像デ−タ
群が表わす画像を2次元ディスプレイに表示し、前記輝
度変化検出手段は、第1および第2輝度変化のy位置を
表わす標識を、前記2次元ディスプレイの、前記画像の
対応位置に表示する、請求項1,請求項2,請求項3又
は請求項4記載のスラブ端部の未溶削長さ検出装置。
5. The image reading means displays an image represented by the read image data group on a two-dimensional display, and the luminance change detecting means displays a sign indicating the y position of the first and second luminance changes. 5. The apparatus for detecting uncut length of an end of a slab according to claim 1, wherein said apparatus is displayed at a position corresponding to said image on said two-dimensional display.
JP11070950A 1999-03-16 1999-03-16 Device for detecting un-hot-scarfed length of end section of slab Withdrawn JP2000266516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11070950A JP2000266516A (en) 1999-03-16 1999-03-16 Device for detecting un-hot-scarfed length of end section of slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11070950A JP2000266516A (en) 1999-03-16 1999-03-16 Device for detecting un-hot-scarfed length of end section of slab

Publications (1)

Publication Number Publication Date
JP2000266516A true JP2000266516A (en) 2000-09-29

Family

ID=13446307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11070950A Withdrawn JP2000266516A (en) 1999-03-16 1999-03-16 Device for detecting un-hot-scarfed length of end section of slab

Country Status (1)

Country Link
JP (1) JP2000266516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473682B1 (en) * 2000-09-04 2005-03-07 주식회사 포스코 Variously formed slab width measuring apparatus and its method
KR100920566B1 (en) * 2007-07-27 2009-10-08 주식회사 포스코 Device and method for measuring the bending ratio of slab
KR100920565B1 (en) * 2007-07-27 2009-10-08 주식회사 포스코 System and method for measuring the thickness, chine and floor of slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473682B1 (en) * 2000-09-04 2005-03-07 주식회사 포스코 Variously formed slab width measuring apparatus and its method
KR100920566B1 (en) * 2007-07-27 2009-10-08 주식회사 포스코 Device and method for measuring the bending ratio of slab
KR100920565B1 (en) * 2007-07-27 2009-10-08 주식회사 포스코 System and method for measuring the thickness, chine and floor of slab

Similar Documents

Publication Publication Date Title
US8401274B2 (en) Image processing apparatus and method
US7019713B2 (en) Methods and measurement engine for aligning multi-projector display systems
US6906702B1 (en) Coordinate input device and its control method, and computer readable memory
JP5680976B2 (en) Electronic blackboard system and program
US20070091334A1 (en) Method of calculating correction data for correcting display characteristic, program for calculating correction data for correcting display characteristic and apparatus for calculating correction data for correcting display characteristic
KR101674131B1 (en) Alignment method, alignment device, and exposure device
EP2784746A1 (en) Setting up an area sensing imaging system to capture single line images
JPWO2015166797A1 (en) Color measuring device and color measuring method
JPH11248641A (en) Device and method for inspecting surface defect
US20110032557A1 (en) Printing
CN102262733B (en) Laser point detection method and apparatus thereof
CN112203069B (en) Wide-screen projection method and system based on camera and readable storage medium
CN113141491B (en) Projection method, system and storage medium based on monochromatic light reference line emitter
JP2009115715A (en) Apparatus for measuring length of tread rubber of tire
JP5261847B2 (en) Alignment method, alignment apparatus, and exposure apparatus
JP2000266516A (en) Device for detecting un-hot-scarfed length of end section of slab
JP2003185419A (en) Method and apparatus for measuring warpage shape
JPH1082617A (en) Apparatus for measuring length of long object
KR20110100568A (en) Method and system for shroud nozzle centering guidance
JP2017225094A (en) Image reading device and image reading program
US11831831B2 (en) Image reading apparatus and method of creating correction data
JPH10197455A (en) Surface defect inspection device
JP2001012920A (en) Shape detector
JPH0736005A (en) Inspecting device for liquid crystal panel
JP6083807B2 (en) Image processing apparatus and image forming system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606