JP2000262892A - Adsorbent and air conditioner for vehicle - Google Patents

Adsorbent and air conditioner for vehicle

Info

Publication number
JP2000262892A
JP2000262892A JP11076667A JP7666799A JP2000262892A JP 2000262892 A JP2000262892 A JP 2000262892A JP 11076667 A JP11076667 A JP 11076667A JP 7666799 A JP7666799 A JP 7666799A JP 2000262892 A JP2000262892 A JP 2000262892A
Authority
JP
Japan
Prior art keywords
adsorbent
water
organic substance
adsorption
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11076667A
Other languages
Japanese (ja)
Other versions
JP4158270B2 (en
Inventor
Koji Inagaki
孝治 稲垣
Masaru Urushibara
勝 漆原
Kin Kono
欣 河野
Atsushi Kosaka
淳 小坂
Hideaki Sato
英明 佐藤
Yoshiki Nakajo
善樹 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP07666799A priority Critical patent/JP4158270B2/en
Priority to US09/527,713 priority patent/US6562754B1/en
Publication of JP2000262892A publication Critical patent/JP2000262892A/en
Application granted granted Critical
Publication of JP4158270B2 publication Critical patent/JP4158270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve water absorption efficiency in a low humidity condition by forming an adsorbent which desorbs water by heating and adsorbs water by cooling as a porous composite comprising an organic substance which generates a sol-gel phase transition by a temperature change and an inorganic substance having three-dimensional network structure. SOLUTION: An adsorbent which adsorbs water when temperature is low and humidity is high and desorbs water when temperature is high and humidity is low is formed as a porous composite comprising an organic substance which generates a sol-gel phase transition by a temperature change and an inorganic substance having three-dimensional network structure. In the three-dimensional structure of the inorganic substance, the organic substance is dispersed. For example, in the adsorption type refrigeration cycle 100 of an air conditioner for vehicles, cooling water for an engine E is circulated to the heat exchange part 301 of an adsorption core 30 through a fluid circulating passage (a), and water is desorbed by heating the adsorbent S of the adsorption core 30. By cooling another adsorption core 20 by an adsorption core cooler 25, water is adsorbed by the adsorbent S.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,冷却,加熱されることにより吸
着剤が水を吸着,脱着することを利用した,吸着剤及び
その製造方法,並びにこれを用いた車両用空調装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorbent and a method for producing the adsorbent, which utilizes the fact that an adsorbent adsorbs and desorbs water when cooled and heated, and a vehicle air conditioner using the same.

【0002】[0002]

【従来技術】従来より,吸着式冷凍装置としては,冷却
時に水を吸着し,加熱されると水を脱離させる吸着剤を
有する吸着コアと,水を蒸発,凝縮させる蒸発凝縮器と
を設けたものが知られている。このような冷凍装置で
は,吸着コアによって水が吸着されると,蒸発凝縮器に
て水が蒸発する。この際,蒸発凝縮器において水と熱交
換されて冷却された熱交換流体を,他の部分に配設した
室内熱交換器に循環させることによって,室内の空気を
冷却することができる。
2. Description of the Related Art Conventionally, an adsorption-type refrigeration apparatus includes an adsorption core having an adsorbent for adsorbing water during cooling and releasing water when heated, and an evaporating condenser for evaporating and condensing water. Are known. In such a refrigerator, when water is adsorbed by the adsorption core, the water evaporates in the evaporative condenser. At this time, the indoor air can be cooled by circulating the heat exchange fluid, which has been cooled by heat exchange with water in the evaporative condenser, to the indoor heat exchanger provided in another portion.

【0003】また,水が吸着した吸着コアは加熱され,
水を脱離させることによって再生される。この際,脱離
された水は蒸発凝縮器において凝縮される。このような
吸着式冷凍装置を車両などに搭載する場合,吸着コアか
ら水を脱離させる際の加熱源としては,例えばエンジン
冷却水(約90℃程度)が用いられる。
[0003] Further, the adsorption core to which water is adsorbed is heated,
Regenerated by desorbing water. At this time, the desorbed water is condensed in the evaporative condenser. When such an adsorption refrigeration apparatus is mounted on a vehicle or the like, for example, engine cooling water (about 90 ° C.) is used as a heating source for desorbing water from the adsorption core.

【0004】一方,吸着コアを冷却し,水を吸着させる
際の吸熱源としては,例えば,室外熱交換器において冷
却されたエンジン冷却水(約30℃程度)や,別に設け
られた蒸気圧縮式冷凍サイクルの低圧側水(例えば20
〜25℃程度)によって冷却された熱交換流体などが用
いられる。そのため,上述した吸着式冷凍装置を車両用
空調装置に適用する場合,吸着剤付近の相対湿度が0.
08〜0.30となる範囲で水の脱離・吸着が行われ
る。
On the other hand, as a heat absorbing source for cooling the adsorption core and adsorbing water, for example, engine cooling water (about 30 ° C.) cooled in an outdoor heat exchanger or a separately provided vapor compression type Low pressure side water (for example, 20
(About 25 ° C.) is used. Therefore, when the above-mentioned adsorption refrigeration apparatus is applied to an air conditioner for a vehicle, the relative humidity near the adsorbent is 0.1%.
Desorption / adsorption of water is performed in the range of 08 to 0.30.

【0005】従来,上記吸着式冷凍装置に用いられる吸
着剤としては,例えば,酸化珪素を焼成させて得られる
シリカゲルなどが用いられていた。
Conventionally, as an adsorbent used in the above-mentioned adsorption refrigerating apparatus, for example, silica gel obtained by firing silicon oxide has been used.

【0006】[0006]

【解決しようとする課題】しかしながら,シリカゲル
は,細孔径が広い範囲にわたって一様に分布しており,
特に小さい細孔径(2nm以下)の占める細孔容積が少
ない。このため,シリカゲルを吸水材として用いる場合
には,低湿度での吸水効率が悪い。また,ゼオライト
は,細孔径が比較的小さく,均一であるが,水との相互
作用が大きいため,脱水に多くの熱量を必要とする。こ
のような理由から,ゼオライトを吸水材として用いる場
合には,水の吸脱着効率が非常に低くなる。また,ゼオ
ライトを水冷媒用エアコンディショナーの吸水材として
使用する場合には,製品の体格が大きくなり,用途が限
定される。
[Problems to be solved] However, silica gel has a uniform pore size distribution over a wide range,
In particular, the pore volume occupied by a small pore diameter (2 nm or less) is small. Therefore, when silica gel is used as the water absorbing material, the water absorbing efficiency at low humidity is poor. In addition, zeolite has a relatively small pore size and is uniform, but requires a large amount of heat for dehydration because of its large interaction with water. For these reasons, when zeolite is used as the water absorbing material, the efficiency of water absorption / desorption is very low. Further, when zeolite is used as a water-absorbing material for an air conditioner for a water refrigerant, the size of the product is increased, and the use is limited.

【0007】本発明はかかる従来の問題点に鑑み,低湿
度での吸水効率が高く,効率よく水の吸脱着を行うこと
ができる,吸着剤及びその製造方法,並びにこれを用い
た車両用空調装置を提供しようとするものである。
SUMMARY OF THE INVENTION In view of the conventional problems, the present invention has an adsorbent having high water absorption efficiency at low humidity and capable of efficiently adsorbing and desorbing water, a method for producing the same, and a vehicle air conditioner using the same. It is intended to provide a device.

【0008】[0008]

【課題の解決手段】本発明は,請求項1記載のように,
加熱されることにより水を脱離させ,冷却されることに
より水を吸着させる吸着剤であって,該吸着剤は,温度
変化によってゾル−ゲル相転移を生じ得る有機物と,三
次元ネットワーク構造を有する無機物とからなる多孔質
複合体であって,上記無機物の三次元ネットワーク構造
の中に上記有機物が分散していることを特徴とする吸着
剤である。
According to the present invention, as set forth in claim 1,
An adsorbent that desorbs water when heated and adsorbs water when cooled. The adsorbent is composed of an organic substance that can cause a sol-gel phase transition due to a temperature change and a three-dimensional network structure. An adsorbent, which is a porous composite comprising an inorganic substance having the organic substance dispersed in a three-dimensional network structure of the inorganic substance.

【0009】本発明の作用及び効果について説明する。
本発明の吸着剤は,多孔質複合体であり,毛管凝縮とゾ
ル−ゲル相転移との併用により水を吸着,脱離する。吸
着剤のゾル−ゲル相転移は,温度変化により生じる。こ
こに「温度変化によるゾル−ゲル相転移」とは,相転移
温度よりも温度が高い場合にはゾルに,低い場合にはゲ
ルに変化することをいう。この現象に伴ない,吸着剤
が,低温において水を吸着して膨潤し,高温において水
を脱離して収縮する現象が生じる。この水の吸着・脱離
は可逆的に起こり,吸着する温度と脱離する温度との間
に上記相転移温度がある。
The operation and effect of the present invention will be described.
The adsorbent of the present invention is a porous composite, and adsorbs and desorbs water by a combination of capillary condensation and sol-gel phase transition. The sol-gel phase transition of the adsorbent is caused by a change in temperature. Here, the “sol-gel phase transition due to temperature change” means that when the temperature is higher than the phase transition temperature, the phase changes to a sol, and when the temperature is lower than the phase transition temperature, the phase changes to a gel. Along with this phenomenon, a phenomenon occurs in which the adsorbent absorbs water at a low temperature and swells, and desorbs and shrinks at a high temperature. The adsorption / desorption of water occurs reversibly, and the above-mentioned phase transition temperature is between the temperature at which the water is adsorbed and the temperature at which the water is desorbed.

【0010】この現象を,吸着剤としてN−イソプロピ
ルアクリルアミドの架橋重合体を用いた場合を例にとっ
て説明する。図1に示すごとく,N−イソプロピルアク
リルアミドの架橋重合体は,ゾル−ゲル相転移温度が3
5℃付近にあり,それよりも低い温度(たとえば,20
℃)ではゲル,高い温度(例えば40℃)ではゾルとな
る。
This phenomenon will be described by taking as an example a case where a crosslinked polymer of N-isopropylacrylamide is used as an adsorbent. As shown in FIG. 1, the crosslinked polymer of N-isopropylacrylamide has a sol-gel phase transition temperature of 3
At a temperature lower than 5 ° C (for example, 20 ° C).
C.), and becomes a sol at a high temperature (for example, 40 ° C.).

【0011】ゾル−ゲル相転移温度よりも低温で多湿の
場合には,水分子が,まず毛細管現象により多孔質吸着
剤の細孔内に入っていく。このとき,多くの水分子が,
細孔壁内の有機物のポリマー鎖の周りに吸着され,細孔
内も水で満たされる。次に,この状態から温度を上昇さ
せ湿度を減少させると,細孔内の水分子が脱着され,そ
の後に細孔壁内に吸着されている水分子がゾル−ゲル相
転移により脱離される。
When the temperature is lower than the sol-gel phase transition temperature and the humidity is high, water molecules first enter the pores of the porous adsorbent by capillary action. At this time, many water molecules are
It is adsorbed around the organic polymer chains in the pore walls, and the pores are also filled with water. Next, when the temperature is increased and the humidity is decreased from this state, the water molecules in the pores are desorbed, and then the water molecules adsorbed in the pore walls are desorbed by the sol-gel phase transition.

【0012】このように,本発明の吸着剤は,湿度変化
の毛細管現象により吸着量の差を起こす機能と,温度変
化によりゾル−ゲル相転移を起こす機能とを併せもって
いる。したがって,本発明の吸着剤は,吸着剤のゾル−
ゲル相転移温度よりも低い温度で且つ高い湿度の環境下
において,水を吸着し,高い温度で低い湿度の環境下に
おいて水を脱離することができる。それゆえ,この2つ
の機能を併有する本発明の吸着剤は,2つの機能を単独
で用いる場合よりも,高い吸着・脱離性能を発揮する。
したがって,本発明の吸着剤は,水の吸脱着性能に優れ
ている。
As described above, the adsorbent of the present invention has both a function of causing a difference in the amount of adsorption due to a capillary phenomenon due to a change in humidity and a function of causing a sol-gel phase transition due to a change in temperature. Therefore, the adsorbent of the present invention can be used as a sol of the adsorbent.
Water can be adsorbed in an environment at a temperature lower than the gel phase transition temperature and in a high humidity, and desorbed in an environment at a high temperature and a low humidity. Therefore, the adsorbent of the present invention having both these functions exhibits higher adsorption / desorption performance than when the two functions are used alone.
Therefore, the adsorbent of the present invention has excellent water adsorption / desorption performance.

【0013】以上のように,本発明によれば,低湿度で
の吸水効率が高く,効率よく水の吸脱着を行うことがで
きる吸着剤を提供することができる。
As described above, according to the present invention, it is possible to provide an adsorbent having high water absorption efficiency at low humidity and capable of efficiently adsorbing and desorbing water.

【0014】本発明の有機物は,温度変化によってゾル
−ゲル相転移を起こす性質を有する。かかる有機物とし
ては,たとえば,請求項2記載のように,上記有機物
は,分子内に親水基と疎水基とを有するポリマーである
ことが好ましい。これにより,水の吸脱着を効率よく行
うことができる。
The organic substance of the present invention has a property of causing a sol-gel phase transition by a change in temperature. As such an organic substance, for example, the organic substance is preferably a polymer having a hydrophilic group and a hydrophobic group in a molecule. Thereby, the adsorption and desorption of water can be performed efficiently.

【0015】請求項3記載のように,上記有機物は架橋
重合体であることが好ましい。架橋重合体は,水吸着時
に溶媒和を生じて膨潤する性質を有するが,本発明にお
いては,かかる膨潤性の架橋重合体を無機物の三次元ネ
ットワーク構造の中に分散させている。これにより,架
橋重合体が,無機物の三次元ネットワーク構造の網目を
縫うようにして配置されることになる。そのため,無機
物の三次元ネットワーク構造が,架橋重合体の堅固な支
持体として機能し,架橋重合体を捕捉する。それゆえ,
架橋重合体は無機物の上記構造から流出しない。このた
め,水吸着時に架橋重合体が膨潤することを極力抑制で
き,フリーの架橋重合体ほどは膨潤しない。従って,吸
着剤を収容する吸着コアの小型化を図ることができる。
上記「架橋重合体」とは,架橋結合により重合体が互い
に連結し合っているポリマーをいう。
[0015] As described in claim 3, the organic substance is preferably a crosslinked polymer. The crosslinked polymer has a property of swelling due to solvation upon water adsorption. In the present invention, such a swellable crosslinked polymer is dispersed in a three-dimensional network structure of an inorganic substance. Thereby, the crosslinked polymer is arranged so as to sew the mesh of the inorganic three-dimensional network structure. Therefore, the three-dimensional network structure of the inorganic material functions as a solid support for the crosslinked polymer, and captures the crosslinked polymer. therefore,
The crosslinked polymer does not flow out of the inorganic structure. For this reason, the swelling of the crosslinked polymer during water adsorption can be suppressed as much as possible, and it does not swell as much as the free crosslinked polymer. Therefore, the size of the suction core for containing the adsorbent can be reduced.
The above “crosslinked polymer” refers to a polymer in which the polymers are linked to each other by a crosslinking bond.

【0016】請求項4記載のように,上記有機物は,ポ
リ(N−イソプロピルアクリルアミド),ポリ(N−t
−ブチルアクリルアミド),ポリ(N,N−ジメチルア
クリルアミド),ポリ(N,N−ジエチルアクリルアミ
ド),ポリエチレングリコール,セルロース,若しくは
ポリメチルビニルエーテルからなる重合体,または該重
合体のいずれか1種以上を架橋させてなる架橋重合体か
ら選ばれる1種または2種以上からなることが好まし
い。これにより,水の吸着・脱離を効率よく行うことが
できる。また,上記有機物のゾル−ゲル相転移温度は,
30〜60℃であることが好ましい。これにより,使用
環境に適して水の吸着脱離を行うことができる。
According to a fourth aspect of the present invention, the organic material is poly (N-isopropylacrylamide), poly (Nt
-Butylacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-diethylacrylamide), polyethylene glycol, cellulose, or a polymer composed of polymethyl vinyl ether, or any one or more of such polymers. It is preferable that it is composed of one or more selected from crosslinked polymers obtained by crosslinking. Thereby, water can be efficiently adsorbed and desorbed. The sol-gel phase transition temperature of the above organic substance is
The temperature is preferably from 30 to 60 ° C. Thereby, water can be adsorbed and desorbed in a suitable environment for use.

【0017】また,上記無機物は,三次元ネットワーク
構造を有することが必要である。かかる無機物として
は,たとえば,請求項5記載のように,シリカ(SiO
),アルミナ(Al),チタニア(Ti
),またはジルコニア(ZrO)から選ばれる1
種または2種以上を用いることができる。また,上記,
「三次元ネットワーク構造」とは,三次元的に網目状の
構造をもった堅牢な構造をいう。
Further, the inorganic substance needs to have a three-dimensional network structure. As such an inorganic substance, for example, silica (SiO 2)
2 ), alumina (Al 2 O 3 ), titania (Ti
O 2 ) or 1 selected from zirconia (ZrO 2 )
Species or two or more can be used. In addition,
“Three-dimensional network structure” refers to a robust structure having a three-dimensional network structure.

【0018】上記吸着剤は,上記有機物と無機物とから
なる多孔質複合体である。かかる多孔質複合体の細孔特
性は,細孔径が1.0nm〜1.5nmの範囲の細孔容
積が0.20cm/g以上であることが好ましい。こ
れにより,水の吸着・脱離を効率よく行うことができ
る。
The adsorbent is a porous composite comprising the organic substance and the inorganic substance. Regarding the pore characteristics of such a porous composite, the pore volume is preferably 0.20 cm 3 / g or more when the pore diameter is in the range of 1.0 nm to 1.5 nm. Thereby, water can be efficiently adsorbed and desorbed.

【0019】次に,上記吸着剤を製造するに当たって
は,たとえば,請求項6記載のように,無機物の三次元
ネットワーク構造の中において,温度変化によってゾル
ーゲル相転移を生じ得る有機物と,溶媒抽出可能な有機
物とを相溶させて,上記無機物と上記ゾルーゲル相転移
を生じ得る有機物と上記溶媒抽出可能な有機物とからな
る複合体を得る工程と,上記複合体から上記溶媒抽出可
能な有機物を溶媒抽出して上記複合体を多孔質体とする
工程とからなることを特徴とする吸着剤の製造方法があ
る。
Next, in producing the adsorbent, for example, an organic substance capable of causing a sol-gel phase transition due to a temperature change in a three-dimensional network structure of an inorganic substance and a solvent-extractable solvent are described. Obtaining a complex comprising the inorganic substance, the organic substance capable of causing the sol-gel phase transition, and the solvent-extractable organic substance, and extracting the solvent-extractable organic substance from the composite substance. And then converting the composite to a porous body.

【0020】本発明においては,溶媒抽出可能な有機
物,ゾル−ゲル相転移を生じ得る有機物及び三次元ネッ
トワーク構造を有する無機物を混合して3元系ハイブリ
ッドからなる複合体を形成し,その後溶媒抽出可能な有
機物を溶媒抽出で除去している。これにより,無機物の
三次元ネットワーク構造の中に,ゾル−ゲル相転移を生
じ得る有機物を残した,多数の細孔を有する多孔質複合
体を得ることができる。以上により,上記の優れた性質
を有する吸着剤を製造することができる。
In the present invention, an organic substance which can be extracted with a solvent, an organic substance which can cause a sol-gel phase transition, and an inorganic substance having a three-dimensional network structure are mixed to form a complex comprising a ternary hybrid, and thereafter the solvent is extracted. Possible organics are removed by solvent extraction. As a result, a porous composite having a large number of pores can be obtained in which an organic substance capable of causing a sol-gel phase transition is left in an inorganic three-dimensional network structure. As described above, an adsorbent having the above excellent properties can be manufactured.

【0021】また,かかる溶媒抽出可能な有機物によっ
て細孔を有する多孔質複合体を形成する方法は,製造工
程中において該有機物の回収が可能となり,また,焼失
させて除去する場合に比べて,無機物中の水酸基が残り
やすい。そのため,その水酸基と水との水素結合が生じ
やすくなり,水の吸着効率が良くなる。
In addition, the method of forming a porous composite having pores by using such an organic substance which can be extracted with a solvent makes it possible to recover the organic substance during the manufacturing process, and to remove the organic substance by burning it out. Hydroxyl groups in inorganic substances tend to remain. Therefore, a hydrogen bond between the hydroxyl group and water is easily generated, and the water adsorption efficiency is improved.

【0022】溶媒抽出可能な有機物としては,たとえ
ば,ポリ(N,N−ジメチルアクリルアミド),ポリ
(N−イソプロピルアクリルアミド),ポリ(N−t−
ブチルアクリルアミド),ポリ(N,N−ジメチルアク
リルアミド),ポリ(N,N−ジエチルアクリルアミ
ド),ポリスチレン類,ポリ塩化ビニル,ポリ(2−メ
チル−2−オキサゾリン),ポリ(2−エチル−2−オ
キサゾリン),またはポリ(1−ビニル−2−ピロリド
ン)から選ばれる1種または2種以上からなるものを用
いることができる。これにより,水または有機溶媒によ
る抽出が可能となる。
Examples of the organic substance that can be extracted with a solvent include poly (N, N-dimethylacrylamide), poly (N-isopropylacrylamide) and poly (Nt-t-acrylamide).
Butylacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-diethylacrylamide), polystyrenes, polyvinyl chloride, poly (2-methyl-2-oxazoline), poly (2-ethyl-2- Oxazoline) or poly (1-vinyl-2-pyrrolidone) can be used. This allows extraction with water or an organic solvent.

【0023】また,請求項7記載のように,上記複合体
を得る工程において,上記無機物及び上記溶媒抽出可能
な有機物の存在下で,ゾル−ゲル相転移を生じ得る有機
物となり得る未架橋物質を架橋させることが好ましい。
上記未架橋物質を,上記無機物及び溶媒抽出可能な有機
物と混合すると,無機物の三次元ネットワーク構造の中
で未架橋物質と上記溶媒抽出可能な有機物とが相溶す
る。この状態で未架橋物質に架橋反応を起こさせると,
架橋重合体が三次元ネットワーク構造の網目の中で分散
した状態で形成される。このため,これらの複合体から
溶媒抽出可能な有機物を除去すると,架橋重合体が,三
次元ネットワーク構造に捕捉,支持されることになる。
それゆえ,架橋重合体は無機物の三次元ネットワーク構
造から流出せず,水吸着時に架橋重合体が膨潤すること
を極力抑制できる。従って,吸着剤を収容する吸着コア
の小型化を図ることができる。
According to a seventh aspect of the present invention, in the step of obtaining the complex, an uncrosslinked substance which can be an organic substance capable of causing a sol-gel phase transition in the presence of the inorganic substance and the organic substance which can be extracted by a solvent is used. Crosslinking is preferred.
When the uncrosslinked substance is mixed with the inorganic substance and the solvent-extractable organic substance, the uncrosslinked substance and the solvent-extractable organic substance are compatible in the three-dimensional network structure of the inorganic substance. When a cross-linking reaction occurs in the uncross-linked material in this state,
The crosslinked polymer is formed in a state of being dispersed in the network of the three-dimensional network structure. Therefore, when the solvent extractable organic matter is removed from these complexes, the crosslinked polymer is captured and supported by the three-dimensional network structure.
Therefore, the crosslinked polymer does not flow out of the three-dimensional network structure of the inorganic substance, and swelling of the crosslinked polymer upon water adsorption can be suppressed as much as possible. Therefore, the size of the suction core for containing the adsorbent can be reduced.

【0024】上記未架橋物質は,モノマーでも重合体で
もよい。モノマーの場合には,無機物の三次元ネットワ
ーク構造の中で,重合と架橋とが行われる。重合体の場
合には,無機物の三次元ネットワーク構造の中で,架橋
が行われる。未架橋物質としては,ポリ(N−イソプロ
ピルアクリルアミド),ポリ(N−t−ブチルアクリル
アミド),ポリ(N,N−ジメチルアクリルアミド),
ポリ(N,N−ジエチルアクリルアミド),ポリエチレ
ングリコール,セルロース,若しくはポリメチルビニル
エーテルからなる重合体がある。また,上記「未架橋物
質を架橋させる」とは,架橋剤などにより重合体同士を
架橋させること,または架橋剤及び重合剤などにより,
モノマーを重合させるとともに重合により得られた重合
体の架橋を行うことをいう。
The uncrosslinked material may be a monomer or a polymer. In the case of a monomer, polymerization and crosslinking are performed in a three-dimensional network structure of an inorganic substance. In the case of a polymer, crosslinking is performed in a three-dimensional network structure of an inorganic substance. Uncrosslinked materials include poly (N-isopropylacrylamide), poly (Nt-butylacrylamide), poly (N, N-dimethylacrylamide),
There is a polymer made of poly (N, N-diethylacrylamide), polyethylene glycol, cellulose, or polymethyl vinyl ether. In addition, "crosslinking an uncrosslinked substance" means that polymers are crosslinked with each other by a crosslinking agent or the like, or by a crosslinking agent and a polymerizing agent.
It means that the monomer is polymerized and the polymer obtained by the polymerization is crosslinked.

【0025】次に,上記吸着剤を用いた車両用空調装置
としては,請求項8記載のように,吸着剤を設けた吸着
コアと,該吸着コアの温度を制御するための温度調節機
構と,蒸発凝縮器と,室内熱交換器と,上記吸着コアと
上記蒸発凝縮器との間に水を循環させる連通部と,上記
蒸発凝縮器と上記室内熱交換器との間に熱交換流体を循
環させる循環路とからなり,上記吸着剤は,加熱される
ことにより水を脱離させ,冷却されることにより水を吸
着させる性質を有し,上記蒸発凝縮器は,上記吸着コア
によって水が吸着されるときに水を蒸発させ,上記吸着
コアによって水が脱離するときに水を凝縮させ,上記熱
交換流体は,上記蒸発凝縮器において水の蒸発により蒸
発潜熱を奪われることにより冷却され,上記室内熱交換
器において車室内空気と熱交換を行う車両用空調装置で
あって,上記吸着剤は,請求項1〜5のいずれか1項に
記載の吸着剤であることを特徴とする車両用空調装置が
ある。
Next, as a vehicle air conditioner using the adsorbent, there is provided an adsorbent core provided with an adsorbent, and a temperature control mechanism for controlling the temperature of the adsorbent core. An evaporating condenser, an indoor heat exchanger, a communicating portion for circulating water between the adsorption core and the evaporating condenser, and a heat exchange fluid between the evaporating condenser and the indoor heat exchanger. The adsorbent has the property of desorbing water by heating and adsorbing water by cooling. The water is evaporated when adsorbed, and condensed when the water is desorbed by the adsorption core. The heat exchange fluid is cooled by depriving the latent heat of evaporation by evaporation of the water in the evaporative condenser. , In the above-mentioned indoor heat exchanger A vehicle air conditioner for performing air heat exchanger, the adsorbent is a vehicle air conditioner which is a sorbent according to any one of claims 1 to 5.

【0026】本車両用空調装置に設けられた吸着剤は,
温度調節機構により適宜加熱,冷却が繰り返されるよう
に制御されている。温度調節機構が吸着コアの温度を低
くした場合には,吸着コア内の吸着剤は,吸着コア,連
通部及び蒸発凝縮器における水を吸着する。連通部の湿
度が下がり,それにともない内部気圧も下がる。これに
より,蒸発凝縮器における液体の水も蒸発する。この
際,蒸発凝縮器における熱交換流体が蒸発水により潜熱
を奪われ冷却される。冷却された熱交換流体は,室内熱
交換器に流れ,そこで車室内空気と熱交換を行い,車室
内を冷房する。
The adsorbent provided in the vehicle air conditioner includes:
The temperature control mechanism is controlled so that heating and cooling are repeated as appropriate. When the temperature control mechanism lowers the temperature of the adsorption core, the adsorbent in the adsorption core adsorbs water in the adsorption core, the communication section, and the evaporative condenser. The humidity in the communication section decreases, and the internal pressure decreases accordingly. Thereby, the liquid water in the evaporative condenser also evaporates. At this time, the heat exchange fluid in the evaporative condenser is deprived of latent heat by the evaporating water and cooled. The cooled heat exchange fluid flows to the indoor heat exchanger, where it exchanges heat with the vehicle interior air to cool the vehicle interior.

【0027】一方,温度調節機構が吸着コアの温度を高
くした場合には,吸着剤に吸着していた水が気化し吸着
剤から脱離して,吸着剤が再生される。一方,気化した
水は,連通部を介して蒸発凝縮器に流れ,そこで熱交換
流体に熱を奪われて凝縮し液体の水となる。
On the other hand, when the temperature adjusting mechanism raises the temperature of the adsorption core, the water adsorbed on the adsorbent evaporates and desorbs from the adsorbent, and the adsorbent is regenerated. On the other hand, the vaporized water flows to the evaporative condenser through the communicating portion, where the heat exchange fluid deprives the heat of the heat and condenses into liquid water.

【0028】そこで,温度調節機構により吸着コアの温
度サイクルを繰り返すと,上記のごとく,吸着剤による
水の吸着脱離,及びそれに対応して生じる蒸発凝縮器に
おける水の蒸発・液化,更には水蒸発時の潜熱による熱
交換流体の冷却が連続して起こる。また,熱交換器にお
いて車室内空気と熱交換を行うと,車室内が冷房され
る。このように,本装置によれば,温度調節機構により
吸着コアの温度の高低を所定時間の間隔で繰り返すこと
により,車室内の連続冷房を行うことができる。
Therefore, when the temperature cycle of the adsorption core is repeated by the temperature control mechanism, as described above, the adsorption and desorption of water by the adsorbent and the corresponding evaporation and liquefaction of water in the evaporative condenser, Cooling of the heat exchange fluid by the latent heat during evaporation occurs continuously. Further, when the heat exchanger exchanges heat with the vehicle interior air, the vehicle interior is cooled. As described above, according to the present apparatus, continuous cooling of the vehicle interior can be performed by repeatedly increasing and decreasing the temperature of the suction core at predetermined time intervals by the temperature adjustment mechanism.

【0029】本装置は,上記のごとく水の吸着脱離性能
に優れた吸着剤を用いている。この吸着剤は,吸着コア
の熱と蒸発凝縮器との間を循環する水の吸着・脱離を効
率よく行う。従って,本装置によれば,一層優れた冷却
効果を発揮する車両用空調装置を提供することができ
る。
This apparatus uses an adsorbent having excellent water adsorption / desorption performance as described above. This adsorbent efficiently adsorbs and desorbs water circulating between the heat of the adsorption core and the evaporative condenser. Therefore, according to the present device, it is possible to provide an air conditioner for a vehicle that exhibits a more excellent cooling effect.

【0030】本装置において,上記温度調節機構は,加
熱源と吸熱源とを備えている。加熱源としては,例え
ば,エンジン冷却後のエンジン冷却水を用いることがで
きる。また,吸熱源としては,例えば,室外で冷却した
後のエンジン冷却水,冷凍サイクルを用いることができ
る。吸着コアは,たとえば,伝熱性の良い支持体に吸着
剤を収容したものを用いることができる。吸着コア,蒸
発凝縮器,及び両者の間の水潤滑を行う連通部は,1組
であってもよいが,複数組であってもよい。
In the present apparatus, the temperature adjusting mechanism has a heating source and a heat absorbing source. As the heating source, for example, engine cooling water after engine cooling can be used. Further, as the heat absorbing source, for example, engine cooling water after cooling outdoors and a refrigeration cycle can be used. As the adsorption core, for example, a core in which an adsorbent is accommodated in a support having good heat conductivity can be used. The adsorbing core, the evaporative condenser, and the communicating portion that performs water lubrication between the adsorbing core and the evaporating condenser may be one set, or a plurality of sets.

【0031】温度調節機構は,吸着コア内の吸着剤の温
度を,吸着剤のゾル−ゲル相転移温度よりも低い温度
と,高い温度との間で,温度サイクルを所定時間ごとに
繰り返すようにされていることが好ましい。これによ
り,本発明の吸着剤の水の吸着・脱離性能を効果的に発
揮でき,効率よく車室内を冷房できる。
The temperature control mechanism controls the temperature of the adsorbent in the adsorption core between a temperature lower than the sol-gel phase transition temperature of the adsorbent and a temperature higher than the sol-gel phase transition temperature at predetermined time intervals. It is preferred that Thereby, the water adsorption / desorption performance of the adsorbent of the present invention can be effectively exhibited, and the vehicle interior can be efficiently cooled.

【0032】また,1回あたりの温度サイクルの所要時
間は,例えば1〜30分であることが好ましい。1分未
満の場合には,吸着剤への水吸着が不十分となるため1
サイクルあたりの冷房能力が低下してしまうおそれがあ
る。30分を超える場合には,単位時間あたりに得られ
る水の蒸発潜熱が低下するため,単位時間あたりの冷房
能力が低下してしまうおそれがある。
The time required for one temperature cycle is preferably, for example, 1 to 30 minutes. If the time is less than 1 minute, water adsorption to the adsorbent becomes insufficient, so
The cooling capacity per cycle may be reduced. If the time exceeds 30 minutes, the latent heat of evaporation of water obtained per unit time is reduced, so that the cooling capacity per unit time may be reduced.

【0033】また,上記製造方法により得た吸着剤を用
いた車両用空調装置としては,たとえば,請求項9記載
のように,吸着剤を設けた吸着コアと,該吸着コアの温
度を制御するための温度調節機構と,蒸発凝縮器と,室
内熱交換器と,吸着コアと蒸発凝縮器との間に水を循環
させる連通部と,蒸発凝縮器と室内熱交換器との間に熱
交換流体を循環させる流通路とからなり,上記吸着剤
は,加熱されることにより水を脱離させ,冷却されるこ
とにより水を吸着させる性質を有し,上記蒸発凝縮器
は,上記吸着コアによって水が吸着されるときに水を蒸
発させ,上記吸着コアによって水が脱離するときに水を
凝縮させ,上記熱交換流体は,上記蒸発凝縮器において
水の蒸発により蒸発潜熱を奪われることにより冷却さ
れ,上記室内熱交換器において車室内空気と熱交換を行
う車両用空調装置であって,上記吸着剤は,請求項6ま
たは7の一方に記載の製造方法により製造された吸着剤
であることを特徴とする車両用空調装置がある。
Further, as a vehicle air conditioner using the adsorbent obtained by the above manufacturing method, for example, an adsorbent core provided with an adsorbent and the temperature of the adsorbent core are controlled. Temperature control mechanism, evaporative condenser, indoor heat exchanger, communication part for circulating water between adsorption core and evaporative condenser, and heat exchange between evaporative condenser and indoor heat exchanger The adsorbent has the property of desorbing water by heating and adsorbing water by cooling, and the evaporative condenser is formed by the adsorption core. The water is evaporated when the water is adsorbed, and condensed when the water is desorbed by the adsorption core. The heat exchange fluid is deprived of the latent heat of evaporation by the evaporation of the water in the evaporative condenser. Cooled and sent to the indoor heat exchanger A vehicle air conditioner that exchanges heat with vehicle interior air, wherein the adsorbent is an adsorbent manufactured by the manufacturing method according to one of claims 6 and 7. There is a device.

【0034】本車両用空調装置は,上記製造方法により
得た吸着剤を用いて,上記請求項8の場合と同様の装置
を構成している。そのため,上記装置と同様に,車室内
空気の空調を効率よく行うことができる。
This vehicle air conditioner uses the adsorbent obtained by the above-mentioned manufacturing method to constitute the same device as that of the eighth aspect. Therefore, air conditioning of vehicle interior air can be performed efficiently as in the above-described device.

【0035】また,本発明の吸着剤は,上記車両用空調
装置に用いるほか,換気空気清浄装置,除湿装置などに
も用いることができる。また,上記吸着剤は,これを車
両用空調装置に用いる場合には,上記のゾル−ゲル相転
移温度は,40〜60℃とすることが好ましい。これに
より,車両用空調装置における冷却を一層効率的に行な
うことができる。
The adsorbent of the present invention can be used not only for the above-mentioned air conditioner for a vehicle but also for a ventilation air purifier, a dehumidifier, and the like. When the adsorbent is used in a vehicle air conditioner, the sol-gel phase transition temperature is preferably 40 to 60 ° C. Thereby, the cooling in the vehicle air conditioner can be performed more efficiently.

【0036】[0036]

【発明の実施の形態】実施形態例1 本発明の吸着剤及びこれを用いた車両用空調装置につい
て,図2〜図3を用いて説明する。本例の吸着剤は,低
温高湿時に水を吸着し高温低湿時に水を脱離する吸着剤
である。吸着剤は,温度変化によってゾル−ゲル相転移
を生じ得る有機物と,三次元ネットワーク構造を有する
無機物とからなる多孔質複合体である。無機物の三次元
ネットワーク構造の中には,上記ゾル−ゲル相転移を生
じ得る有機物が分散している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 An adsorbent of the present invention and a vehicle air conditioner using the same will be described with reference to FIGS. The adsorbent of this example is an adsorbent that adsorbs water at low temperature and high humidity and desorbs water at high temperature and low humidity. The adsorbent is a porous composite composed of an organic substance capable of causing a sol-gel phase transition due to a temperature change and an inorganic substance having a three-dimensional network structure. In the three-dimensional network structure of the inorganic substance, an organic substance capable of causing the sol-gel phase transition is dispersed.

【0037】有機物は,N−イソプロピルアクリルアミ
ドとN,N’−メチレンビスアクリルアミドとの架橋共
重合体であり,分子内に親水基と疎水基とを有し,その
ゾル−ゲル相転移温度は35℃である。無機物は,三次
元ネットワーク構造を有するシリカ多孔体である。吸着
剤は,細孔径1.0〜1.5nmの範囲における細孔容
積が0.22cm /gという細孔特性を有する。
The organic substance is N-isopropylacrylamide.
And N, N'-methylenebisacrylamide
It is a polymer having a hydrophilic group and a hydrophobic group in the molecule.
The sol-gel phase transition temperature is 35 ° C. Inorganic substances are tertiary
It is a porous silica material having an original network structure. adsorption
The agent has a pore volume in the range of pore diameter 1.0 to 1.5 nm.
Product is 0.22cm 3/ G of pore characteristics.

【0038】次に,吸着剤の製造方法について説明す
る。まず,所定容器の中で,N−イソプロピルアクリル
アミド0.9g,架橋剤であるN,N’−メチレンビス
アクリルアミド0.1g,及び重合開始剤である2,
2’−アゾビスイソブチロニトリル15mgからなるメ
タノール溶液20cm を調製した。このメタノール溶
液に,ポリN,N−ジメチルアクリルアミド1.0gを
加えた後,更にテトラメトキシシラン2.0g及び0.
1N塩酸0.5cmを加えて24時間室温で攪拌し
た。
Next, the method for producing the adsorbent will be described.
You. First, in a predetermined container, N-isopropyl acrylic
0.9 g of amide, N, N'-methylenebis as a crosslinking agent
0.1 g of acrylamide, and 2,
A method comprising 15 mg of 2'-azobisisobutyronitrile
Tanol solution 20cm 3Was prepared. This methanol solution
1.0 g of poly N, N-dimethylacrylamide
After addition, a further 2.0 g of tetramethoxysilane and 0.1 g
1N hydrochloric acid 0.5cm3And stir at room temperature for 24 hours.
Was.

【0039】その後,この溶液を60℃で7日間静置し
て溶媒を揮発させ,できた透明なゲルをソックスレイで
72時間水に浸漬してポリN,N−ジメチルアクリルア
ミドを抽出除去した。これにより,三次元ネットワーク
構造を有するシリカ多孔体が形成され,その中に,N−
イソプロピルアクリルアミドとN,N’−メチレンビス
アクリルアミドとの架橋共重合体が分散してなる多孔質
複合体,すなわち吸着剤が得られた。
Thereafter, the solution was allowed to stand at 60 ° C. for 7 days to evaporate the solvent, and the resulting transparent gel was immersed in water for 72 hours using Soxhlet to extract and remove poly N, N-dimethylacrylamide. As a result, a porous silica material having a three-dimensional network structure is formed, in which N-
A porous composite in which a crosslinked copolymer of isopropylacrylamide and N, N'-methylenebisacrylamide was dispersed, that is, an adsorbent was obtained.

【0040】次に,このようにして得られた吸着剤を車
両用空調装置に適用した実施の形態について述べる。図
2において,1は車両用空調装置であり,例えば車室内
計器盤下部に搭載される。車両用空調装置1の空調ダク
ト2は,車室内に空調空気を導く空調用通路であり,こ
の空調ダクト2の一端側には内外気を吸入する吸入口
4,5が設けられている。吸入口4,5は内外気切替ド
ア6によって切替開閉される。
Next, an embodiment in which the adsorbent thus obtained is applied to a vehicle air conditioner will be described. In FIG. 2, reference numeral 1 denotes a vehicle air conditioner, which is mounted, for example, below a dashboard in a vehicle compartment. The air-conditioning duct 2 of the vehicle air-conditioning device 1 is an air-conditioning passage for guiding conditioned air into the vehicle interior. At one end of the air-conditioning duct 2, suction ports 4 and 5 for sucking inside and outside air are provided. The intake ports 4 and 5 are switched and opened / closed by an inside / outside air switching door 6.

【0041】3は送風機であり,その遠心ファン3bを
モータ3aによって駆動することにより空調ダクト2内
に空気を送風する。一方,空調ダクト2の他端側には,
車室内に通ずる複数の吹出用開口部7,8,9が形成さ
れており,開口部切替ドア10,11,12によってそ
れぞれ切替開閉される。
Reference numeral 3 denotes a blower, which blows air into the air-conditioning duct 2 by driving a centrifugal fan 3b by a motor 3a. On the other hand, on the other end side of the air conditioning duct 2,
A plurality of blowing openings 7, 8, 9 communicating with the vehicle interior are formed, and are selectively opened and closed by opening switching doors 10, 11, 12, respectively.

【0042】送風機3の空気下流側には,室内熱交換器
16と,ヒータコア31とが設けられている。室内熱交
換器16は,後述する吸着式冷凍サイクル100の蒸発
凝縮器60,70にて冷却された熱交換流体により,空
調ダクト2内の空気を冷却するものである。ヒータコア
31は,加熱されたエンジン冷却水を循環させて,空調
ダクト2内の空気を加熱するものである。なお,エアミ
ックスドア31aによってヒータコア31を通過する空
気量と,ヒータコア31をバイパスする空気量とが調節
されて,車両室内温調度がコントロールされる。
An indoor heat exchanger 16 and a heater core 31 are provided downstream of the blower 3 in the air. The indoor heat exchanger 16 cools the air in the air-conditioning duct 2 with the heat exchange fluid cooled by the evaporative condensers 60 and 70 of the adsorption refrigeration cycle 100 described later. The heater core 31 circulates heated engine cooling water to heat the air in the air conditioning duct 2. The air mixing door 31a adjusts the amount of air passing through the heater core 31 and the amount of air bypassing the heater core 31, thereby controlling the temperature regulation in the vehicle cabin.

【0043】続いて,吸着式冷凍サイクル100につい
て詳しく説明する。吸着式冷凍サイクル100は,第
1,第2吸着コア20,30,および第1,第2蒸発凝
縮器(蒸発器,凝縮器)60,70を備えている。第1
吸着コア20及び第1蒸発凝縮器60は第1密閉容器6
01の内部に収容され,第2吸着コア30及び第2蒸発
凝縮器70は第2密閉容器602の内部に収容されてい
る。これら第1,第2密閉容器601,602の内部に
はそれぞれ,所定量の水が封入されている。
Next, the adsorption refrigeration cycle 100 will be described in detail. The adsorption refrigeration cycle 100 includes first and second adsorption cores 20 and 30 and first and second evaporative condensers (evaporators and condensers) 60 and 70. First
The adsorption core 20 and the first evaporative condenser 60 are provided in the first closed vessel 6.
01, and the second adsorption core 30 and the second evaporative condenser 70 are accommodated inside the second closed vessel 602. A predetermined amount of water is sealed in each of the first and second closed containers 601 and 602.

【0044】第1,第2密閉容器601,602は,第
1,第2吸着コア20,30を収容する第1,第2吸着
コア室62,63と,第1,第2蒸発凝縮器60,70
を収容する第1,第2蒸発凝縮室66,67とを有す
る。また,第1,第2密閉容器601,602は,第
1,第2吸着コア室62,63と第1,第2蒸発凝縮室
66,67とを連通する第1,第2連通部86,87と
を有する。第1,第2蒸発凝縮器60,70は,水の蒸
発・凝縮を行う装置であり,一方が水を蒸発させる蒸発
器として働く際には,他方は水を凝縮する凝縮器として
働く。第1,第2蒸発凝縮器60,70は熱交換流体を
循環させる第2流体循環路bを介して室内熱交換器16
と接続されている。
The first and second closed containers 601 and 602 contain first and second adsorption core chambers 62 and 63 for accommodating the first and second adsorption cores 20 and 30, and first and second evaporative condensers 60. , 70
And first and second evaporative condensation chambers 66 and 67 for accommodating the same. In addition, the first and second closed containers 601 and 602 include first and second communication portions 86 that communicate the first and second adsorption core chambers 62 and 63 and the first and second evaporative condensation chambers 66 and 67, respectively. 87. The first and second evaporative condensers 60 and 70 are devices for evaporating and condensing water. When one of them functions as an evaporator for evaporating water, the other functions as a condenser for condensing water. The first and second evaporative condensers 60 and 70 are connected to the indoor heat exchanger 16 via a second fluid circulation path b for circulating a heat exchange fluid.
Is connected to

【0045】図3(a)〜(c)に示すように,第1,
第2吸着コア20,30の熱交換部201,301は,
両端に備えられたヘッダタンク221の間に,熱交換流
体(例えば,エンジン冷却水)が流れる複数の偏平形状
のチューブ222,およびコルゲート状の伝熱フィン2
23が交互に積層されている。そして,チューブ222
と伝熱フィン223との間の隙間に,本例の吸着剤Sが
充填されている。吸着剤Sは,粉末状の各吸着剤を圧粉
して造粒した径の均一な粒子であり,該粒状物がチュー
ブ222および伝熱フィン223の表面に接着剤(例え
ば,エポキシ樹脂)によって接着固定されている。
As shown in FIGS. 3A to 3C, the first,
The heat exchange units 201 and 301 of the second adsorption cores 20 and 30
A plurality of flat tubes 222 through which a heat exchange fluid (for example, engine cooling water) flows, and a corrugated heat transfer fin 2 between header tanks 221 provided at both ends.
23 are alternately stacked. And the tube 222
The gap between the heat transfer fins 223 is filled with the adsorbent S of this example. The adsorbent S is a particle having a uniform diameter formed by compacting each of the powdery adsorbents and granulating the adsorbent S on the surfaces of the tube 222 and the heat transfer fins 223 with an adhesive (for example, epoxy resin). Adhesively fixed.

【0046】なお,図3(b)には,吸着コア20,3
0の熱交換部201,301のうち,チューブ222を
単純化して示してある。図2に示すごとく,エンジン
E,第1吸着コア20(または第2吸着コア30)の熱
交換部201(または301),ヒータコア31,ラジ
エータ32は配管によって直列に接続され,第1流体循
環路aを構成している。室内熱交換器16,第1蒸発凝
縮器60(または第2蒸発凝縮器70)は配管によって
直列に接続され,第2流体循環路bを構成している。
FIG. 3B shows the suction cores 20 and 3.
The tube 222 of the heat exchange units 201 and 301 of No. 0 is simplified. As shown in FIG. 2, the engine E, the heat exchange section 201 (or 301) of the first adsorption core 20 (or the second adsorption core 30), the heater core 31, and the radiator 32 are connected in series by piping, and the first fluid circulation path is provided. a. The indoor heat exchanger 16 and the first evaporative condenser 60 (or the second evaporative condenser 70) are connected in series by pipes to form a second fluid circulation path b.

【0047】後述する,放熱器である吸着コア・蒸発凝
縮器冷却器(以下,吸着コア冷却器と略す)25,第1
吸着コア20(または第2吸着コア30)の熱交換部2
01(または301)は配管によって直列に接続され,
第3流体循環路(冷却用流体循環路)cを構成してい
る。
An adsorbing core / evaporative condenser cooler (hereinafter, abbreviated as an adsorbing core cooler) 25, which is a radiator, will be described later.
Heat exchange section 2 of adsorption core 20 (or second adsorption core 30)
01 (or 301) are connected in series by piping,
A third fluid circulation path (cooling fluid circulation path) c is configured.

【0048】後述する蒸気圧縮式冷凍サイクル200,
吸着コア冷却器25,及び第1蒸発凝縮器60(または
第2蒸発凝縮器70)は配管によって直列に接続され,
第4流体循環路(冷却用流体循環路)dを構成してい
る。第3流体循環路cおよび第4流体循環路dは合流部
eにて合流し,分岐部fにて分岐している。合流部eの
下流側,かつ分岐部fの上流側の合流路gには上記吸着
コア冷却器25が設けられている。
A vapor compression refrigeration cycle 200 described later,
The adsorption core cooler 25 and the first evaporative condenser 60 (or the second evaporative condenser 70) are connected in series by piping,
A fourth fluid circulation path (cooling fluid circulation path) d is configured. The third fluid circulation path c and the fourth fluid circulation path d join at a junction e and branch at a branch f. The adsorbent core cooler 25 is provided in a merging flow path g downstream of the merging portion e and upstream of the branching portion f.

【0049】また,第1流体循環路aには電動ポンプ3
3が,合流路gには電動ポンプ34が,第2流体循環路
bには電動ポンプ35がそれぞれ設けられており,図2
(a)中矢印方向への熱交換流体の流れを発生させてい
る。第1,第3流体循環路a,cの途中には,四方弁3
6,37が設けられており,この四方弁36,37によ
って,第1,第2吸着コア20,30に流入する熱交換
流体の供給源をエンジンEまたは吸着コア冷却器25に
切り替えるようになっている。換言すれば,四方弁3
6,37によって第1,第2吸着コア20,30の吸着
・脱離行程を切り替えるようになっている。
The electric pump 3 is provided in the first fluid circulation path a.
3, an electric pump 34 is provided in the merging path g, and an electric pump 35 is provided in the second fluid circulation path b.
(A) The flow of the heat exchange fluid in the middle arrow direction is generated. In the middle of the first and third fluid circulation paths a and c, a four-way valve 3 is provided.
The four-way valves 36 and 37 switch the supply source of the heat exchange fluid flowing into the first and second adsorption cores 20 and 30 to the engine E or the adsorption core cooler 25. ing. In other words, the four-way valve 3
The suction and desorption processes of the first and second suction cores 20 and 30 are switched by the control units 6 and 37.

【0050】流体循環路bおよびdの途中には,四方弁
38,39が設けられており,この四方弁38,39に
よって,第1,第2水凝縮蒸発器60,70から流出す
る熱交換流体の供給先を室内熱交換器16または吸着コ
ア冷却器25に切り替えるようになっている。換言すれ
ば,四方弁38,39によって第1,第2水凝縮蒸発器
60,70による水の蒸発・凝縮を切り替えるようにな
っている。
The four-way valves 38 and 39 are provided in the middle of the fluid circulation paths b and d, and the four-way valves 38 and 39 allow heat exchange flowing out of the first and second water condensing evaporators 60 and 70 to flow. The supply destination of the fluid is switched to the indoor heat exchanger 16 or the adsorption core cooler 25. In other words, the four-way valves 38 and 39 switch the evaporation and condensation of water by the first and second water condensation / evaporators 60 and 70.

【0051】車室外に配され,エンジン冷却水を冷却す
るためのラジエータ32は,送風ファン43によって送
風される外気によって冷却される。サーモスタット42
によりエンジン冷却水の温度が所定温度よりも低い場
合,エンジン冷却水はバイパス回路41を流れる。
The radiator 32 arranged outside the vehicle compartment for cooling the engine cooling water is cooled by the outside air blown by the blower fan 43. Thermostat 42
When the temperature of the engine cooling water is lower than the predetermined temperature, the engine cooling water flows through the bypass circuit 41.

【0052】第1,第2吸着コア20,30は,吸着式
冷凍サイクル100及び蒸気圧縮式冷凍サイクル200
により温度調節されている。第1,第2蒸発凝縮器6
0,70は,第1,第2吸着コア20,30によって水
が吸着されるときに水を蒸発させ,第1,第2吸着コア
20,30によって水が脱離するときに水を凝縮させ
る。循環路bを流れる熱交換流体は,第1,第2蒸発凝
縮器60,70において水の蒸発により蒸発潜熱を奪わ
れることにより冷却され,室内熱交換器16において車
室内空気と熱交換を行う。
The first and second adsorption cores 20 and 30 are composed of an adsorption type refrigeration cycle 100 and a vapor compression type refrigeration cycle 200.
The temperature is controlled by First and second evaporative condensers 6
Reference numerals 0 and 70 evaporate the water when the water is adsorbed by the first and second adsorption cores 20 and 30, and condense the water when the water is desorbed by the first and second adsorption cores 20 and 30. . The heat exchange fluid flowing through the circulation path b is cooled by depriving latent heat of evaporation by evaporation of water in the first and second evaporative condensers 60 and 70, and exchanges heat with the vehicle interior air in the indoor heat exchanger 16. .

【0053】また,蒸気圧縮式冷凍サイクル200は,
冷媒を圧縮する圧縮機21,高圧の冷媒を送風ファン2
2aによって送風される外気と熱交換することにより凝
縮させる凝縮器22,気液分離を行うレシーバ23,冷
媒を減圧する膨張弁24,第1,第2吸着コア20,3
0および第1,第2蒸発凝縮器60,70を冷却する吸
着コア冷却器25から構成される。これらの各機器は配
管によって接続され,冷媒回路Rを構成している。な
お,蒸気圧縮式冷凍サイクル200の各機器は車室外
(エンジンルーム内)に設置される。
The vapor compression refrigeration cycle 200
Compressor 21 for compressing the refrigerant, blower fan 2 for supplying the high-pressure refrigerant
2a, a condenser 22 for condensing by exchanging heat with the outside air blown by 2a, a receiver 23 for gas-liquid separation, an expansion valve 24 for reducing the pressure of the refrigerant, first and second adsorption cores 20, 3.
It is composed of an adsorption core cooler 25 that cools the zero and first and second evaporative condensers 60 and 70. Each of these devices is connected by a pipe to form a refrigerant circuit R. Each device of the vapor compression refrigeration cycle 200 is installed outside the vehicle compartment (in the engine room).

【0054】吸着コア冷却器25において,膨張弁24
において減圧された低温の冷媒(約20〜25℃程度)
と,合流路gを通過する冷媒とが接触するように冷媒通
路が形成されている。そのため,吸着コア冷却器25に
おいて,第1,第2吸着コア20,30における水の吸
着熱および第1,第2蒸発凝縮器60,70における水
の凝縮熱は,膨張弁24下流側の低温の冷媒に吸熱され
る。
In the adsorption core cooler 25, the expansion valve 24
Low-temperature refrigerant decompressed in (about 20-25 ° C)
And the refrigerant passage is formed such that the refrigerant passing through the joint flow path g comes into contact with the refrigerant. Therefore, in the adsorption core cooler 25, the heat of water adsorption in the first and second adsorption cores 20 and 30 and the heat of condensation of water in the first and second evaporative condensers 60 and 70 are reduced by the low temperature on the downstream side of the expansion valve 24. Heat is absorbed by the refrigerant.

【0055】次に,上記車両用空調装置の作動について
説明する。吸着式冷凍サイクル100は,第1吸着コア
20が吸着行程,第2吸着コア30が脱離行程を行う第
1行程と,第1吸着コア20が脱離行程,第2吸着コア
が吸着行程を行う第2行程とを,所定時間(例えば,6
0秒)毎に交互に行う。即ち,電動ポンプ33〜35が
作動し,流体循環路a〜dに熱交換流体を循環させると
ともに,四方弁36〜39を図2(b)中実線位置とす
ることにより第1行程が行われる。
Next, the operation of the vehicle air conditioner will be described. In the adsorption type refrigeration cycle 100, the first adsorption core 20 performs the adsorption step, the second adsorption core 30 performs the desorption step, the first adsorption core 20 performs the desorption step, and the second adsorption core performs the adsorption step. The second step to be performed is performed for a predetermined time (for example, 6
0 seconds). That is, the first stroke is performed by operating the electric pumps 33 to 35 to circulate the heat exchange fluid in the fluid circulation paths a to d and setting the four-way valves 36 to 39 to the solid line positions in FIG. .

【0056】この第1行程では,エンジンEのエンジン
冷却水(約90℃)が流体循環路aを経て第2吸着コア
30の熱交換部301に循環されるので,第2吸着コア
30の吸着剤Sが加熱され,水を脱離させる。この吸着
剤Sから脱離された水は第2蒸発凝縮器室67に流入す
る。この際,第2蒸発凝縮器70を通過する熱交換流体
は,吸着コア冷却器25により冷却されているため,第
2凝縮器室67において上記の水は凝縮される。このよ
うに吸着剤Sから水が脱離されることにより,吸着剤S
付近の相対湿度は約0.08となり,再生される。
In the first stroke, the engine cooling water of the engine E (about 90 ° C.) is circulated to the heat exchange section 301 of the second adsorption core 30 via the fluid circulation path a, so that the adsorption of the second adsorption core 30 is performed. The agent S is heated to desorb water. The water desorbed from the adsorbent S flows into the second evaporative condenser chamber 67. At this time, since the heat exchange fluid passing through the second evaporative condenser 70 is cooled by the adsorption core cooler 25, the water is condensed in the second condenser chamber 67. As the water is desorbed from the adsorbent S, the adsorbent S
The relative humidity in the vicinity becomes about 0.08, and it is regenerated.

【0057】一方,第1吸着コア20は吸着コア冷却器
25により冷却されているため,この第1吸着コア20
の吸着剤Sは水を吸着する。その結果,第1吸着コア室
62,第1連通部86,第1蒸発凝縮室66によって形
成される空間の圧力が下がり,第1蒸発凝縮室66内の
水は蒸発する。
On the other hand, since the first suction core 20 is cooled by the suction core cooler 25,
Adsorbent S adsorbs water. As a result, the pressure in the space formed by the first adsorption core chamber 62, the first communication portion 86, and the first evaporative condensation chamber 66 decreases, and the water in the first evaporative condensation chamber 66 evaporates.

【0058】この際,第1蒸発凝縮器60では,熱交換
流体が水に蒸発潜熱を奪われて冷却される。この冷却さ
れた熱交換流体を,流体循環路bを経て室内熱交換器1
6へと流入させる。これにより,空調ダクト2を流れる
空気は,室内熱交換器16内を流れる冷却された熱交換
流体により冷却,除湿される。このように吸着剤Sに水
が吸着されることにより,吸着剤S付近の相対湿度は約
0.30となる。
At this time, in the first evaporative condenser 60, the heat exchange fluid is deprived of water by latent heat of evaporation and cooled. The cooled heat exchange fluid is transferred to the indoor heat exchanger 1 through the fluid circulation path b.
Flow into 6. As a result, the air flowing through the air conditioning duct 2 is cooled and dehumidified by the cooled heat exchange fluid flowing through the indoor heat exchanger 16. As a result of the water being adsorbed on the adsorbent S, the relative humidity near the adsorbent S becomes about 0.30.

【0059】第2行程は,四方弁36〜39を図2
(b)中点線位置とすることにより行われる。なお,こ
の第2行程では,上記した第1行程の吸着と脱離,蒸発
と凝縮とが入れ替わるのみであるため,第2行程の説明
は省略する。第2行程では,第1吸着コア20が第1行
程において吸着した水が脱離し,第1行程において再生
された第2吸着コア30が水を吸着する。本車両用吸着
装置は,第1,第2吸着コア20,30の一方で水を吸
着させ,他方で吸着剤を再生させることを同時に行う装
置であり,冷房の連続運用をする。
In the second stroke, the four-way valves 36 to 39 are connected as shown in FIG.
(B) This is performed by setting the position of the middle dotted line. In the second step, the adsorption and desorption, evaporation and condensation in the first step are only interchanged, and the description of the second step is omitted. In the second step, the water adsorbed by the first adsorption core 20 in the first step is desorbed, and the second adsorption core 30 regenerated in the first step adsorbs water. The adsorption device for a vehicle is a device that simultaneously adsorbs water on one of the first and second adsorption cores 20 and 30 and regenerates the adsorbent on the other, and performs continuous operation of cooling.

【0060】次に,本例の作用及び効果について説明す
る。本例の吸着剤は,毛細管現象とゾル−ゲル相転移と
の併用により水を吸着する多孔質複合体である。そのた
め,この2つの機能を単独で用いる場合よりも高い水吸
脱着性能を発揮できる。そのため,本例の吸着剤は水の
吸脱着性能に優れている。
Next, the operation and effect of this embodiment will be described. The adsorbent of this example is a porous composite that adsorbs water by using a combination of capillary action and sol-gel phase transition. Therefore, higher water absorption / desorption performance can be exhibited than when these two functions are used alone. Therefore, the adsorbent of this example is excellent in water adsorption / desorption performance.

【0061】また,ゾル−ゲル相転移を生じ得る有機物
は架橋重合体であり,これは,無機物の三次元ネットワ
ーク構造の中に分散し,該構造の中に支持される。ゆえ
に,水吸着による架橋重合体の膨潤が抑制される。
The organic substance capable of causing the sol-gel phase transition is a crosslinked polymer, which is dispersed in an inorganic three-dimensional network structure and supported in the three-dimensional network structure. Therefore, swelling of the crosslinked polymer due to water adsorption is suppressed.

【0062】また,上記の吸着剤を車両用空調装置に用
いた場合には,冷却によって吸着剤Sが水の吸着を効率
よく行う。そのため,吸着室冷凍サイクル100が効率
よく作動し,車室内空気が効率よく冷房される。また,
吸着剤Sは,加熱により水脱離を効率よく行い,再生能
力も高い。
When the above adsorbent is used in a vehicle air conditioner, the adsorbent S efficiently adsorbs water by cooling. Therefore, the adsorption chamber refrigeration cycle 100 operates efficiently, and the air in the passenger compartment is efficiently cooled. Also,
The adsorbent S efficiently desorbs water by heating and has a high regeneration capacity.

【0063】従って,本例の吸着剤を用いることによ
り,吸着コア及び蒸発凝縮器が優れた冷房性能を発揮
し,冷房性能に優れた車両用空調装置を提供することが
できる。また,架橋重合体は,無機物の三次元ネットワ
ーク構造に支持されているため,水吸着による膨潤が少
ない。従って,吸着剤Sを収容する吸着コアの小型化を
図ることができる。
Therefore, by using the adsorbent of this example, the adsorption core and the evaporative condenser exhibit excellent cooling performance, and it is possible to provide a vehicle air conditioner having excellent cooling performance. In addition, since the crosslinked polymer is supported by a three-dimensional network structure of an inorganic substance, swelling due to water adsorption is small. Therefore, the size of the suction core for containing the adsorbent S can be reduced.

【0064】実施形態例2 次に,本発明の吸着剤の吸水性能について測定した。本
発明の吸着剤は,実施形態例1と同様の吸着剤である。
比較のために,珪酸ソーダ及び硫酸と反応させた後焼成
してシリカゲルを製造し,このシリカゲルの吸水性能に
ついても測定した。
Embodiment 2 Next, the water absorption performance of the adsorbent of the present invention was measured. The adsorbent of the present invention is the same as the adsorbent of the first embodiment.
For comparison, silica gel was produced by reacting with sodium silicate and sulfuric acid and then calcining, and the water absorption performance of this silica gel was also measured.

【0065】上記の本発明及びシリカゲルについて,図
4に示す水吸着等温線を得た。図4より明らかなよう
に,本発明の吸着剤は,シリカゲルよりも優れた吸水性
能を有していた。特に,車両用空調装置の作動環境の相
対湿度の領域(P/P=0.08〜0.3)内におけ
る吸水性能が高かった。
For the above-mentioned present invention and silica gel, a water adsorption isotherm shown in FIG. 4 was obtained. As is clear from FIG. 4, the adsorbent of the present invention had better water absorption performance than silica gel. In particular, water absorption performance in the region of the relative humidity of the operating environment of the vehicle air conditioner (P / P 0 = 0.08~0.3) was high.

【0066】実施形態例3 次に,本発明の吸着剤と,比較用の吸着剤との吸水性能
について測定した。本発明の吸着剤は,実施形態例1と
同様の吸着剤である。
Embodiment 3 Next, the water absorption performance of the adsorbent of the present invention and a comparative adsorbent was measured. The adsorbent of the present invention is the same as the adsorbent of the first embodiment.

【0067】一方,比較用の吸着剤は,以下に示す製造
方法によって製造した。N−イソプロピルアクリルアミ
ド,重合開始剤である2,2’一アソビス(イソブチロ
ニトリル)のメタノール溶液中に,テトラメトキシシラ
ンおよび酸触媒である0.1N塩酸を添加し,室温下で
約3時間攪拌し,加水分解重合反応を行った。続いて,
このようにして得られた均一な溶液を約60℃で7日間
放置し,N−イソプロピルアクリルアミドの重合反応を
行うとともに,溶媒を揮発させ,無色透明なゲル状の固
体を得た。このようにして得られた無機−有機複合体を
600℃で約24時間焼成した。
On the other hand, a comparative adsorbent was produced by the following production method. To a methanol solution of N-isopropylacrylamide and 2,2'-isobis (isobutyronitrile) as a polymerization initiator, add tetramethoxysilane and 0.1N hydrochloric acid as an acid catalyst, and at room temperature for about 3 hours. After stirring, a hydrolysis polymerization reaction was performed. continue,
The homogeneous solution thus obtained was left at about 60 ° C. for 7 days to carry out the polymerization reaction of N-isopropylacrylamide and evaporate the solvent to obtain a colorless transparent gel-like solid. The thus obtained inorganic-organic composite was baked at 600 ° C. for about 24 hours.

【0068】この製造方法により,比較用の吸着剤,即
ち,細孔径が1.0nm以上1.5nm以下の細孔が占
める細孔容積が0.36cm3/gである多孔質複合体
(平均細孔径1.27nm)を得た。なお,平均細孔径
および細孔容積については,窒素吸着法により測定し
た。
According to this production method, a comparative adsorbent, that is, a porous composite having an average pore volume of 0.36 cm 3 / g occupied by pores having a pore diameter of 1.0 nm to 1.5 nm (average) (Pore size 1.27 nm). The average pore diameter and pore volume were measured by a nitrogen adsorption method.

【0069】このようにして得られた本発明及び比較例
の吸着剤について,図5に示す水吸着等温線を得た。図
5より明らかなように,本発明の吸着剤は,比較用の吸
着剤よりも優れた吸水性能を有していた。
The water adsorption isotherm shown in FIG. 5 was obtained for the adsorbents of the present invention and the comparative examples thus obtained. As is clear from FIG. 5, the adsorbent of the present invention had better water absorption performance than the comparative adsorbent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における,有機物のゾル−ゲル相転移点
の説明図。
FIG. 1 is an explanatory diagram of a sol-gel phase transition point of an organic substance in the present invention.

【図2】実施形態例1の車両用空調装置の概略全体構成
図(a),吸着式冷凍サイクルの構成図(b)。
FIG. 2A is a schematic overall configuration diagram of a vehicle air conditioner according to a first embodiment, and FIG. 2B is a configuration diagram of an adsorption refrigeration cycle.

【図3】実施形態例1における密閉容器の,一部破断図
(a),吸着コアの斜視図(b),及び吸着コアのチュ
ーブと伝熱フィンとの間に吸着剤が充填された状態を示
す説明図(c)。
FIG. 3 is a partially cutaway view (a) of an airtight container, a perspective view of an adsorption core (b), and a state in which an adsorbent is filled between a tube of the adsorption core and a heat transfer fin in the first embodiment. FIG.

【図4】実施形態例2における,本発明の吸着剤及び従
来例としてのシリカゲルの水吸着等温線を示す図。
FIG. 4 is a diagram showing water adsorption isotherms of the adsorbent of the present invention and silica gel as a conventional example in Embodiment 2.

【図5】実施形態例3における,本発明の吸着剤及び比
較用の吸着剤の水吸着等温線を示す図。
FIG. 5 is a diagram showing water adsorption isotherms of an adsorbent of the present invention and an adsorbent for comparison in a third embodiment.

【符号の説明】[Explanation of symbols]

1...車両用空調ユニット, 16...室内熱交換器, 2...空調ダクト, 20...第1コア, 22...凝縮器, 23...レシーバ, 24...膨張弁, 25...吸着コア冷却器, 30...第2コア, 36〜39...四方弁, 60...第1蒸気凝縮器, 62...第1吸着コア室, 63...第2吸着コア室, 66...第1蒸気凝縮室, 67...第2蒸気凝縮室, 70...第2蒸気凝縮器, 86...第1連通部, 87...第2連通部, 100...吸着式---冷凍サイクル, 200...蒸気圧式冷凍サイクル, 201,301...熱交換部, 222...チューブ, 223...伝熱フィン, 601...第1密閉容器, 602...第2密閉容器, S...吸着剤, E...エンジン, 1. . . 15. Vehicle air conditioning unit, . . 1. indoor heat exchanger, . . Air conditioning duct, 20. . . First core, 22. . . Condenser, 23. . . Receiver, 24. . . Expansion valve, 25. . . Adsorption core cooler, 30. . . 2nd core, 36-39. . . Four-way valve, 60. . . First steam condenser, 62. . . First adsorption core chamber, 63. . . Second suction core chamber, 66. . . First steam condensing chamber, 67. . . Second vapor condensation chamber, 70. . . Second steam condenser, 86. . . 1st communication part, 87. . . 2nd communication part, 100. . . Adsorption type-refrigeration cycle, 200. . . Vapor pressure refrigeration cycle, 201,301. . . Heat exchange section, 222. . . Tube, 223. . . Heat transfer fins, 601. . . First closed container, 602. . . 2nd closed container, . . Adsorbent, E. . . engine,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 101/00 C08L 101/00 C09K 3/00 C09K 3/00 N 5/02 5/02 5/04 5/04 F25B 17/08 F25B 17/08 Z (72)発明者 河野 欣 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 小坂 淳 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 佐藤 英明 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 中條 善樹 京都府京都市左京区西蔦町2番地 Fターム(参考) 3L093 NN03 PP15 PP18 QQ01 RR03 RR05 4G066 AA20C AA22C AA23C AC02B AC12B AC17B BA09 BA25 CA43 DA03 FA07 FA21 FA26 4J002 AB011 BE001 BG131 CH021 DE096 DE136 DE146 DJ016 FD016 GD02 GN00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 101/00 C08L 101/00 C09K 3/00 C09K 3/00 N 5/02 5/02 5/04 5 / 04 F25B 17/08 F25B 17/08 Z (72) Inventor Kin Koichi 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso Co., Ltd. (72) Inventor Jun Kosaka 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Denso, Inc. (72) Inventor Hideaki Sato 1-1-1, Showa-cho, Kariya-shi, Aichi Prefecture Inside Indenso, Ltd. (72) Yoshiki Chujo 2-Terminal, Nishita-cho, Sakyo-ku, Kyoto, Kyoto F-term (Reference) 3L093 NN03 PP15 PP18 QQ01 RR03 RR05 4G066 AA20C AA22C AA23C AC02B AC12B AC17B BA09 BA25 CA43 DA03 FA07 FA21 FA26 4J002 AB011 BE001 BG131 CH021 DE096 DE136 DE146 DJ016 FD016 GD02 GN00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 加熱されることにより水を脱離させ,冷
却されることにより水を吸着させる吸着剤であって,該
吸着剤は,温度変化によってゾル−ゲル相転移を生じ得
る有機物と,三次元ネットワーク構造を有する無機物と
からなる多孔質複合体であって,上記無機物の三次元ネ
ットワーク構造の中に上記有機物が分散していることを
特徴とする吸着剤。
1. An adsorbent for desorbing water by heating and adsorbing water by cooling, the adsorbent comprising an organic substance capable of causing a sol-gel phase transition by a temperature change; An adsorbent, which is a porous composite comprising an inorganic substance having a three-dimensional network structure, wherein the organic substance is dispersed in the inorganic three-dimensional network structure.
【請求項2】 請求項1において,上記有機物は,分子
内に親水基と疎水基とを有するポリマーであることを特
徴とする吸着剤。
2. The adsorbent according to claim 1, wherein the organic substance is a polymer having a hydrophilic group and a hydrophobic group in a molecule.
【請求項3】 請求項1または2において,上記有機物
は架橋重合体であることを特徴とする吸着剤。
3. The adsorbent according to claim 1, wherein the organic substance is a crosslinked polymer.
【請求項4】 請求項1〜3のいずれか1項において,
上記有機物は,ポリ(N−イソプロピルアクリルアミ
ド),ポリ(N−t−ブチルアクリルアミド),ポリ
(N,N−ジメチルアクリルアミド),ポリ(N,N−
ジエチルアクリルアミド),ポリエチレングリコール,
セルロース,若しくはポリメチルビニルエーテルからな
る重合体,または該重合体のいずれか1種以上を架橋さ
せてなる架橋重合体から選ばれる1種または2種以上か
らなることを特徴とする吸着剤。
4. The method according to claim 1, wherein:
The organic substance is poly (N-isopropylacrylamide), poly (Nt-butylacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-
Diethylacrylamide), polyethylene glycol,
An adsorbent comprising one or more selected from a polymer comprising cellulose or polymethyl vinyl ether, or a crosslinked polymer obtained by crosslinking at least one of the polymers.
【請求項5】 請求項1〜4のいずれか1項において,
上記無機物は,シリカ(SiO),アルミナ(Al
),チタニア(TiO),またはジルコニア(Z
rO)から選ばれる1種または2種以上からなること
を特徴とする吸着剤。
5. The method according to claim 1, wherein:
The inorganic substances are silica (SiO 2 ), alumina (Al 2
O 3 ), titania (TiO 2 ), or zirconia (Z
rO 2 ) An adsorbent comprising one or more selected from the group consisting of rO 2 ).
【請求項6】 無機物の三次元ネットワーク構造の中に
おいて,温度変化によってゾルーゲル相転移を生じ得る
有機物と,溶媒抽出可能な有機物とを相溶させて,上記
無機物と上記ゾルーゲル相転移を生じ得る有機物と上記
溶媒抽出可能な有機物とからなる複合体を得る工程と,
上記複合体から上記溶媒抽出可能な有機物を溶媒抽出し
て上記複合体を多孔質体とする工程とからなることを特
徴とする吸着剤の製造方法。
6. An organic substance capable of causing a sol-gel phase transition by a temperature change in a three-dimensional network structure of an inorganic substance, and an organic substance capable of causing the sol-gel phase transition by causing a solvent-extractable organic substance to be compatible with the organic substance. Obtaining a complex comprising: and a solvent-extractable organic substance;
A step of solvent-extracting the solvent-extractable organic substance from the complex to make the complex a porous body.
【請求項7】 請求項6において,上記複合体を得る工
程において,上記無機物及び上記溶媒抽出可能な有機物
の存在下で,ゾル−ゲル相転移を生じ得る有機物となり
得る未架橋物質を架橋させることを特徴とする吸着剤の
製造方法。
7. The method according to claim 6, wherein in the step of obtaining the complex, an uncrosslinked substance which can be an organic substance capable of causing a sol-gel phase transition is crosslinked in the presence of the inorganic substance and the organic substance which can be extracted by a solvent. A method for producing an adsorbent, comprising:
【請求項8】 吸着剤を設けた吸着コアと,該吸着コア
の温度を制御するための温度調節機構と,蒸発凝縮器
と,室内熱交換器と,上記吸着コアと上記蒸発凝縮器と
の間に水を循環させる連通部と,上記蒸発凝縮器と上記
室内熱交換器との間に熱交換流体を循環させる循環路と
からなり,上記吸着剤は,加熱されることにより水を脱
離させ,冷却されることにより水を吸着させる性質を有
し,上記蒸発凝縮器は,上記吸着コアによって水が吸着
されるときに水を蒸発させ,上記吸着コアによって水が
脱離するときに水を凝縮させ,上記熱交換流体は,上記
蒸発凝縮器において水の蒸発により蒸発潜熱を奪われる
ことにより冷却され,上記室内熱交換器において車室内
空気と熱交換を行う車両用空調装置であって,上記吸着
剤は,請求項1〜5のいずれか1項に記載の吸着剤であ
ることを特徴とする車両用空調装置。
8. An adsorbent core provided with an adsorbent, a temperature control mechanism for controlling the temperature of the adsorbent core, an evaporative condenser, an indoor heat exchanger, and the adsorbent core and the evaporative condenser. A circulating passage for circulating heat between the evaporative condenser and the indoor heat exchanger, wherein the adsorbent desorbs water by being heated The evaporative condenser has a property of adsorbing water by being cooled, and the evaporative condenser evaporates water when the water is adsorbed by the adsorption core, and water evaporates when the water is desorbed by the adsorption core. A heat exchange fluid, wherein the heat exchange fluid is cooled by depriving latent heat of evaporation by evaporation of water in the evaporative condenser, and heat exchanges with vehicle interior air in the indoor heat exchanger. , The adsorbent according to any one of claims 1 to 5, An air conditioner for a vehicle, which is the adsorbent according to any one of the preceding claims.
【請求項9】 吸着剤を設けた吸着コアと,該吸着コア
の温度を制御するための温度調節機構と,蒸発凝縮器
と,室内熱交換器と,吸着コアと蒸発凝縮器との間に水
を循環させる連通部と,蒸発凝縮器と室内熱交換器との
間に熱交換流体を循環させる流通路とからなり,上記吸
着剤は,加熱されることにより水を脱離させ,冷却され
ることにより水を吸着させる性質を有し,上記蒸発凝縮
器は,上記吸着コアによって水が吸着されるときに水を
蒸発させ,上記吸着コアによって水が脱離するときに水
を凝縮させ,上記熱交換流体は,上記蒸発凝縮器におい
て水の蒸発により蒸発潜熱を奪われることにより冷却さ
れ,上記室内熱交換器において車室内空気と熱交換を行
う車両用空調装置であって,上記吸着剤は,請求項6ま
たは7の一方に記載の製造方法により製造された吸着剤
であることを特徴とする車両用空調装置。
9. An adsorption core provided with an adsorbent, a temperature control mechanism for controlling the temperature of the adsorption core, an evaporative condenser, an indoor heat exchanger, and a device between the adsorbent core and the evaporative condenser. The adsorbent is composed of a communicating part for circulating water and a flow passage for circulating a heat exchange fluid between the evaporative condenser and the indoor heat exchanger. The adsorbent desorbs water by being heated and is cooled. The evaporating condenser evaporates the water when the water is adsorbed by the adsorption core, and condenses the water when the water is desorbed by the adsorption core; The heat exchange fluid is a vehicle air conditioner that is cooled by depriving latent heat of evaporation by evaporation of water in the evaporative condenser, and performs heat exchange with vehicle interior air in the indoor heat exchanger, wherein the adsorbent is Is described in one of claims 6 and 7. An air conditioner for a vehicle, which is an adsorbent manufactured by a manufacturing method.
JP07666799A 1999-03-19 1999-03-19 Adsorbent and air conditioner for vehicle Expired - Fee Related JP4158270B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP07666799A JP4158270B2 (en) 1999-03-19 1999-03-19 Adsorbent and air conditioner for vehicle
US09/527,713 US6562754B1 (en) 1999-03-19 2000-03-17 Process for making an adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07666799A JP4158270B2 (en) 1999-03-19 1999-03-19 Adsorbent and air conditioner for vehicle

Publications (2)

Publication Number Publication Date
JP2000262892A true JP2000262892A (en) 2000-09-26
JP4158270B2 JP4158270B2 (en) 2008-10-01

Family

ID=13611779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07666799A Expired - Fee Related JP4158270B2 (en) 1999-03-19 1999-03-19 Adsorbent and air conditioner for vehicle

Country Status (1)

Country Link
JP (1) JP4158270B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346381A (en) * 2001-05-23 2002-12-03 Enex Co Ltd Water-absorbing and -retaining fine particle material and method for manufacturing the same
FR2828271A1 (en) * 2001-06-22 2003-02-07 Denso Corp ABSORPTION TYPE REFRIGERATION APPARATUS
WO2006077672A1 (en) * 2005-01-21 2006-07-27 Japan Exlan Company Limited Sorption-type heat exchange module and process for producing the same
WO2007073849A2 (en) * 2005-12-19 2007-07-05 Behr Gmbh & Co. Kg Sorber heat exchanger wall and sorber heat exchanger
US7629530B2 (en) 2003-04-17 2009-12-08 Toyota Jidosha Kabushiki Kaisha Energy recovery system
JP2010255952A (en) * 2009-04-27 2010-11-11 Daikin Ind Ltd Humidity controller
JP2011202950A (en) * 2011-06-15 2011-10-13 Japan Exlan Co Ltd Adsorption type heat exchange module and method of manufacturing the same
JP2016050715A (en) * 2014-08-29 2016-04-11 カルソニックカンセイ株式会社 Air conditioning system with adsorption type refrigerator
US9889427B2 (en) 2014-11-21 2018-02-13 Toyota Jidosha Kabushiki Kaisha Temperature-responsive hygroscopic material and method for producing the same
CN113426424A (en) * 2021-06-18 2021-09-24 浙江理工大学 Temperature-sensitive composite silica gel desiccant and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346381A (en) * 2001-05-23 2002-12-03 Enex Co Ltd Water-absorbing and -retaining fine particle material and method for manufacturing the same
FR2828271A1 (en) * 2001-06-22 2003-02-07 Denso Corp ABSORPTION TYPE REFRIGERATION APPARATUS
US7629530B2 (en) 2003-04-17 2009-12-08 Toyota Jidosha Kabushiki Kaisha Energy recovery system
JP2006200850A (en) * 2005-01-21 2006-08-03 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing method
WO2006077672A1 (en) * 2005-01-21 2006-07-27 Japan Exlan Company Limited Sorption-type heat exchange module and process for producing the same
US7704305B2 (en) 2005-01-21 2010-04-27 Japan Exlan Company Limited Heat exchange module of a sorptive type and a method for the manufacture thereof
WO2007073849A2 (en) * 2005-12-19 2007-07-05 Behr Gmbh & Co. Kg Sorber heat exchanger wall and sorber heat exchanger
WO2007073849A3 (en) * 2005-12-19 2007-11-22 Behr Gmbh & Co Kg Sorber heat exchanger wall and sorber heat exchanger
US7981199B2 (en) 2005-12-19 2011-07-19 Behr Gmbh & Co. Kg Sorber heat exchanger wall and sorber heat exchanger
JP2010255952A (en) * 2009-04-27 2010-11-11 Daikin Ind Ltd Humidity controller
JP2011202950A (en) * 2011-06-15 2011-10-13 Japan Exlan Co Ltd Adsorption type heat exchange module and method of manufacturing the same
JP2016050715A (en) * 2014-08-29 2016-04-11 カルソニックカンセイ株式会社 Air conditioning system with adsorption type refrigerator
US9889427B2 (en) 2014-11-21 2018-02-13 Toyota Jidosha Kabushiki Kaisha Temperature-responsive hygroscopic material and method for producing the same
CN113426424A (en) * 2021-06-18 2021-09-24 浙江理工大学 Temperature-sensitive composite silica gel desiccant and preparation method thereof
CN113426424B (en) * 2021-06-18 2023-02-28 浙江理工大学 Temperature-sensitive composite silica gel desiccant and preparation method thereof

Also Published As

Publication number Publication date
JP4158270B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
AU2004219772B2 (en) Humidity controller apparatus
CN102114378B (en) Hygroscopic agent and manufacturing method and application thereof
JP2001241693A (en) Air conditioner
WO2006028167A1 (en) Humidity controller
JP4158270B2 (en) Adsorbent and air conditioner for vehicle
JP4075950B2 (en) Air conditioner
US6562754B1 (en) Process for making an adsorbent
JP2000140625A (en) Adsorbent and air conditioner for vehicle using the adsorbent
US20220134277A1 (en) Solar-driven membrane-based open-cycle adsorption air conditioner
JP3596547B2 (en) Humidity control device
AU2004258010B2 (en) Humidity control system
TWI768054B (en) Process and air conditioning apparatus for conditioning a fluid, and applications of the air conditioning apparatus
JP5601795B2 (en) Air conditioning method and air conditioning apparatus
JP4238424B2 (en) Method for producing inorganic porous body
JP2005134005A (en) Humidity conditioning device
JP2008201199A (en) Air conditioner for vehicle
JP4179052B2 (en) Humidity control device
JPH1137597A (en) Adsorption-type freezer
JP4273818B2 (en) Humidity control device
JP4273829B2 (en) Humidity control device
JP3921744B2 (en) Adsorption refrigeration system
CN117870031A (en) Single-rotating-wheel low dew point dehumidifier and dehumidification system
JPH09152222A (en) Chemical heat pump
JP2003237359A (en) Absorption type refrigerating machine for vehicle
JPH09170847A (en) On-vehicle chemical heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees