JP2000262026A - Axial direction gap type micromotor - Google Patents

Axial direction gap type micromotor

Info

Publication number
JP2000262026A
JP2000262026A JP11061658A JP6165899A JP2000262026A JP 2000262026 A JP2000262026 A JP 2000262026A JP 11061658 A JP11061658 A JP 11061658A JP 6165899 A JP6165899 A JP 6165899A JP 2000262026 A JP2000262026 A JP 2000262026A
Authority
JP
Japan
Prior art keywords
stator
axial direction
rotor
gap type
micromotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11061658A
Other languages
Japanese (ja)
Other versions
JP4200400B2 (en
Inventor
Tatsuo Abe
達雄 安部
Shinichiro Mukai
真一郎 向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP06165899A priority Critical patent/JP4200400B2/en
Publication of JP2000262026A publication Critical patent/JP2000262026A/en
Application granted granted Critical
Publication of JP4200400B2 publication Critical patent/JP4200400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an axial direction gap type micromotor which can suppress cogging torque and reduce torque fluctuation rate. SOLUTION: Stator teeth 11 and 21 of an axial direction gap type micromotor, having a rotor 3 comprising a disc-type permanent magnet which is magnetized in the axial direction so as to position the polarities N and S alternately in the circumferential direction and has a plurality of pole pairs on both its sides and has a 1st stator 1 and a 2nd stator 2, which are placed on both the sides of the rotor 3 so as to face each other vertically with a gap therebetween and have the plurality of teeth 11 and 21 respectively and armature windings 4 wound on the stator teeth 11 and 21 are formed into involute curves as viewed in the axial direction of the micromotor. If currents are applied to the armature windings 4 of the respective stators, the rotor 3 rotates smoothly even if the rotation angle is changed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば民生用OA
機器または産業用FA機器等のマイクロモータに使用さ
れると共に、永久磁石を備えた軸方向空隙型マイクロモ
ータに関し、特にコギングトルクを低減するものに関す
る。
TECHNICAL FIELD The present invention relates to, for example, consumer OA
The present invention relates to an axial gap type micromotor having a permanent magnet and used for a micromotor of a device or an industrial FA device, and more particularly to a device for reducing cogging torque.

【0002】[0002]

【従来の技術】従来、OA機器やFA機器等のマイクロ
モータに使用される軸方向空隙型マイクロモータは、図
5に示すようになっている。図において、軸方向空隙型
マイクロモータは、円周方向にN,Sの極性が交互に位
置するように軸方向に着磁され、両面にそれぞれ複数個
の磁極対を形成した円板状の永久磁石から成るロータ3
と、ロータ3の両面に空隙を介して対向し、かつ扇形形
状を有してそれぞれ複数個のステータ歯部71、81を
有する第1ステータ7および第2ステータ8と、各ステ
ータ7、8に巻回した電機子巻線9と、ロータ3の表面
に垂直に配設したシャフト5と、第1ステータ7と第2
ステータ8の間に配設された両ステータを接続するリン
グ状のフレーム6と、軸受51とを備えている。
2. Description of the Related Art Conventionally, an axial gap type micromotor used for a micromotor of OA equipment, FA equipment and the like is as shown in FIG. In the figure, an axial gap type micromotor is magnetized in the axial direction such that polarities of N and S are alternately located in a circumferential direction, and a disk-shaped permanent magnet having a plurality of magnetic pole pairs formed on both surfaces. Rotor 3 consisting of magnet
And a first stator 7 and a second stator 8 which are opposed to both surfaces of the rotor 3 via a gap and have a plurality of stator teeth 71, 81 each having a sector shape. The wound armature winding 9, the shaft 5 vertically disposed on the surface of the rotor 3, the first stator 7 and the second
A ring-shaped frame 6 for connecting the two stators disposed between the stators 8 and a bearing 51 are provided.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来技術で
は、各ステータ7、8は、各々のステータ歯部71、8
1の形状が扇形でしかも歯部の径方向長さが狭いため、
一つの歯部あたりに巻回する電機子巻線9のターン数を
多く取ることができず、巻回された電機子巻線9間にお
ける電磁的な空隙が大きくなる。その結果、ロータ3の
回転角度が変化するごとに軸方向のギャップ吸引力が変
動し、ロータ3を挟み第1ステータ7および第2ステー
タ8間でコギングトルクが大きくなり、トルク変動率も
大きくなるという問題があった。そこで、本発明はコギ
ングトルクの発生を抑え、トルク変動率を小さくするこ
とができる軸方向空隙型マイクロモータを提供すること
を目的とする。
However, in the prior art, each of the stators 7 and 8 has its own stator teeth 71 and 8 respectively.
Because the shape of 1 is fan-shaped and the radial length of the tooth is narrow,
The number of turns of the armature winding 9 wound around one tooth portion cannot be increased, and the electromagnetic gap between the wound armature windings 9 increases. As a result, each time the rotation angle of the rotor 3 changes, the gap suction force in the axial direction fluctuates, and the cogging torque between the first stator 7 and the second stator 8 sandwiching the rotor 3 increases, and the torque fluctuation rate also increases. There was a problem. Accordingly, an object of the present invention is to provide an axial gap type micromotor capable of suppressing the occurrence of cogging torque and reducing the torque fluctuation rate.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、請求項1記載の本発明は、円周方向にN,Sの極性
が交互に位置するように軸方向に着磁され、両面にそれ
ぞれm(mは整数)個の磁極対を形成した円板状の永久
磁石から成るロータと、前記ロータの両面に空隙を介し
て垂直方向に対向すると共に、それぞれn(nは整数)
個のステータ歯部と前記ステータ歯部に巻回して成る電
機子巻線を有する第1ステータおよび第2ステータと、
前記第1ステータと前記第2ステータの間に配設された
両ステータを接続するリング状のフレームと、を備えた
軸方向空隙型マイクロモータにおいて、前記ステータ歯
部をモータの軸方向から見て、インボリュート曲線状に
形成してあることを特徴とするものである。また、請求
項2記載の本発明は、請求項1記載の軸方向空隙型マイ
クロモータにおいて、前記第1ステータおよび前記第2
ステータのステータ歯部の位置を、互いに周方向に18
0/(m×n)度ずらして配置したものである。上記手
段により、インボリュート形状に形成した各ステータ歯
部に電機子巻線を巻回する構成にしたため、一つの歯部
あたりに巻回する電機子巻線のターン数を多く取ること
ができ、巻回された電機子巻線間における電磁的な空隙
を小さくできる。その結果、ロータの回転角度が変化す
るごとに軸方向のギャップ吸引力が変動することはない
ので、ロータを挟み第1ステータおよび第2ステータ間
でコギングトルクを小さくできる、これにより、トルク
変動率も小さくすることができる。
In order to solve the above-mentioned problem, the present invention according to claim 1 is characterized in that the magnets are magnetized in the axial direction so that the polarities of N and S are alternately arranged in the circumferential direction. A rotor composed of disk-shaped permanent magnets each having m (m is an integer) magnetic pole pairs is vertically opposed to both surfaces of the rotor with a gap therebetween, and n (n is an integer) respectively
A first stator and a second stator having a plurality of stator teeth and an armature winding wound around the stator teeth;
A ring-shaped frame connecting the two stators disposed between the first stator and the second stator, wherein the stator teeth are viewed from the axial direction of the motor. , Formed in an involute curve. According to a second aspect of the present invention, in the axial gap type micromotor according to the first aspect, the first stator and the second
Position the stator teeth of the stator 18
It is arranged by being shifted by 0 / (m × n) degrees. According to the above-described means, the armature winding is wound around each stator tooth formed in the involute shape, so that the number of turns of the armature winding wound per tooth can be increased. The electromagnetic gap between the turned armature windings can be reduced. As a result, the gap suction force in the axial direction does not fluctuate every time the rotation angle of the rotor changes, so that the cogging torque can be reduced between the first stator and the second stator with the rotor interposed therebetween. Can also be reduced.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。図1は、本発明の第1の実施例を示す軸
方向空隙型マイクロモータであって、(a)はモータ構
成を示す断面図、(b)はステータの上面図である。な
お、従来と同じ構成要素については同じ符号を付してそ
の説明を省略し、異なる点のみを説明する。図におい
て、従来と異なる点は以下のとおりである。すなわち、
1は第1ステータ、2は第2ステータ、11、21は各
ステータ1、2上に設けたステータ歯部、4は各ステー
タ歯部11、21に巻回した電機子巻線であって、ステ
ータ歯部11、21をモータの軸方向から見て、インボ
リュート曲線状に形成してある。ここで、ステータ歯部
11、21をインボリュート曲線状に加工するには次の
ような方法をとる。図2は図1におけるインボリュート
曲線状に加工が施されたステータ歯部の部分断面図であ
る。インボリュート曲線Aは仮想円Bに巻き付けた仮想
糸Cをときほぐして行く際に、仮想糸Cの端が図中イの
位置から反時計回りに30°、60°、90°、120
°すなわち図中ロ→ハ→ニ→ホの様に移動して描く曲線
である。このように図2に示すインボリュート曲線状に
囲まれた斜線部分をステータ歯部11、21とし、その
ステータ歯部11、21に電機子巻線4を巻回し、図1
(b)に示すような各ステータ1、2を構成する。次
に、動作を説明する。各ステータ1、2は、ステータ歯
部11、21間の円周方向の電磁空隙を少なくした構成
にしたため、各ステータ歯部11、21に巻回された電
機子巻線4に電流を印加した際、ロータ3は、第1ステ
ータ1および第2ステータ2間で回転角度が変化するご
とに軸方向のギャップ吸引力が変動することなく円滑に
回転する。次に、本発明の第2の実施例を説明する。図
3は、本発明の第2の実施例を示すロータとステータの
周方向展開図である。なお、図ではm=6個の磁極対を
形成した永久磁石からなるロータ3と、n=4個のステ
ータ歯部11a、11b、11c、11dを形成した第
1ステータ1と、同じく4個のステータ歯部21a、2
1b、21c、21dを形成した第2ステータ2とを備
えたモータの例を示している。すなわち、第1の実施例
と異なる点は、第1ステータ1および第2ステータ2の
ステータ歯部11、21の位置を互いに周方向に180
/(m×n)度ずらして配置した点であり、図中、この
ときの位置ずれ角をαとしている。このようにすること
で、ロータ3を挟み第1ステータ1および第2ステータ
2間で発生するコギングトルクを効果的に相殺すること
ができる。なお、動作については第1の実施例と基本的
に同じなので説明を省略する。次に、本発明による軸方
向空隙型マイクロモータのトルク変動率について説明す
る。本発明の実施例のうち、第1の実施例によるマイク
ロモータを実際に試作し、その効果を試験により確認し
た。図4は、本発明と従来のトルク変動率の比較を示す
グラフである。図に示すように、従来のトルク変動率の
値が5%から、本発明では2%に減り、トルク変動率が
小さくなることがわかった。したがって、各ステータ歯
部の形状をインボリュート形状にすると共に、電機子巻
線をインボリュート曲線上に形成されたステータ歯部に
巻回する構成にしたので、一つの歯部あたりに巻回する
電機子巻線のターン数を多く取ることができ、巻回され
た電機子巻線間における電磁的な空隙を小さくできる。
その結果、ロータの回転角度が変化するごとに軸方向の
ギャップ吸引力が変動することなく、ロータを挟み第1
ステータおよび第2ステータ間でコギングトルクを小さ
くできる、また、これにより、トルク変動率も小さくす
ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIGS. 1A and 1B show an axial gap type micromotor according to a first embodiment of the present invention. FIG. 1A is a cross-sectional view showing a motor configuration, and FIG. 1B is a top view of a stator. The same components as those in the related art are denoted by the same reference numerals, and description thereof will be omitted. Only different points will be described. In the figure, the points different from the conventional one are as follows. That is,
1 is a first stator, 2 is a second stator, 11 and 21 are stator teeth provided on each of the stators 1 and 2, and 4 is an armature winding wound around each of the stator teeth 11 and 21. The stator teeth 11, 21 are formed in an involute curve when viewed from the axial direction of the motor. Here, the following method is used to machine the stator teeth 11, 21 into an involute curve. FIG. 2 is a partial cross-sectional view of a stator tooth portion processed into an involute curve shape in FIG. As the involute curve A unwinds the virtual yarn C wound around the virtual circle B, the ends of the virtual yarn C are turned counterclockwise from the position A in the figure by 30 °, 60 °, 90 °, 120 °.
In other words, the curve is drawn by moving in the order of b → c → d → e in the figure. The hatched portions surrounded by the involute curves shown in FIG. 2 are the stator teeth 11 and 21, and the armature winding 4 is wound around the stator teeth 11 and 21 as shown in FIG.
Each of the stators 1 and 2 as shown in FIG. Next, the operation will be described. Since each of the stators 1 and 2 had a configuration in which the circumferential electromagnetic gap between the stator teeth 11 and 21 was reduced, a current was applied to the armature winding 4 wound around each of the stator teeth 11 and 21. At this time, the rotor 3 rotates smoothly without changing the gap suction force in the axial direction every time the rotation angle changes between the first stator 1 and the second stator 2. Next, a second embodiment of the present invention will be described. FIG. 3 is a circumferential development of a rotor and a stator showing a second embodiment of the present invention. In the figure, a rotor 3 composed of permanent magnets having m = 6 magnetic pole pairs, a first stator 1 having n = 4 stator teeth 11a, 11b, 11c and 11d, and four rotors are also provided. Stator teeth 21a, 2
The example of the motor provided with the 2nd stator 2 which formed 1b, 21c, and 21d is shown. That is, the difference from the first embodiment is that the positions of the stator teeth 11 and 21 of the first stator 1 and the second stator 2 are shifted from each other by 180 in the circumferential direction.
/ (M × n) degrees, and the position shift angle at this time is α in the figure. By doing so, the cogging torque generated between the first stator 1 and the second stator 2 with the rotor 3 interposed therebetween can be effectively canceled. The operation is basically the same as that of the first embodiment, and the description is omitted. Next, the torque fluctuation rate of the axial gap type micromotor according to the present invention will be described. Among the embodiments of the present invention, a micromotor according to the first embodiment was actually manufactured on a trial basis, and its effect was confirmed by a test. FIG. 4 is a graph showing a comparison between the present invention and a conventional torque fluctuation rate. As shown in the figure, it was found that the value of the conventional torque fluctuation rate was reduced from 5% to 2% in the present invention, and the torque fluctuation rate was reduced. Therefore, the shape of each stator tooth portion is involute, and the armature winding is wound around the stator tooth portion formed on the involute curve, so that the armature is wound around one tooth portion. The number of turns of the winding can be increased, and the electromagnetic gap between the wound armature windings can be reduced.
As a result, each time the rotation angle of the rotor changes, the gap suction force in the axial direction does not change, and
The cogging torque between the stator and the second stator can be reduced, and thereby the torque fluctuation rate can be reduced.

【0006】[0006]

【発明の効果】以上述べたように、本発明によれば、ス
テータ歯部をインボリュート曲線状にしたので、ロータ
を挟み各ステータ間で起こるコギングトルクの発生を抑
え、トルク変動率を小さくすることができる軸方向空隙
型マイクロモータを得る効果がある。また、各ステータ
のステータ歯部の位置を互いに周方向にずらして配置し
たので、コギングトルクをより効果的に相殺することが
できる。
As described above, according to the present invention, since the stator teeth are formed as involute curves, the occurrence of cogging torque occurring between the stators with the rotor interposed therebetween is suppressed, and the torque fluctuation rate is reduced. There is an effect of obtaining an axial gap type micromotor capable of performing the above. In addition, since the positions of the stator teeth of each stator are shifted from each other in the circumferential direction, the cogging torque can be more effectively canceled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す軸方向空隙型マイ
クロモータであり、(a)はモータ構成を示す断面図、
(b)はステータの上面図である。
FIG. 1 shows an axial gap type micromotor according to a first embodiment of the present invention, in which (a) is a cross-sectional view showing a motor configuration;
(B) is a top view of the stator.

【図2】図1におけるインボリュート曲線状に加工が施
されたステータ歯部の部分断面図である。
FIG. 2 is a partial cross-sectional view of a stator tooth portion processed into an involute curve in FIG. 1;

【図3】本発明の第2の実施例を示すロータとステータ
の周方向展開図である。
FIG. 3 is a circumferential development view of a rotor and a stator showing a second embodiment of the present invention.

【図4】本発明と従来のトルク変動率の比較を示すグラ
フである。
FIG. 4 is a graph showing a comparison between the present invention and a conventional torque fluctuation rate.

【図5】従来の軸方向空隙型マイクロモータであって、
(a)はモータ構成を示す断面図、(b)はステータの
上面図である。
FIG. 5 is a conventional axial gap type micromotor,
FIG. 3A is a cross-sectional view illustrating a motor configuration, and FIG. 3B is a top view of a stator.

【符号の説明】[Explanation of symbols]

1 第1のステータ 2 第2のステータ 11ステータ歯部 21 ステータ歯部 11a、11b、11c、11d 永久磁石 21a、21b、21c、21d 永久磁石 3 ロータ 4 電機子捲線 5 シャフト 6 フレーム A インボリュート曲線 B 仮想円 C 仮想糸 REFERENCE SIGNS LIST 1 first stator 2 second stator 11 stator teeth 21 stator teeth 11a, 11b, 11c, 11d permanent magnets 21a, 21b, 21c, 21d permanent magnet 3 rotor 4 armature winding 5 shaft 6 frame A involute curve B Virtual circle C Virtual thread

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円周方向にN,Sの極性が交互に位置する
ように軸方向に着磁され、両面にそれぞれm(mは整
数)個の磁極対を形成した円板状の永久磁石から成るロ
ータと、前記ロータの両面に空隙を介して垂直方向に対
向すると共に、それぞれn(nは整数)個のステータ歯
部と前記ステータ歯部に巻回して成る電機子巻線を有す
る第1ステータおよび第2ステータと、前記第1ステー
タと前記第2ステータの間に配設された両ステータを接
続するリング状のフレームと、を備えた軸方向空隙型マ
イクロモータにおいて、 前記ステータ歯部をモータの軸方向から見て、インボリ
ュート曲線状に形成してあることを特徴とする軸方向空
隙型マイクロモータ。
1. A disk-shaped permanent magnet which is magnetized in the axial direction so that polarities of N and S are alternately positioned in a circumferential direction, and has m (m is an integer) magnetic pole pairs on both surfaces. And n (n is an integer) stator tooth portions and armature windings wound around the stator tooth portions, each of which is vertically opposed to both surfaces of the rotor with a gap therebetween. An axial gap type micromotor comprising: a first stator and a second stator; and a ring-shaped frame that connects the two stators disposed between the first stator and the second stator. Is formed in an involute curve when viewed from the axial direction of the motor.
【請求項2】前記第1ステータおよび前記第2ステータ
のステータ歯部の位置を、互いに周方向に180/(m
×n)度ずらして配置した請求項1記載の軸方向空隙型
マイクロモータ。
2. The position of the stator teeth of the first stator and the second stator is set to 180 / (m
× n) The axial gap type micromotor according to claim 1, which is displaced by degrees.
JP06165899A 1999-03-09 1999-03-09 Axial gap type micro motor Expired - Fee Related JP4200400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06165899A JP4200400B2 (en) 1999-03-09 1999-03-09 Axial gap type micro motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06165899A JP4200400B2 (en) 1999-03-09 1999-03-09 Axial gap type micro motor

Publications (2)

Publication Number Publication Date
JP2000262026A true JP2000262026A (en) 2000-09-22
JP4200400B2 JP4200400B2 (en) 2008-12-24

Family

ID=13177554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06165899A Expired - Fee Related JP4200400B2 (en) 1999-03-09 1999-03-09 Axial gap type micro motor

Country Status (1)

Country Link
JP (1) JP4200400B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501733B2 (en) 2004-05-18 2009-03-10 Seiko Epson Corporation Electric machine
US7906883B2 (en) 2008-06-02 2011-03-15 Honda Motor Co., Ltd. Axial gap motor
US7919897B2 (en) 2008-10-09 2011-04-05 Honda Motor Co., Ltd. Axial gap type motor
US7977843B2 (en) 2007-10-04 2011-07-12 Honda Motor Co., Ltd. Axial gap type motor
US8030816B2 (en) 2006-06-06 2011-10-04 Honda Motor Co., Ltd. Motor and motor control device
US8035266B2 (en) 2007-04-17 2011-10-11 Honda Motor Co., Ltd. Axial gap motor
US8040008B2 (en) 2007-10-04 2011-10-18 Honda Motor Co., Ltd. Axial gap motor
US8049389B2 (en) 2008-06-02 2011-11-01 Honda Motor Co., Ltd. Axial gap motor
US8053942B2 (en) 2007-08-29 2011-11-08 Honda Motor Co., Ltd. Axial gap motor
US8283829B2 (en) 2007-06-26 2012-10-09 Honda Motor Co., Ltd. Axial gap motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501733B2 (en) 2004-05-18 2009-03-10 Seiko Epson Corporation Electric machine
US7884517B2 (en) 2004-05-18 2011-02-08 Seiko Epson Corporation Electric machine
US8030816B2 (en) 2006-06-06 2011-10-04 Honda Motor Co., Ltd. Motor and motor control device
US8035266B2 (en) 2007-04-17 2011-10-11 Honda Motor Co., Ltd. Axial gap motor
US8283829B2 (en) 2007-06-26 2012-10-09 Honda Motor Co., Ltd. Axial gap motor
US8053942B2 (en) 2007-08-29 2011-11-08 Honda Motor Co., Ltd. Axial gap motor
US7977843B2 (en) 2007-10-04 2011-07-12 Honda Motor Co., Ltd. Axial gap type motor
US8040008B2 (en) 2007-10-04 2011-10-18 Honda Motor Co., Ltd. Axial gap motor
US7906883B2 (en) 2008-06-02 2011-03-15 Honda Motor Co., Ltd. Axial gap motor
US8049389B2 (en) 2008-06-02 2011-11-01 Honda Motor Co., Ltd. Axial gap motor
US7919897B2 (en) 2008-10-09 2011-04-05 Honda Motor Co., Ltd. Axial gap type motor

Also Published As

Publication number Publication date
JP4200400B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP4626405B2 (en) Brushless motor
JP3460912B2 (en) Motor structure
EP2015425B1 (en) Permanent magnet rotating electrical machine and permanent magnet rotating electrical machine system
TWI414130B (en) Single-phase brushless motor
KR101228013B1 (en) Dc motor with asymmetrical poles
WO2013047076A1 (en) Rotating electric machine
WO2011118214A1 (en) Motor and electrical apparatus housing same
JP2008283785A (en) Switched reluctance motor
JP2001339921A (en) Permanent-magnet motor
JP2001314052A (en) Rotor structure of synchronous motor
CN101222154B (en) Rotation structure of permanent magnet motor
WO2015097767A1 (en) Permanent magnet type rotating electrical machine
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP2007274869A (en) Slot-less permanent magnet type rotary electric machine
JP2004096803A (en) Permanent magnet synchronous motor
JP2003284276A (en) Dynamo-electric machine
JP4200400B2 (en) Axial gap type micro motor
JPH11206085A (en) Permanent magnet motor
JP2003088078A (en) Brushless dc motor
JP4062269B2 (en) Synchronous rotating electrical machine
JP2011055619A (en) Permanent magnet type dynamo-electric machine
JP2001359266A (en) Structure of brushless dc motor
JP2002136094A (en) Stepping motor
JP2007202333A (en) Rotating electric machine
JP2003047181A (en) Brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees