JP2000258362A - Microwave type densitometer - Google Patents

Microwave type densitometer

Info

Publication number
JP2000258362A
JP2000258362A JP11058746A JP5874699A JP2000258362A JP 2000258362 A JP2000258362 A JP 2000258362A JP 11058746 A JP11058746 A JP 11058746A JP 5874699 A JP5874699 A JP 5874699A JP 2000258362 A JP2000258362 A JP 2000258362A
Authority
JP
Japan
Prior art keywords
measured
microwave
liquid
concentration
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11058746A
Other languages
Japanese (ja)
Other versions
JP3051118B1 (en
Inventor
Seiji Yamaguchi
征治 山口
Etsumi Suzuki
悦美 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Information and Control Systems Corp
Original Assignee
Toshiba Corp
Toshiba Information and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Information and Control Systems Corp filed Critical Toshiba Corp
Priority to JP11058746A priority Critical patent/JP3051118B1/en
Application granted granted Critical
Publication of JP3051118B1 publication Critical patent/JP3051118B1/en
Publication of JP2000258362A publication Critical patent/JP2000258362A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the concentration change in such mixed substance as the solid content of target liquid containing bubbles by measuring the concentration of the liquid to be measured in a plurality of different pressure states and correcting the influence of bubbles using the plurality of measurement values. SOLUTION: An automatic gate valve 22 is opened by the control signal of a controller 33, a pressure-reducing mechanism 31 is operated, a switching valve 32 is set to the side of the pressure-reducing mechanism 31, a piston 24 is withdrawn from a delivery position, liquid to be measured flowing to detector piping 21 is sampled into a measurement chamber cylinder 23, and the automatic gate valve 22 is closed. A pressurization pressure source 30 is operated, the switching valve 32 is switched to the side of the pressurization pressure source 30, a piston 24 is pressed down, the inside of the measurement chamber cylinder 23 is gradually pressurized and at the same time pressure is measured by a pressure detector 26, and the signal is inputted to the controller 33. On the other hand, a phase measurement system according to microwaves is operated, pressurization is made and at the same time a phase is measured, concentration is obtained using a calibration curve by a concentration computing element 34, the influence of bubbles is corrected by a bubble influence correction computing element 35, and the concentration of the solid content of liquid to be measured is outputted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば下水汚泥、
パルプ、塗料等の、種々の懸濁物質や溶解性物質等の混
合物質を含む測定対象液中の固形分等の混合物質の濃度
を測定するマイクロ波式濃度計に係り、特に測定対象液
中に気泡が大量に含まれている場合でも、その気泡の影
響を補正して測定対象液中の固形分等の混合物質の正確
な濃度測定を実現できるようにしたマイクロ波式濃度計
に関するものである。
The present invention relates to, for example, sewage sludge,
The present invention relates to a microwave type densitometer for measuring the concentration of a mixed substance such as a solid content in a liquid to be measured including a mixed substance such as various suspended substances and soluble substances such as pulp and paint. It relates to a microwave-type densitometer that corrects the influence of air bubbles even when a large amount of air bubbles are contained in it, thereby realizing accurate concentration measurement of mixed substances such as solids in the liquid to be measured. is there.

【0002】[0002]

【従来の技術】従来から、液体中の懸濁物質等の濃度測
定を行なう計器として、超音波の減衰率を測定して濃度
を求める超音波式濃度計、光を用いて透過光減衰率や散
乱光増加率を測定して濃度を求める光学式濃度計が多く
用いられてきている。
2. Description of the Related Art Conventionally, as an instrument for measuring the concentration of a suspended substance or the like in a liquid, an ultrasonic densitometer that measures the attenuation rate of an ultrasonic wave to obtain a concentration, a transmission light attenuation rate using light, Optical densitometers that measure the scattered light increase rate to determine the concentration have been widely used.

【0003】しかしながら、前者の超音波式濃度計で
は、流体中に気泡が混入している場合に、その影響を大
きく受けて測定誤差が増大する。
[0003] However, in the former ultrasonic type densitometer, when air bubbles are mixed in the fluid, it is greatly affected by the air bubbles and the measurement error increases.

【0004】また、後者の光学式濃度計では、光を入射
するあるいは受光する光学窓に汚れが付着すると、その
影響を大きく受けて測定誤差が増大する。
In the latter optical densitometer, if dirt adheres to an optical window through which light enters or receives light, the dirt is greatly affected by the contamination and measurement errors increase.

【0005】そこで、最近では、気泡や汚れの影響を受
け難い濃度計として、マイクロ波式濃度計が開発され、
実用化されるようになってきている。
Therefore, recently, a microwave densitometer has been developed as a densitometer which is hardly affected by bubbles and dirt.
It is being put to practical use.

【0006】図5は、この種の従来のマイクロ波式濃度
計の基本的な構成例を示す概要図である。
FIG. 5 is a schematic diagram showing an example of a basic configuration of this type of conventional microwave densitometer.

【0007】図5に示すように、流体の流通する配管1
に、マイクロ波送信アンテナ11とマイクロ波受信アン
テナ12とが対向配置され、マイクロ波発振器13から
マイクロ波が供給されるようになっている。
[0007] As shown in FIG.
In addition, a microwave transmitting antenna 11 and a microwave receiving antenna 12 are arranged to face each other, and a microwave is supplied from a microwave oscillator 13.

【0008】また、マイクロ波の通過経路として、パワ
ースプリッタ14〜マイクロ波送信アンテナ11〜管内
液体〜マイクロ波受信アンテナ12を通って位相測定回
路15に導入される第1の経路と、同じくマイクロ波が
パワースプリッタ14を通って位相測定回路15に導入
される第2の経路とが形成されている。
As a microwave passage, a first path introduced into the phase measuring circuit 15 through the power splitter 14 to the microwave transmitting antenna 11 to the liquid in the tube to the microwave receiving antenna 12 is the same as the microwave. Is formed through the power splitter 14 and into the phase measurement circuit 15.

【0009】そして、位相差測定回路15によって、第
1の経路からのマイクロ波の、第2の経路からのマイク
ロ波に対する位相遅れから、位相差を求める構成となっ
ている。
Then, the phase difference measuring circuit 15 determines the phase difference from the phase delay of the microwave from the first path with respect to the microwave from the second path.

【0010】この濃度計では、マイクロ波発振器13か
ら、パワースプリッタ14を経由して直接受信するマイ
クロ波に対する配管内の測定対象液中を伝播してくるマ
イクロ波の位相遅れθ2と、管内に基準流体(例えば、
濃度ゼロとみなせる水道水)を充填して測定対象液と同
じ条件で測定した時のマイクロ波の位相遅れθ1とを比
較し、その位相差Δθ=(θ2−θ1)から、図6に示
すような検量線を用いて測定対象液の濃度を求める。
In this densitometer, the phase delay θ2 of the microwave propagating in the liquid to be measured in the pipe with respect to the microwave directly received from the microwave oscillator 13 via the power splitter 14 and the reference Fluid (for example,
A comparison is made between the phase delay θ1 of the microwave when the sample is filled with tap water (which can be regarded as having a concentration of zero) and measured under the same conditions as the liquid to be measured, and the phase difference Δθ = (θ2−θ1), as shown in FIG. The concentration of the liquid to be measured is determined using a simple calibration curve.

【0011】すなわち、具体的には、濃度X=aΔθ+
bの演算を行なって濃度を求めるものである。
That is, specifically, the density X = aΔθ +
The density is obtained by performing the calculation of b.

【0012】なお、aは検量線の傾き、bは検量線の切
片であり、通常はb=0である。
Note that a is the slope of the calibration curve, b is the intercept of the calibration curve, and b = 0 normally.

【0013】以上のようなマイクロ波式濃度計は、マイ
クロ波の減衰率を測定する方式ではなく、位相差を測定
する方式であり、またマイクロ波を入射あるいは受波す
る窓部は透明である必要はないため、気泡や汚れの影響
を受け難く、しかも連続的に濃度を測定することができ
る。
The above-mentioned microwave densitometer is not a method for measuring the attenuation rate of microwaves, but a method for measuring a phase difference, and a window for receiving or receiving microwaves is transparent. Since it is not necessary, it is hardly affected by bubbles and dirt, and the concentration can be continuously measured.

【0014】[0014]

【発明が解決しようとする課題】ところで、マイクロ波
式濃度計は、前述したように、超音波式濃度計等と比較
して、気泡の影響を受け難い測定方式ではあるが、測定
対象液中に大量に気泡が含まれている場合には、その影
響を無視することができない。
As described above, the microwave densitometer is a measurement method which is less susceptible to bubbles as compared with an ultrasonic densitometer or the like. If a large amount of air bubbles are contained, the effect cannot be ignored.

【0015】ここで、大量の気泡というのは曖昧な表現
であるが、目安としては、温度20℃で0.5MPa程
度に加圧しても溶解しきれない程の気泡含有率で、20
℃での体積%として9%以上くらいを大量の気泡という
ことに定義しておく。そして、この気泡の含有率が大き
な測定対象液の例としては、体積%で30%程度の塗料
液等がある。
Here, a large amount of bubbles is a vague expression, but as a guide, the bubble content is such that even if the temperature is 20 ° C. and the pressure is increased to about 0.5 MPa, the bubble content is 20%.
It is defined that about 9% or more in terms of volume% at ° C is a large amount of bubbles. As an example of the liquid to be measured having a large content of bubbles, there is a coating liquid of about 30% by volume.

【0016】大量の気泡が含まれる場合には、気泡が含
まれない状態に比較して、マイクロ波式濃度計による測
定値が高い値を示し、気泡含有量にほぼ比例するように
測定値が高くなっていく。
When a large amount of air bubbles are contained, the value measured by the microwave densitometer shows a higher value than when no air bubbles are contained, and the measured value is substantially proportional to the bubble content. Going higher.

【0017】従って、測定値が変化した時に、本来測定
すべき固形分等混合物質の濃度が変化したのか、気泡の
含有量が変化して測定値が変わったのかが分からないた
め、気泡の影響を補正することが必要である。
Therefore, when the measured value changes, it is not known whether the concentration of the mixed substance, such as solid content, which should be measured, has changed, or the measured value has changed due to a change in the content of bubbles. Needs to be corrected.

【0018】しかしながら、従来では、気泡量の変化を
検知するための良い方法がなく、気泡の影響を補正して
本来の固形分等の混合物質の濃度の変化を正確に測定す
ることができる濃度計が、強く望まれてきている。
However, conventionally, there is no good method for detecting a change in the amount of air bubbles, and a concentration capable of accurately measuring the change in the concentration of a mixed substance such as a solid content by correcting the influence of air bubbles. A measure is strongly desired.

【0019】本発明の目的は、測定対象液中に気泡が大
量に含まれている場合でも、気泡が測定値に及ぼす影響
を補正して、測定対象液中の固形分等の混合物質の濃度
測定を正確に行なうことが可能なマイクロ波式濃度計を
提供することにある。
An object of the present invention is to correct the influence of air bubbles on a measured value even when a large amount of air bubbles is contained in a liquid to be measured, and to adjust the concentration of a mixed substance such as a solid content in the liquid to be measured. It is an object of the present invention to provide a microwave densitometer capable of performing accurate measurement.

【0020】[0020]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の発明では、測定対象液をはさむ形でマ
イクロ波送信アンテナおよびマイクロ波受信アンテナを
対向配置し、マイクロ波送信アンテナからマイクロ波を
基準液体に入射し、当該基準流体中を伝播してマイクロ
波受信アンテナにて受信されたマイクロ波の位相遅れθ
1を測定してメモリに記憶しておき、さらにマイクロ波
送信アンテナからマイクロ波を測定対象液に入射し、当
該測定対象液を伝播してマイクロ波受信アンテナにて受
信されたマイクロ波の位相遅れθ2を測定して、各位相
遅れの位相差Δθ=(θ2−θ1)を演算し、測定対象
液の種類毎に対応する検量線X=aΔθ+bに基づい
て、測定対象液の濃度Xを測定するマイクロ波式濃度計
において、互いに異なる複数の圧力状態で測定対象液の
濃度測定を行ない、当該測定により得られた複数の測定
値を用いて気泡の影響分を補正して、測定対象液中の固
形分等の混合物質の濃度を求めるようにしている。
In order to achieve the above object, according to the first aspect of the present invention, a microwave transmitting antenna and a microwave receiving antenna are arranged opposite to each other so as to sandwich a liquid to be measured. , A microwave is incident on a reference liquid, propagates through the reference fluid, and is received by a microwave receiving antenna.
1 is measured and stored in a memory, and a microwave is incident on a liquid to be measured from a microwave transmitting antenna, propagates through the liquid to be measured, and receives a phase delay of the microwave received by the microwave receiving antenna. By measuring θ2, the phase difference of each phase delay Δθ = (θ2−θ1) is calculated, and the concentration X of the liquid to be measured is measured based on the calibration curve X = aΔθ + b corresponding to each type of the liquid to be measured. In a microwave type densitometer, the concentration of the liquid to be measured is measured at a plurality of pressure states different from each other, and the influence of air bubbles is corrected using a plurality of measured values obtained by the measurement, so that the concentration in the liquid to be measured is The concentration of a mixed substance such as solid content is determined.

【0021】従って、請求項1の発明のマイクロ波式濃
度計においては、互いに異なる複数の圧力状態で測定対
象液の濃度測定を行ない、この測定によって得られた複
数の測定値を用いて気泡の影響分を補正することによ
り、気泡を大量に含む測定対象液に適用する場合、気泡
が測定値に及ぼす影響を補正して、固形分等の混合物質
の濃度の変化を正確に測定することができる。
Therefore, in the microwave type densitometer according to the first aspect of the present invention, the concentration of the liquid to be measured is measured at a plurality of different pressure states, and a plurality of measured values obtained by the measurement are used to measure the bubble. When applying to a measurement target liquid containing a large amount of air bubbles by correcting the effect, it is necessary to correct the effect of air bubbles on the measurement value and accurately measure the change in the concentration of a mixed substance such as solid content. it can.

【0022】また、請求項2の発明では、上記請求項1
の発明のマイクロ波式濃度計において、互いに異なる複
数の圧力状態を3種類以上の圧力として測定対象液の濃
度測定を行ない、当該測定による最低圧力状態時の測定
値と他の圧力状態での測定値とから算出する気泡の影響
分の補正値を平均化して、測定対象液中の固形分等の混
合物質の濃度を求めるようにしている。
According to the second aspect of the present invention, the first aspect is provided.
In the microwave type densitometer of the invention, the concentration of the liquid to be measured is measured by setting a plurality of different pressure states to three or more kinds of pressures, and the measured value in the lowest pressure state and the measurement in another pressure state are measured. The correction values for the influence of bubbles calculated from the values are averaged to obtain the concentration of a mixed substance such as a solid content in the liquid to be measured.

【0023】従って、請求項2の発明のマイクロ波式濃
度計においては、互いに異なる複数の圧力状態を3種類
以上の圧力として測定対象液の測定を行ない、この測定
による最低圧力状態時の測定値と他の圧力状態での測定
値とから算出する気泡の影響分の補正値を平均化するこ
とにより、上記請求項1の発明の場合に比べて、より一
層精度の高い補正を行なうことができる。
Therefore, in the microwave type densitometer according to the second aspect of the present invention, the liquid to be measured is measured by setting a plurality of different pressure states to three or more kinds of pressures, and the measured value in the lowest pressure state by this measurement is measured. By averaging the correction values for the influence of the air bubbles calculated from the measured values in the other pressure states, it is possible to perform the correction with higher accuracy than in the case of the first aspect of the present invention. .

【0024】さらに、請求項3の発明では、上記請求項
1の発明のマイクロ波式濃度計において、時間の経過と
共に加圧圧力を上昇して行きながら連続的に測定対象液
の濃度測定を行ない、当該測定値の微分値があらかじめ
定められた所定値以下になった場合に、その時の測定値
を気泡の影響を受けていない固形分等の混合物質の濃度
測定値として出力する手段を付加している。
According to a third aspect of the present invention, in the microwave concentration meter according to the first aspect of the present invention, the concentration of the liquid to be measured is continuously measured while increasing the pressurizing pressure with the passage of time. When the differential value of the measured value falls below a predetermined value, a means for outputting the measured value at that time as a concentration measured value of a mixed substance such as a solid content not affected by bubbles is added. ing.

【0025】従って、請求項3の発明のマイクロ波式濃
度計においては、時間の経過と共に加圧圧力を上昇して
行きながら連続的に測定対象液の濃度測定を行ない、こ
の該測定値の微分値があらかじめ定められた所定値以下
になった場合に、その時の測定値を気泡の影響を受けて
いない固形分等の混合物質の濃度測定値として採用する
ことにより、上記請求項1、請求項2の発明は、加圧す
ることによって新たに溶解する気泡量を計算上省略して
も大きな誤差にならないほど大量の気泡が含まれている
場合に適用されるのに対して、加圧によって溶解する気
泡量を省略できない程度の気泡含有量の場合に適用する
ことができる。
Therefore, in the microwave densitometer according to the third aspect of the present invention, the concentration of the liquid to be measured is continuously measured while increasing the pressurizing pressure with the passage of time, and the derivative of the measured value is differentiated. The method according to claim 1, wherein when the value becomes equal to or less than a predetermined value, the measured value at that time is adopted as a concentration measured value of a mixed substance such as a solid content not affected by bubbles. The invention of the second aspect is applied to a case where a large amount of air bubbles is contained so as not to cause a large error even if the amount of air bubbles newly melted by pressurization is omitted in the calculation, whereas the air bubbles are newly melted by pressurization. This can be applied to the case where the bubble content is such that the bubble amount cannot be omitted.

【0026】なお、特に上記において、例えば請求項4
に記載したように、互いに異なる複数の圧力状態のうち
のーつとして、大気圧(約0.1MPa)とすることが
好ましい。
In the above description, for example,
As described in above, it is preferable that one of a plurality of different pressure states be atmospheric pressure (about 0.1 MPa).

【0027】また、例えば請求項5に記載したように、
測定対象液が流れている配管の側部に測定室を設け、当
該測定室に測定対象液の一部を採取して密閉した後に加
圧することが好ましい。
Also, for example, as described in claim 5,
It is preferable that a measurement chamber is provided on the side of the pipe through which the liquid to be measured flows, and a part of the liquid to be measured is collected in the measurement chamber, sealed, and then pressurized.

【0028】さらに、例えば請求項6に記載したよう
に、測定室をシリンダ状に構成し、かつその内部を摺動
するピストンによって測定室を加圧することが好まし
い。
Further, it is preferable that the measuring chamber is formed in a cylindrical shape and the measuring chamber is pressurized by a piston sliding inside the measuring chamber.

【0029】[0029]

【発明の実施の形態】本発明は、例えば下水汚泥、パル
プ、塗料等の、種々の懸濁物質や溶解性物質等の混合物
質を含む測定対象液中の固形分等の混合物質の濃度を測
定するマイクロ波式濃度計において、特に従来気泡が大
量に含まれる測定対象液では、その気泡の影響で正確な
濃度測定ができなかったのに対して、互いに異なる複数
の圧力状態(例えば大気圧状態とそれよりも加圧した状
態)での測定値に基づいて、当該気泡が濃度測定値に及
ぼす影響を補正することにより、測定対象液中に大量の
気泡が含まれている場合でも、気泡が測定値に及ぼす影
響を補正して、測定対象液中の固形分等の混合物質の濃
度の変化を正確に測定できるようにするものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method for measuring the concentration of a mixed substance such as a solid content in a liquid to be measured containing a mixed substance such as various suspended substances and soluble substances such as sewage sludge, pulp and paint. In a microwave type densitometer for measuring, in particular, in the conventional measurement liquid containing a large amount of bubbles, accurate concentration measurement could not be performed due to the influence of the bubbles, but a plurality of pressure states different from each other (for example, atmospheric pressure). State and the state where the pressure is higher than that), by correcting the effect of the bubble on the concentration measurement value based on the measured value, even if a large amount of bubble is contained in the liquid to be measured, Is corrected so that the change in the concentration of a mixed substance such as a solid content in the liquid to be measured can be accurately measured.

【0030】まず、本発明の前提となる気泡の影響補正
方式について、図3および補正式を用いて説明する。
First, a method of correcting the influence of bubbles which is a premise of the present invention will be described with reference to FIG.

【0031】図3に示すように、低圧力状態として0.
1MPa(大気圧)、高圧力状態として0.5MPa、
それぞれの圧力状態で測定する方式を例として述べる。
As shown in FIG.
1 MPa (atmospheric pressure), 0.5 MPa as a high pressure state,
The method of measuring under each pressure state will be described as an example.

【0032】いま、t℃、0.1MPaでの気泡含有率
(体積%)を(V1/(1+V1))とする。
The bubble content (volume%) at t ° C. and 0.1 MPa is defined as (V1 / (1 + V1)).

【0033】すなわち、測定対象液の気泡を含まない部
分1(L)に対して、気泡部分がV1(L)あるとす
る。
That is, it is assumed that there is a bubble portion V1 (L) with respect to the portion 1 (L) of the liquid to be measured which does not contain bubbles.

【0034】ここで、Lはリットルを意味する。また、
小文字の「l」は1と間違い易いので、大文字の「L」
を用いる。
Here, L means liter. Also,
The lowercase "l" is easy to mistake as 1, so the uppercase "L"
Is used.

【0035】V1を0℃、0.1MPaに換算した値を
V10とすると、 V10=(273/(273+t))・V1 この気泡を含む測定対象液を0.5MPaに加圧した時
の気泡含有率を、(V5/(1+V5))とする。
V10 = (273 / (273 + t)) · V1 The value of V1 converted to 0 ° C. and 0.1 MPa is V10 = (273 / (273 + t)) · V1 Bubbles contained when the liquid to be measured containing these bubbles is pressurized to 0.5 MPa. Let the rate be (V5 / (1 + V5)).

【0036】すなわち、測定対象液の気泡を含まない部
分1(L)に対して、気泡部分がV5(L)あることに
なる。
That is, there is a bubble portion V5 (L) with respect to the portion 1 (L) of the liquid to be measured which does not contain bubbles.

【0037】[物理の法則]「気体がt℃の水に溶解す
る容量は、その気体毎に決まっており、その溶解量を0
℃、0.1MPa状態に換算した体積at(L)を吸収
係数と称する。例えば、空気は20℃の水に0.018
2(L)溶解する。すなわち、at=0.0182であ
る。また、気体の溶解量は圧力に比例する。さらに、気
体の体積は圧力に反比例する。」上記物理の法則にした
がって、前記V5の0℃、0.1MPa換算体積V50
をV1を用いて表わすと、 V50=(V10+at)−5at=V10−4at =(273/(273+t))・V1−4at ここで、+atは、0.1MPa状態で液中に溶解して
いる気泡量、一5atは、0.5MPa状態で液中に溶
解する気泡量。
[Physical Law] The volume of gas dissolved in water at t ° C. is determined for each gas.
The volume at (L) converted to a state of 0.1 ° C. and 0.1 MPa is referred to as an absorption coefficient. For example, air is 0.018 in 20 ° C. water.
Dissolve 2 (L). That is, at = 0.0182. Further, the dissolved amount of the gas is proportional to the pressure. Further, the volume of the gas is inversely proportional to the pressure. According to the above-mentioned laws of physics, the above-mentioned V5 at 0 ° C. and 0.1 MPa equivalent volume V50
V50 = (V10 + at) -5at = V10-4at = (273 / (273 + t)) · V1-4at where + at is a bubble dissolved in the liquid in a state of 0.1 MPa. The amount, 1 at, is the amount of bubbles dissolved in the liquid at 0.5 MPa.

【0038】従って、V5をV1を用いて表わすと、 V5=(V50/5)・((273+t)/273) ={((273/(273+t))・V1−4at)/
5}・((273+t)/273) =(V1/5)一(4at/5)・((273+t)/
273) 圧力0.1MPa状態でのマイクロ波式濃度計の測定値
をY1、圧力0.5MPa状態でのマイクロ波式濃度計
の測定値をY5とすると、 Y1=CX+kV1 ……(1) Y5=CX+kV5 ……(2) ここで、CXは測定対象液中の固形分の濃度Xに比例す
る値で、本来測定したい値、kV1、kV5は気泡の影
響として現われる値で、気泡含有量に比例する。
Therefore, when V5 is represented using V1, V5 = (V50 / 5). ((273 + t) / 273) = {((273 / (273 + t)). V1-4at) /
5} · ((273 + t) / 273) = (V1 / 5) one (4at / 5) · ((273 + t) /
273) Assuming that the measured value of the microwave densitometer at the pressure of 0.1 MPa is Y1 and the measured value of the microwave densitometer at the pressure of 0.5 MPa is Y5, Y1 = CX + kV1 (1) Y5 = CX + kV5 (2) Here, CX is a value proportional to the concentration X of the solid content in the liquid to be measured, kV1 and kV5 are values originally intended to be measured, and kV1 and kV5 are values appearing as the influence of bubbles, and are proportional to the bubble content. .

【0039】上記(1)、(2)式から、 Y1−Y5=kV1−kV5 =kV1−k{(V1/5)一(4at/5)・((2
73+t)/273)} =0.8kV1+k(4at/5)・((273+t)
/273) 上式の右辺第2項は、0.5MPaに加圧することによ
って液中に溶解した気泡による影響分であり、気泡量V
1が大きい場合には、第1項に比較して小さいため、省
略しても大きな誤差にはならない。
From the above equations (1) and (2), Y1−Y5 = kV1−kV5 = kV1−k {(V1 / 5) (4at / 5) · ((2
73 + t) / 273)} = 0.8 kV1 + k (4 at / 5) · ((273 + t)
/ 273) The second term on the right-hand side of the above equation is the influence of bubbles dissolved in the liquid by pressurizing to 0.5 MPa.
When 1 is large, since it is small compared to the first term, even if it is omitted, no large error occurs.

【0040】例えば、20℃で気泡が空気の場合には、
at=0.0182であるから、 Y1−Y5=0.8kV1+k((4×0.0182)
/5)・((273+20)/273) =0.8kV1+0.0156k V1が大として第2項を省略すると、 Y1−Y5=0.8kV1 kV1=(Y1−Y5)/0.8 となり、これを上記(1)式に代入すると、 Y1=CX+(Y1−Y5)/0.8 CX=(Y5−0.2Y1)/0.8 となり、気泡の影響分(KV1)を補正して、本来測定
したい固形分の濃度Xに比例する値CXを、測定値Y1
とY5とから求めることができる。
For example, when air bubbles are air at 20 ° C.,
Since at = 0.0182, Y1−Y5 = 0.8 kV1 + k ((4 × 0.0182)
/5)·((273+20)/273)=0.8 kV1 + 0.0156k If V1 is large and the second term is omitted, then Y1-Y5 = 0.8 kV1 kV1 = (Y1-Y5) /0.8. Substituting into the above equation (1), Y1 = CX + (Y1-Y5) /0.8 CX = (Y5-0.2Y1) /0.8 The value CX proportional to the concentration X of the solid content to be measured is calculated as the measured value Y1
And Y5.

【0041】なお、前記の例では、高圧力状態を0.5
MPaとしたが、0.4MPaの場合には、 kV1=(Y1−Y4)/(3/4) となり、0.3MPaの場合、 kV1=(Y1−Y3)/(2/3) となって、それぞれ0.5MPaの場合と同様に、気泡
の影響分を補正することができる。
In the above example, the high pressure state is set to 0.5
However, in the case of 0.4 MPa, kV1 = (Y1-Y4) / (3/4), and in the case of 0.3 MPa, kV1 = (Y1-Y3) / (2/3). In the same manner as in the case of 0.5 MPa, the influence of air bubbles can be corrected.

【0042】以下、上記のような考え方に基づく本発明
の実施の形態について、図面を参照して詳細に説明す
る。
Hereinafter, embodiments of the present invention based on the above concept will be described in detail with reference to the drawings.

【0043】(第1の実施の形態)図1は、本実施の形
態によるマイクロ波式濃度計の構成例を示す概要図であ
り、図5と同一要素には同一符号を付して示している。
(First Embodiment) FIG. 1 is a schematic diagram showing a configuration example of a microwave type densitometer according to the present embodiment, and the same elements as those in FIG. I have.

【0044】図1において、検出器配管21は、その内
部を測定対象液が流れている。
In FIG. 1, the liquid to be measured flows through the detector pipe 21.

【0045】検出器配管21の側面には、シリンダ状に
構成した測定室シリンダ23が取り付けられている。
A measuring chamber cylinder 23 formed in a cylindrical shape is attached to a side surface of the detector pipe 21.

【0046】検出器配管21と測定室シリンダ23との
間には、自動仕切弁22が設けられている。
An automatic gate valve 22 is provided between the detector pipe 21 and the measuring chamber cylinder 23.

【0047】一方、ピストン24は、シール材25を介
して気密を保ちながら測定室シリンダ23内を摺動する
ことにより、測定室シリンダ23を加圧する。
On the other hand, the piston 24 presses the measurement chamber cylinder 23 by sliding in the measurement chamber cylinder 23 while maintaining airtightness through the sealing material 25.

【0048】圧力検出器26は、測定室シリンダ23内
の圧力を測定する。
The pressure detector 26 measures the pressure in the measurement chamber cylinder 23.

【0049】ピストン位置検出器27、28、29は、
それぞれピストン24のサンプリング終了位置、加圧位
置、排出位置を検出する。
The piston position detectors 27, 28, 29
The sampling end position, pressurization position, and discharge position of the piston 24 are detected, respectively.

【0050】加圧圧力源(コンプレッサ等)30は、測
定室シリンダ23内のピストン24を押し下げて加圧す
るもので、切換弁32を介して測定室シリンダ23に空
気配管で接続されている。
The pressurizing pressure source (compressor or the like) 30 presses down the piston 24 in the measuring chamber cylinder 23 to pressurize it, and is connected to the measuring chamber cylinder 23 via a switching valve 32 by air piping.

【0051】減圧機構(真空ポンプやアスピレータ等)
31は、サンプリング時に測定室シリンダ23内を減圧
してピストン24を引き込むもので、切換弁32を介し
て測定室シリンダ23に接続されている。
Decompression mechanism (vacuum pump, aspirator, etc.)
Reference numeral 31 denotes a device for depressurizing the inside of the measurement chamber cylinder 23 at the time of sampling and drawing in the piston 24, and is connected to the measurement chamber cylinder 23 via a switching valve 32.

【0052】一方、11、12、13、14、15は、
前記図5のマイクロ波式濃度計と同様に、それぞれ測定
室シリンダ23に取り付けられたマイクロ波送信アンテ
ナ、マイクロ波受信アンテナ、マイクロ波発振器、パワ
ースプリッタ、位相差測定回路である。
On the other hand, 11, 12, 13, 14, 15
Similar to the microwave type densitometer of FIG. 5, a microwave transmitting antenna, a microwave receiving antenna, a microwave oscillator, a power splitter, and a phase difference measuring circuit are mounted on the measuring chamber cylinder 23, respectively.

【0053】コントローラ33は、本濃度計の動作シー
ケンスを制御するもので、圧力検出器26、ピストン位
置検出器27、28、29からの出力信号が入力され、
自動仕切弁22、加圧圧力源30、減圧機構31、切換
弁32、位相測定回路15、および気泡影響補正演算器
35に制御信号を与える。
The controller 33 controls the operation sequence of the densitometer, and receives output signals from the pressure detector 26 and the piston position detectors 27, 28 and 29,
Control signals are supplied to the automatic gate valve 22, the pressurizing pressure source 30, the pressure reducing mechanism 31, the switching valve 32, the phase measuring circuit 15, and the bubble influence correction calculator 35.

【0054】濃度演算器34は、位相測定回路15から
の出力信号を受けて、前述の検量線に基づいて濃度演算
を行なう。
The density calculator 34 receives the output signal from the phase measuring circuit 15 and performs a density calculation based on the above-mentioned calibration curve.

【0055】気泡影響補正演算器35は、濃度演算器3
4、およびコントローラ33からの出力信号を受けて、
気泡の影響分を補正して測定対象液の固形分等の混合物
質の濃度を演算して出力する。
The bubble effect correction calculator 35 is a density calculator 3
4 and receiving the output signal from the controller 33,
The concentration of the mixed substance such as the solid content of the liquid to be measured is calculated by correcting the influence of the bubbles, and is output.

【0056】次に、以上のように構成した本実施の形態
のマイクロ波式濃度計の動作について、図2に示す状態
図を用いて説明する。
Next, the operation of the microwave type densitometer of the present embodiment configured as described above will be described with reference to the state diagram shown in FIG.

【0057】(a)サンプリング工程(図2の(a)、
(b)参照) コントローラ33からの制御信号に基づいて、自動仕切
弁22を開けて、減圧機構31を動作させ、切換弁32
も減圧機構31側に切り換えて、ピストン24を排出位
置から引き込んで、検出器配管21を流れている測定対
象液を、測定室シリンダ23内に採取した後に自動仕切
弁22を閉じる。
(A) Sampling step (FIG. 2A,
(Refer to (b).) Based on a control signal from the controller 33, the automatic gate valve 22 is opened, the pressure reducing mechanism 31 is operated, and the switching valve 32 is operated.
The pressure is also switched to the pressure reducing mechanism 31 side, the piston 24 is retracted from the discharge position, the liquid to be measured flowing through the detector pipe 21 is collected in the measuring chamber cylinder 23, and then the automatic gate valve 22 is closed.

【0058】(b)加圧・測定工程(図2の(C)参
照) コントローラ33からの制御信号に基づいて、加圧圧力
源30を動作させ、切換弁32も加圧圧力源30側に切
り換えて、ピストン24を押し下げて測定室シリンダ2
3内に採取されている気泡を含む測定対象液を徐々に加
圧して行く。そして、加圧しながら、圧力検出器26で
測定した測定室シリンダ23内の圧力Pを測定して、そ
の信号をコントローラ33に入力する。
(B) Pressurizing / measuring step (see FIG. 2C) The pressurizing pressure source 30 is operated based on a control signal from the controller 33, and the switching valve 32 is also moved to the pressurizing pressure source 30 side. Switch and push down the piston 24 to move the measurement chamber cylinder 2
The liquid to be measured containing bubbles collected in 3 is gradually pressurized. Then, while applying pressure, the pressure P in the measurement chamber cylinder 23 measured by the pressure detector 26 is measured, and the signal is input to the controller 33.

【0059】一方、マイクロ波による位相測定系も動作
させて、加圧しながら位相の測定を行ない、図4に示す
測定値Yを求める。
On the other hand, the phase measurement system using microwaves is also operated, and the phase is measured while applying pressure to obtain the measured value Y shown in FIG.

【0060】すなわち、マイクロ波発振器13からパワ
ースプリッタ14を介して、測定室シリンダ23に取り
付けられたマイクロ波送信アンテナ11にマイクロ波を
供給し、マイクロ波送信アンテナ11に対向配置された
マイクロ波受信アンテナ12で、測定室シリンダ23内
の測定対象液を透過してきたマイクロ波信号を受信し
て、その信号を位相差測定回路15に送る第1の経路が
ある。
That is, the microwave is supplied from the microwave oscillator 13 to the microwave transmitting antenna 11 attached to the measuring chamber cylinder 23 via the power splitter 14, and the microwave receiving antenna arranged opposite to the microwave transmitting antenna 11 is supplied. There is a first path through which the antenna 12 receives the microwave signal transmitted through the liquid to be measured in the measurement chamber cylinder 23 and sends the signal to the phase difference measurement circuit 15.

【0061】また、マイクロ波発振器13からのマイク
ロ波は、パワースプリッタ14を介して直接位相差測定
回路15に送られる第2の経路がある。
The microwave from the microwave oscillator 13 has a second path which is directly sent to the phase difference measuring circuit 15 via the power splitter 14.

【0062】そして、位相差測定回路15にて、第1の
経路からのマイクロ波の、第2の経路からのマイクロ波
に対する位相遅れを求める。
Then, the phase difference measuring circuit 15 determines the phase delay of the microwave from the first path with respect to the microwave from the second path.

【0063】濃度演算器34では、測定室シリンダ23
内の測定対象液中を伝播してくるマイクロ波の位相遅れ
θ2と、あらかじめ測定室シリンダ23内に基準流体
(例えば、濃度ゼロとみなせる水道水)を充填して測定
対象液と同じ条件で測定した時のマイクロ波の位相遅れ
θ1とを比較し、その位相差Δθ=(θ2−θ1)から
図6に示すような検量線を用いて濃度演算し、図4に示
す測定値Yを求める。
In the concentration calculator 34, the measuring chamber cylinder 23
The phase delay θ2 of the microwave propagating in the liquid to be measured and the reference fluid (for example, tap water which can be regarded as having a concentration of zero) are previously filled in the measuring chamber cylinder 23 and measured under the same conditions as the liquid to be measured. Compared with the phase delay θ1 of the microwave at this time, the density difference is calculated using the calibration curve as shown in FIG. 6 from the phase difference Δθ = (θ2−θ1) to obtain the measured value Y shown in FIG.

【0064】気泡影響補正演算器35では、あらかじめ
定められた複数の所定圧力での濃度演算器34からの測
定値Yに基づいて気泡の影響分の補正を行ない、測定対
象液の固形分の濃度を求めて出力する。
The bubble effect correction calculator 35 corrects the influence of bubbles based on the measured values Y from the concentration calculator 34 at a plurality of predetermined pressures, and calculates the concentration of the solid content of the liquid to be measured. Is output.

【0065】例えば、圧力0.1MPaと0.3MPa
と0.5MPaの3つの圧力状態で測定するとして、そ
れぞれの圧力での測定値Y1、Y3、Y5から、気泡の
影響分kV1を下記式から求める。
For example, pressures of 0.1 MPa and 0.3 MPa
Assuming that the measurement is performed at three pressure states of 0.5 MPa and 0.5 MPa, the influence amount kV1 of the bubble is obtained from the following equation from the measured values Y1, Y3, and Y5 at the respective pressures.

【0066】kV1=(Y1−Y3)/(2/3) kV1=(Y1−Y5)/0.8 さらに、これらの値の平均値 kV1={((Y1−Y3)/(2/3))+((Y1
−Y5)/0.8)}/2 を求め、この値を気泡の影響分としてY1の値から減じ
て、測定対象液の固形分等の混合物質の濃度に対応する
CXを求めて、固形分等の混合物質の濃度として出力す
る。
KV1 = (Y1-Y3) / (2/3) kV1 = (Y1-Y5) /0.8 Furthermore, the average value of these values kV1 = {((Y1-Y3) / (2/3) ) + ((Y1
−Y5) /0.8)} / 2, and this value is subtracted from the value of Y1 as the influence of air bubbles, and the CX corresponding to the concentration of the mixed substance such as the solid content of the liquid to be measured is calculated. Output as the concentration of the mixed substance such as minute.

【0067】(c)サンプル排出工程(図2の(d)参
照) 加圧・測定工程終了後、コントローラ33からの制御信
号に基づいて、自動仕切弁22を開けて、加圧圧力源3
0を動作させ、切換弁32も加圧圧力源30側に切り換
えて、測定室シリンダ23内のピストン24を排出位置
まで押し下げて、測定室シリンダ23内の測定対象液
を、検出器配管21内の測定対象液の流れの中に排出す
る。その状態で、次のサンプリング工程まで待機する。
(C) Sample discharging step (see FIG. 2D) After the pressurizing / measuring step, the automatic gate valve 22 is opened based on the control signal from the controller 33, and the pressurizing pressure source 3
0, the switching valve 32 is also switched to the pressurizing pressure source 30 side, and the piston 24 in the measuring chamber cylinder 23 is pushed down to the discharge position, and the liquid to be measured in the measuring chamber cylinder 23 is Is discharged into the flow of the liquid to be measured. In that state, it waits until the next sampling step.

【0068】上述したように、本実施の形態のマイクロ
波式濃度計では、互いに異なる複数の圧力状態で測定対
象液の濃度測定を行ない、この測定によって得られた複
数の測定値を用いて気泡の影響分を補正するようにして
いるので、気泡を大量に含む測定対象液に適用する場
合、気泡が測定値に及ぼす影響を補正して、固形分等の
混合物質の濃度の変化を正確に測定することが可能とな
る。
As described above, in the microwave type densitometer of the present embodiment, the concentration of the liquid to be measured is measured under a plurality of different pressure states, and the bubble is measured using the plurality of measured values obtained by the measurement. When applying to a measurement target liquid containing a large amount of air bubbles, the effect of air bubbles on the measured value is corrected, and the change in the concentration of a mixed substance such as solid content can be accurately corrected. It becomes possible to measure.

【0069】また、互いに異なる複数の圧力状態を3種
類以上の圧力として測定対象液の測定を行ない、この測
定による最低圧力状態時の測定値と他の圧力状態での測
定値とから算出する気泡の影響分の補正値を平均化する
ようにしているので、より一層精度の高い補正を行なう
ことが可能となる。
The liquid to be measured is measured by setting a plurality of different pressure states to three or more kinds of pressures, and the bubble calculated from the measured value in the lowest pressure state and the measured value in another pressure state by this measurement. Since the correction values for the influence of are averaged, it is possible to perform even more accurate correction.

【0070】(第2の実施の形態)本実施の形態による
マイクロ波式濃度計は、前述した第1の実施の形態のマ
イクロ波式濃度計において、図4に示すように、時間の
経過と共に加圧圧力を上昇して行きながら連続的にマイ
クロ波式濃度計による測定対象液の濃度測定を行ない、
この測定値の微分値があらかじめ定められた所定値(例
えば、ゼロに近い所定値)以下になった場合に、その時
の測定値を気泡の影響を受けていない固形分等の混合物
質の濃度測定値として出力する機能を付加した構成とし
ている。
(Second Embodiment) The microwave densitometer according to the present embodiment differs from the microwave densitometer of the first embodiment described above with the passage of time, as shown in FIG. While increasing the pressurized pressure, continuously measure the concentration of the liquid to be measured by the microwave densitometer,
When the differential value of the measured value falls below a predetermined value (for example, a predetermined value close to zero), the measured value at that time is measured for the concentration of a mixed substance such as a solid content which is not affected by bubbles. It is configured to add the function of outputting as a value.

【0071】次に、以上のように構成した本実施の形態
のマイクロ波式濃度計においては、前記第1の実施の形
態で説明した加圧・測定工程において、時間と共に加圧
圧力を上昇して行きながら連続的に測定値Yを求め、気
泡影響補正演算器35において、図4に示すように、測
定値Yの圧力上昇時の微分値(ΔY/ΔP)を求め、そ
の値があらかじめ定められたゼロに近い所定値以下にな
ったなったら、その時の測定値を、気泡の影響を受けて
いない固形分等の混合物質の濃度測定値として出力す
る。
Next, in the microwave type densitometer of the present embodiment configured as described above, the pressurizing pressure is increased with time in the pressurizing / measuring step described in the first embodiment. As shown in FIG. 4, a differential value (ΔY / ΔP) of the measured value Y at the time of pressure increase is determined in the bubble influence correction computing unit 35, and the value is determined in advance. When the measured value becomes equal to or less than the predetermined value close to zero, the measured value at that time is output as a measured value of the concentration of a mixed substance such as a solid content which is not affected by bubbles.

【0072】すなわち、前記第1の実施の形態は、加圧
することによって新たに溶解する気泡量を計算上省略し
ても大きな誤差にならないほど大量の気泡が含まれてい
る場合に適用されるのに対して、本実施の形態は、加圧
によって溶解する気泡量を省略できない程度の気泡含有
量の場合に適用することができる。
That is, the first embodiment is applied to a case where a large amount of air bubbles is contained such that a large error does not occur even if the amount of air bubbles newly dissolved by pressurization is omitted in the calculation. On the other hand, the present embodiment can be applied to a case where the bubble content is such that the amount of bubbles dissolved by pressurization cannot be omitted.

【0073】[0073]

【発明の効果】以上説明したように、本発明のマイクロ
波式濃度計によれば、測定対象液中に気泡が大量に含ま
れている場合でも、気泡が測定値に及ぼす影響を補正し
て、測定対象液中の固形分等の混合物質の濃度測定を正
確に行なうことが可能となる。
As described above, according to the microwave type densitometer of the present invention, even when the liquid to be measured contains a large amount of bubbles, the influence of the bubbles on the measured value is corrected. In addition, it is possible to accurately measure the concentration of a mixed substance such as a solid content in a liquid to be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるマイクロ波式濃度計の第1の実施
の形態を示す概要図。
FIG. 1 is a schematic diagram showing a first embodiment of a microwave densitometer according to the present invention.

【図2】同第1の実施の形態のマイクロ波式濃度計にお
ける動作工程を説明するための状態図。
FIG. 2 is a state diagram for explaining operation steps in the microwave densitometer of the first embodiment.

【図3】本発明に適用する加圧方式を説明するための一
例を示す概念図。
FIG. 3 is a conceptual diagram showing an example for explaining a pressurizing method applied to the present invention.

【図4】本発明に適用する加圧方式における加圧圧力と
マイイクロ波式濃度計の測定値との関係の一例を示す特
性図。
FIG. 4 is a characteristic diagram showing an example of a relationship between a pressurized pressure in a pressurization method applied to the present invention and a measurement value of a micro-wave densitometer.

【図5】従来のマイクロ波式濃度計の基本構成例を示す
概要図。
FIG. 5 is a schematic diagram showing a basic configuration example of a conventional microwave densitometer.

【図6】位相差Δθから濃度Xを求めるための検量線、
濃度X=aΔθ+bを説明するための図。
FIG. 6 is a calibration curve for obtaining a concentration X from a phase difference Δθ,
The figure for demonstrating density | concentration X = a (DELTA) (theta) + b.

【符号の説明】[Explanation of symbols]

11…マイクロ波送信アンテナ、 12…マイクロ波受信アンテナ、 13…マイクロ波発振器、 14…パワースプリッタ、 15…位相差測定回路、 21…検出器配管、 22…自動仕切弁、 23…測定室シリンダ、 24…ピストン、 25…シール材、 26…圧力検出器、 27…ピストン位置検出器(サンプリング終了位置検出
用)、 28…ピストン位置検出器(加圧位置検出用)、 29…ピストン位置検出器(排出位置検出用)、 30…加圧圧力源、 31…減圧機構、 32…切換弁、 33…コントローラ、 34…濃度演算器、 35…気泡影響補正演算器。
DESCRIPTION OF SYMBOLS 11 ... Microwave transmission antenna, 12 ... Microwave reception antenna, 13 ... Microwave oscillator, 14 ... Power splitter, 15 ... Phase difference measurement circuit, 21 ... Detector piping, 22 ... Automatic gate valve, 23 ... Measurement chamber cylinder, 24 ... Piston, 25 ... Seal material, 26 ... Pressure detector, 27 ... Piston position detector (for detecting sampling end position), 28 ... Piston position detector (for detecting pressurized position), 29 ... Piston position detector ( 30: pressurized pressure source, 31: pressure reducing mechanism, 32: switching valve, 33: controller, 34: concentration calculator, 35: bubble influence correction calculator.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年2月4日(2000.2.4)[Submission date] February 4, 2000 (200.2.4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】[0020]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に対応する発明は、測定対象液を流す検
出器配管と、この検出器配管に取付けられた測定室と、
この測定室を挟んで互いに対向配置されたマイクロ波送
信アンテナ及びマイクロ波受信アンテナと、このマイク
ロ波送信アンテナから送信されて前記測定室内の測定対
象液を伝搬して前記マイクロ波受信アンテナにて受信さ
れたマイクロ波の位相遅れθ2を測定出力する位相測定
回路と、この位相測定回路からの位相遅れθ2と、予め
前記測定室内の基準液体を充填して測定対象液と同じ条
件で測定した時のマイクロ波の位相遅れθ1とを比較
し、その位相差Δθ=(θ2−θ1)から、前記測定対
象液の種類毎に対応する検量線X=aΔθ+bに基づい
て、前記測定対象液の固形分の濃度Xを測定する濃度演
算器と、互いに異なる複数の圧力状態で夫々測定された
前記測定対象液の複数の濃度Yに基づき、前記濃度演算
器により測定された濃度Xにおける気泡の影響分を補正
し、得られた濃度測定値CXを出力する気泡影響補正演
算器とを具備したマイクロ波式濃度計である。
In order to achieve the above-mentioned object, the invention according to claim 1 is directed to a test for flowing a liquid to be measured.
An output pipe, a measurement chamber attached to the detector pipe,
Microwave transmitters placed opposite each other with this measurement chamber
Communication antenna and microwave receiving antenna and this microphone
The measurement pair transmitted from the
Propagating the elephant fluid and receiving by the microwave receiving antenna
Phase measurement that measures and outputs the phase delay θ2 of the extracted microwave
Circuit and the phase delay θ2 from this phase measurement circuit,
Filling the reference liquid in the measurement chamber and the same conditions as the liquid to be measured
Comparison with microwave phase delay θ1
From the phase difference Δθ = (θ2−θ1), the measurement pair
Based on a calibration curve X = aΔθ + b corresponding to each type of elephant fluid
To measure the concentration X of the solid content of the liquid to be measured.
And each was measured at several different pressure conditions
The concentration calculation is performed based on a plurality of concentrations Y of the liquid to be measured.
Corrects the effect of bubbles on the concentration X measured by the instrument
And output the obtained measured concentration value CX.
A microwave densitometer provided with a calculator.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0022】また、請求項2に対応する発明は、請求項
1に対応するマイクロ波式濃度計において、前記気泡影
響補正演算器としては、予め3種類以上の圧力状態で前
記測定対象液の各濃度Yが測定されたときの当該測定に
よる最低圧力状態時の測定値と他の圧力状態での測定値
とから算出する気泡の影響分の補正値を平均化し、当該
平均化した補正値に基づいて、前記濃度演算器により測
定された濃度Xにおける気泡の影響分を補正し、得られ
た濃度測定値CXを出力するマイクロ波式濃度計であ
る。
[0022] The invention corresponding to claim 2 is defined in claim 2.
In the microwave densitometer corresponding to 1, the bubble shadow
As a sound-correction computing unit, three or more types of pressure
When the respective concentrations Y of the liquid to be measured are measured,
At the lowest pressure condition and at other pressure conditions
The correction values for the effects of bubbles calculated from
Measured by the density calculator based on the averaged correction value.
The effect of air bubbles at the specified concentration X is corrected and obtained.
Is a microwave densitometer that outputs the measured concentration CX
You.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】さらに、請求項3に対応する発明は、請求
項1に対応するマイクロ波式濃度計において、前記測定
室内を加圧する加圧手段を設け、前記気泡影響補正演算
器としては、前記加圧手段による前記測定室内の圧力上
昇と共に連続的に測定された前記測定対象液の濃度の測
定値からその微分値を求め、当該微分値が設定され
た値以下になった場合に、その時の測定値を濃度測定値
CXとして出力するマイクロ波式濃度計である。
Further, the invention corresponding to claim 3 provides
In the microwave densitometer corresponding to item 1, the measurement
A pressurizing means for pressurizing the room is provided, and the bubble effect correction
As a device, the pressure in the measurement chamber by the pressurizing means
Measurement of the concentration of the liquid to be measured, which was continuously measured with the rise
The differential value calculated from the value, the differential value is set Me pre
And if the value falls below, concentrations measured value measured value at that time
You output as CX is a microwave densitometer.

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】また、例えば、測定対象液が流れている配
管の側部に測定室を設け、当該測定室に測定対象液の一
部を密閉した後に加圧することが好ましい。
Further, if for example, the measurement chamber is provided on the side of the pipe the liquid to be measured is flowing, it is preferable to pressurize after sealing a portion of the liquid to be measured in the measurement chamber.

【手続補正6】[Procedure amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】さらに、例えば、測定室をシリンダ状に構
成し、かつその内部を摺動するピストンによって測定室
を加圧することが好ましい。
Furthermore, For example, the measuring chamber is configured in cylindrical and it is preferable to pressurize the measurement chamber by a piston which slides therein.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 測定対象液をはさむ形でマイクロ波送信
アンテナおよびマイクロ波受信アンテナを対向配置し、 前記マイクロ波送信アンテナからマイクロ波を基準液体
に入射し、当該基準流体中を伝播して前記マイクロ波受
信アンテナにて受信されたマイクロ波の位相遅れθ1を
測定してメモリに記憶しておき、さらに前記マイクロ波
送信アンテナからマイクロ波を前記測定対象液に入射
し、当該測定対象液を伝播して前記マイクロ波受信アン
テナにて受信されたマイクロ波の位相遅れθ2を測定し
て、前記各位相遅れの位相差Δθ=(θ2−θ1)を演
算し、 前記測定対象液の種類毎に対応する検量線X=aΔθ+
bに基づいて、前記測定対象液の濃度Xを測定するマイ
クロ波式濃度計において、 互いに異なる複数の圧力状態で前記測定対象液の濃度測
定を行ない、当該測定により得られた複数の測定値を用
いて気泡の影響分を補正して、前記測定対象液中の固形
分等の混合物質の濃度を求めるようにしたことを特徴と
するマイクロ波式濃度計。
1. A microwave transmitting antenna and a microwave receiving antenna are opposed to each other so as to sandwich a liquid to be measured. Microwaves are incident on the reference liquid from the microwave transmitting antenna, propagate through the reference fluid, and The phase delay θ1 of the microwave received by the microwave receiving antenna is measured and stored in a memory, and the microwave is incident on the liquid to be measured from the microwave transmitting antenna and propagates through the liquid to be measured. Then, a phase delay θ2 of the microwave received by the microwave receiving antenna is measured, and a phase difference Δθ = (θ2−θ1) of each of the phase delays is calculated, corresponding to each type of the liquid to be measured. Calibration curve X = aΔθ +
In a microwave densitometer for measuring the concentration X of the liquid to be measured based on b, the concentration of the liquid to be measured is measured at a plurality of pressure states different from each other, and a plurality of measured values obtained by the measurement are measured. A microwave-type densitometer wherein the concentration of a mixed substance such as a solid content in the liquid to be measured is determined by correcting the influence of air bubbles by using the above method.
【請求項2】 前記請求項1に記載のマイクロ波式濃度
計において、 前記互いに異なる複数の圧力状態を3種類以上の圧力と
して前記測定対象液の濃度測定を行ない、当該測定によ
る最低圧力状態時の測定値と他の圧力状態での測定値と
から算出する気泡の影響分の補正値を平均化して、前記
測定対象液中の固形分等の混合物質の濃度を求めるよう
にしたことを特徴とするマイクロ波式濃度計。
2. The microwave-type densitometer according to claim 1, wherein the plurality of different pressure states are measured as three or more types of pressures to measure the concentration of the liquid to be measured, and the lowest pressure state based on the measurement is performed. By averaging the correction value for the influence of air bubbles calculated from the measured value and the measured value in another pressure state, the concentration of the mixed substance such as solid content in the liquid to be measured is obtained. Microwave type densitometer.
【請求項3】 前記請求項1に記載のマイクロ波式濃度
計において、 時間の経過と共に加圧圧力を上昇して行きながら連続的
に前記測定対象液の濃度測定を行ない、当該測定値の微
分値があらかじめ定められた所定値以下になった場合
に、その時の測定値を気泡の影響を受けていない固形分
等の混合物質の濃度測定値として出力する手段を付加し
て成ることを特徴とするマイクロ波式濃度計。
3. The microwave type densitometer according to claim 1, wherein the concentration of the liquid to be measured is continuously measured while increasing the pressurized pressure with the passage of time, and the derivative of the measured value is differentiated. When the value falls below a predetermined value, means for outputting a measured value at that time as a concentration measured value of a mixed substance such as a solid content not affected by bubbles is added. Microwave densitometer.
【請求項4】 前記請求項1乃至請求項3のいずれか1
項に記載のマイクロ波式濃度計において、 前記互いに異なる複数の圧力状態のうちのーつとして、
大気圧(約0.1MPa)とするようにしたことを特徴
とするマイクロ波式濃度計。
4. The method according to claim 1, wherein
In the microwave concentration meter according to the paragraph, as one of the plurality of different pressure states,
A microwave densitometer characterized in that the atmospheric pressure (about 0.1 MPa) is set.
【請求項5】 前記請求項1乃至請求項4のいずれか1
項に記載のマイクロ波式濃度計において、 前記測定対象液が流れている配管の側部に測定室を設
け、当該測定室に前記測定対象液の一部を採取して密閉
した後に加圧するようにしたことを特徴とするマイクロ
波式濃度計。
5. The method according to claim 1, wherein
In the microwave type densitometer according to the paragraph, a measurement chamber is provided on a side of a pipe through which the liquid to be measured flows, and a part of the liquid to be measured is collected in the measurement chamber, and after being sealed, pressure is applied. A microwave densitometer characterized in that:
【請求項6】 前記請求項5に記載のマイクロ波式濃度
計において、 前記測定室をシリンダ状に構成し、かつその内部を摺動
するピストンによって前記測定室を加圧するようにした
ことを特徴とするマイクロ波式濃度計。
6. The microwave densitometer according to claim 5, wherein the measurement chamber is formed in a cylindrical shape, and the measurement chamber is pressurized by a piston sliding inside the measurement chamber. Microwave type densitometer.
JP11058746A 1999-03-05 1999-03-05 Microwave densitometer Expired - Fee Related JP3051118B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11058746A JP3051118B1 (en) 1999-03-05 1999-03-05 Microwave densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11058746A JP3051118B1 (en) 1999-03-05 1999-03-05 Microwave densitometer

Publications (2)

Publication Number Publication Date
JP3051118B1 JP3051118B1 (en) 2000-06-12
JP2000258362A true JP2000258362A (en) 2000-09-22

Family

ID=13093114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11058746A Expired - Fee Related JP3051118B1 (en) 1999-03-05 1999-03-05 Microwave densitometer

Country Status (1)

Country Link
JP (1) JP3051118B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099070A (en) * 1999-09-30 2001-04-10 Hitachi Ltd Refrigerating and air-conditioning compressor
JP2007121034A (en) * 2005-10-26 2007-05-17 Meiji Milk Prod Co Ltd Device and method for measuring solid content in viscous fluid
JP2008111814A (en) * 2006-10-31 2008-05-15 Toshiba Corp Apparatus for electromagnetically measuring physical quantity
KR101414925B1 (en) 2007-05-31 2014-07-04 데이진 화-마 가부시키가이샤 Ultrasonic gas concentration measuring method and device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099070A (en) * 1999-09-30 2001-04-10 Hitachi Ltd Refrigerating and air-conditioning compressor
JP2007121034A (en) * 2005-10-26 2007-05-17 Meiji Milk Prod Co Ltd Device and method for measuring solid content in viscous fluid
JP2008111814A (en) * 2006-10-31 2008-05-15 Toshiba Corp Apparatus for electromagnetically measuring physical quantity
KR101414925B1 (en) 2007-05-31 2014-07-04 데이진 화-마 가부시키가이샤 Ultrasonic gas concentration measuring method and device using the same

Also Published As

Publication number Publication date
JP3051118B1 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
CN108254338B (en) Online monitoring device for gas content in transformer oil based on spectrum absorption method
JP3139874B2 (en) Densitometer
US5077469A (en) Calibrating a nondispersive infrared gas analyzer
JP3160474B2 (en) Microwave densitometer
FI961337A (en) Procedure for Correction of Liquid Dosing Errors, and Liquid Dosing Device
CN102500253A (en) Novel device for distributing standard gas
US3920396A (en) Method and device for determination of gases dissolved in a liquid especially in blood
JP3051118B1 (en) Microwave densitometer
CN113092310A (en) Transformer oil gas content testing device and method for measuring density by U-shaped oscillation tube
US6012324A (en) Method for measuring gas content and a gas content measuring device
GB2054843A (en) Absorption cell gas monitor
EP0672893B1 (en) Improved acoustic displacement flowmeter
JPH1183761A (en) Microwave concentration measuring device
CN108444855B (en) Device and method for rapidly analyzing content of methane in air
JPH11183404A (en) Densitometer
CA2432403A1 (en) Method for testing liquid hydrocarbons using refractive index
JPH04238246A (en) Densitometer
CN110239222A (en) Fill ink system
JPS59133431A (en) Apparatus for measuring powder flow rate using microwave
Harris et al. Measurement of High Permittivity Dielectrics at Microwave Frequencies
JPH1183759A (en) Method and apparatus for measuring density
JPS6219971Y2 (en)
GB2079465A (en) Measure of true density
CN214894673U (en) Transformer oil gas content testing device for measuring density by U-shaped oscillating tube
CN112268833B (en) Multifunctional gas parameter testing instrument and application method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees