JP2000256486A - Reinforced cation exchange membrane - Google Patents
Reinforced cation exchange membraneInfo
- Publication number
- JP2000256486A JP2000256486A JP11062243A JP6224399A JP2000256486A JP 2000256486 A JP2000256486 A JP 2000256486A JP 11062243 A JP11062243 A JP 11062243A JP 6224399 A JP6224399 A JP 6224399A JP 2000256486 A JP2000256486 A JP 2000256486A
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- reinforcing
- woven fabric
- yarns
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Woven Fabrics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する利用分野】本発明は電解用イオン交換
膜、更に詳しくは、塩化アルカリ水溶液の電解に使用さ
れる強化糸、犠牲糸からなる織布で補強されたイオン交
換膜に関する。特に膜中の犠牲糸溶出孔からの陽極液の
系外への漏れを防いだ電気化学的性質および機械的強度
に優れた含フッ素系イオン交換膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion exchange membrane for electrolysis, and more particularly, to an ion exchange membrane reinforced with a woven fabric composed of a reinforcing yarn and a sacrificial yarn used for electrolysis of an alkali chloride aqueous solution. In particular, the present invention relates to a fluorine-containing ion exchange membrane which is excellent in electrochemical properties and mechanical strength by preventing leakage of anolyte from the sacrificial yarn elution hole in the membrane to the outside.
【0002】[0002]
【従来の技術】塩化アルカリ金属電解用隔膜に使用され
る固体電解質としては、パーフルオロカーボンカルボン
酸層とパーフルオロカーボンスルホン酸の少なくとも2
層以上の積層膜が有効であることは当該分野で公知であ
る。これらイオン交換膜には高い電流効率、低い膜電気
抵抗、及び取り扱いが容易であることが要求され、その
ためには、膜が充分な機械強度を有することが必須であ
る。しかしながら、これらパーフルオロカーボン系フィ
ルムは引裂強度が低く、そのままでは長期の使用に耐え
られないため、通常は強化織布等の補強材を該フィルム
に埋め込んで引裂強度を向上させている。2. Description of the Related Art As a solid electrolyte used for an alkali metal chloride electrolytic membrane, at least two layers of a perfluorocarbon carboxylic acid layer and a perfluorocarbon sulfonic acid are used.
It is known in the art that a laminate film having more than two layers is effective. These ion exchange membranes are required to have high current efficiency, low membrane electric resistance, and easy handling, and for that purpose, it is essential that the membrane has sufficient mechanical strength. However, since these perfluorocarbon films have low tear strength and cannot withstand long-term use as they are, usually a reinforcing material such as a reinforced woven fabric is embedded in the film to improve the tear strength.
【0003】しかし、一般的な補強材はイオン不透過性
であり、該フィルム中に補強材を埋め込むと、電解の
際、実効通電面積の減少及びそれに伴う電解電圧の上昇
を招く結果となり、この傾向は、補強効果を高めるため
組織を密にする程、或いは補強材を構成する糸を太くす
る程一層顕著となる。又、糸を太くすることは、それ自
体を包み込むための膜の樹脂量の増大を意味し、更に膜
の電気抵抗が増えることにつながる。However, a general reinforcing material is ion-impermeable, and embedding the reinforcing material in the film results in a decrease in an effective current-carrying area and a corresponding increase in an electrolysis voltage during electrolysis. The tendency becomes more remarkable as the structure is made denser to enhance the reinforcing effect, or as the yarns constituting the reinforcing material are made thicker. Further, thickening the yarn means an increase in the amount of resin of the film for enclosing the yarn itself, which leads to an increase in the electric resistance of the film.
【0004】この様な相反する膜の高い機械的強度と膜
の低い電気抵抗の関係を克服するために従来種々の試み
がなされてきた。まず、織物組織を粗くして、開口率
(織物組織の全面積に対するウインドウ(繊維間間隙)
の合計面積を百分率で表示したもの)を大きくする方法
が試みられている。一般に、高電流密度下での塩化アル
カリ金属電解では、開口率を70%以下にすると、膜の
実効通電面積が不足し、膜の電気抵抗の増大のみなら
ず、不純物の移動が局部的に増加し、膜の電流効率低下
を引き起こす。そのため、通常70%以上の開口率は必
要と考えられている。Various attempts have heretofore been made to overcome the relationship between the high mechanical strength of such contradictory films and the low electrical resistance of the films. First, the fabric structure is roughened, and the opening ratio (window (inter-fiber gap) with respect to the entire area of the fabric structure)
(In which the total area is expressed as a percentage) has been attempted. Generally, in alkali metal chloride electrolysis under a high current density, if the aperture ratio is set to 70% or less, the effective energization area of the film becomes insufficient, and not only the electric resistance of the film increases but also the movement of impurities locally increases. As a result, the current efficiency of the film decreases. Therefore, it is generally considered that an aperture ratio of 70% or more is necessary.
【0005】そこで高い機械強度と、大きい開口率を併
せ持つ強化織布を得る試みとして、織布を目ズレ耐性の
高い絡織とし、使用する糸もパーフルオロポリマーマル
チフィラメントの特定デニール糸に限定した膜(特開昭
61−7338)や、次いで、パーフルオロポリマー強
化糸及びアルカリ溶液により溶解可能な犠牲糸を混織し
た平織織布を製織した後、犠牲糸を溶解し残存した強化
糸のみを積層フィルム間に挿入する方法が提案されてい
る(特開昭64−55393)。しかし、これらの手法
を用いても、開口率は70%程度が限界であり、それ以
上の開口率を達成しようとした場合、織布開口部分の目
ズレが生じ、織布製造や積層フィルムへの挿入が困難に
なる。[0005] In an attempt to obtain a reinforced woven fabric having both high mechanical strength and a large opening ratio, the woven fabric was used as a woven fabric having high misalignment resistance, and the yarn used was limited to a specific denier yarn of perfluoropolymer multifilament. After weaving a membrane (JP-A-61-7338) and then a plain woven fabric in which a perfluoropolymer reinforcing yarn and a sacrificial yarn dissolvable with an alkaline solution are mixed, the sacrificial yarn is dissolved and only the remaining reinforcing yarn is removed. A method of inserting between laminated films has been proposed (JP-A 64-55393). However, even if these methods are used, the aperture ratio is limited to about 70%, and if an attempt is made to achieve an aperture ratio higher than that, misalignment of the woven fabric opening occurs, and the production of the woven fabric or the lamination film becomes difficult. Insertion becomes difficult.
【0006】更に、犠牲糸を用いる代わりに、市販され
たPTFE多孔質糸を改良し、見掛け比重を高めた糸を
使用した織布も提案されているが、やはり、強化糸単独
では高開口率化には限界がある(特開平3−21742
7)。そこで、パーフルオロポリマー強化糸、及び電解
槽内での使用時、又は酸、ないしアルカリ等の化学的処
理で溶解可能な犠牲糸を混織してなる平織強化織布を積
層フィルム間挿入し、その後織布中の犠牲糸を上記化学
的処理で溶解する方法が提案されている(特開平1−3
08435、特開昭63−113029)。この織布は
犠牲糸を混織することにより、強化糸部分の開口率が高
い場合にも良好な目ズレ耐性を保持している。更に膜中
で犠牲糸を溶解するため、犠牲糸により本来占有されて
いた部分において膜中に空孔(以下、犠牲糸溶出孔)が
生ずる。又、膜中の織布の位置を膜の陽極液に接する側
に近づけることで膜表面に微小な亀裂(以下、貫通孔)
を生じさせ、この貫通孔を通じて陽極液を膜内部に導く
ことで、強化糸によりイオンの透過が遮蔽された部分や
犠牲糸溶出孔が存在する層に陽極液を満たすことがで
き、ひいては、膜の電気抵抗を下げることができる。Further, instead of using a sacrificial yarn, a woven fabric using a commercially available PTFE porous yarn that has been improved to increase the apparent specific gravity has been proposed. There is a limit to the conversion (Japanese Unexamined Patent Publication No. 3-21742).
7). Therefore, a perforated polymer reinforced yarn, and a plain woven woven fabric obtained by mixing sacrifice yarns that can be dissolved in a chemical treatment such as an acid or an alkali when used in an electrolytic cell, is inserted between the laminated films, Thereafter, a method of dissolving the sacrificial yarn in the woven fabric by the above-mentioned chemical treatment has been proposed (Japanese Patent Laid-Open No. 1-3).
08435, JP-A-63-113029). This woven fabric has good misalignment resistance even when the opening ratio of the reinforcing yarn portion is high by mixing the sacrifice yarn. Further, since the sacrificial yarn is dissolved in the film, voids (hereinafter, sacrificial yarn elution holes) are generated in the film in portions originally occupied by the sacrificial yarn. Also, by bringing the position of the woven fabric in the membrane close to the side of the membrane that comes into contact with the anolyte, minute cracks (hereinafter referred to as through holes) on the membrane surface
By introducing the anolyte into the inside of the membrane through the through-holes, it is possible to fill the anolyte in the portion where the permeation of ions is shielded by the reinforcing yarn or in the layer where the sacrificial yarn elution hole is present. Can reduce the electric resistance.
【0007】しかしながら、この犠牲糸溶出孔は織布全
体、即ち膜全体に渡って繋がっており、電解槽での使用
時に、膜を電解槽へ固定しているフランジ外に陽極液の
一部が浸み出し、膜の縁からの陽極液漏洩を引き起こす
という問題がある。この槽外への陽極液の漏れは電解槽
の腐食及びガスケットの劣化を促進させる。このため、
電解槽への膜装着時、ガスケットにペースト状のシリコ
ンシーラントやフッ素系グリースを塗布し、フランジ部
分での溶出孔を塞ぐことで防ぐ方法が取られているが、
電解槽の形状により塗布に手間がかかり、塗布厚みが均
一でない場合は通電部分や電解槽内にシーラントやグリ
ースがはみ出すという問題点を有している。However, these sacrificial yarn elution holes are connected to the entire woven fabric, that is, the entire membrane, and when used in the electrolytic cell, a part of the anolyte is placed outside the flange that fixes the membrane to the electrolytic cell. There is the problem of seepage and anolyte leakage from the edge of the membrane. The leakage of the anolyte outside the cell promotes corrosion of the electrolytic cell and deterioration of the gasket. For this reason,
When mounting the membrane in the electrolytic cell, a method is adopted in which a gasket is coated with a paste-like silicon sealant or fluorine-based grease to block the elution hole in the flange part,
The application takes time depending on the shape of the electrolytic cell, and when the coating thickness is not uniform, there is a problem that the sealant or the grease protrudes into the energized portion or the electrolytic cell.
【0008】[0008]
【発明が解決しようとする課題】本発明は膜中に犠牲糸
の溶解した跡にできる溶出孔を有し、かつ電解槽使用時
にこの溶出孔から膜外への陽極液漏洩の無い平織強化織
布を使用したイオン交換膜を提供することを課題とす
る。DISCLOSURE OF THE INVENTION The present invention relates to a plain weave reinforced fabric having an elution hole in the membrane in which traces of the dissolution of sacrificial yarn can be formed, and no leakage of anolyte from the elution hole to the outside of the membrane when using an electrolytic cell. It is an object to provide an ion exchange membrane using a cloth.
【0009】[0009]
【課題を解決するための手段】本発明者は上記問題点を
解決するため鋭意研究の結果、平織強化織布を構成する
犠牲糸の溶解跡に形成される溶出孔の断面形状を膜平面
方向に扁平にした場合、上記課題を解決する上で、著し
い効果を有することを見出し、本発明をなすに至った。Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, have determined that the cross-sectional shape of the elution hole formed in the dissolution trace of the sacrificial yarn constituting the plain-woven reinforced woven fabric is in the direction of the membrane plane. In order to solve the above-mentioned problems, it has been found that the flattening has a remarkable effect, and the present invention has been accomplished.
【0010】以下、本発明につき詳述する。本発明の平
織強化織布は、補強材として積層電解膜の層間に挿入さ
れ、膜の補強材としての役割を果たすものであり、強化
糸と犠牲糸とからなる織物である。強化糸は、後述する
手法により犠牲糸を溶解後、織布を構成する残存糸とし
て電解膜の強度保持や寸法変化を抑制する働きがある。
又、膜の電解槽における使用条件、例えば、食塩電解に
おける、高温、かつ塩素、次亜塩素酸ナトリウム、及び
高濃度の水酸化ナトリウム存在下で耐性を持つものが好
ましい。これら力学物性、耐熱性、耐薬品性を満たす糸
としては、例えば、パーフルオロカーボン系が好適であ
る。更に、膜の引裂強度の向上を考慮した場合、好まし
い形態として、特公昭56−17216に開示されてい
るポリテトラフルオロエチレンから成る高強度多孔質シ
ートをテープ状にスリットした50〜200デニールの
テープヤーンを使用してもよい。Hereinafter, the present invention will be described in detail. The plain-woven reinforced woven fabric of the present invention is inserted between layers of the laminated electrolytic membrane as a reinforcing material and plays a role as a reinforcing material for the membrane, and is a woven fabric composed of reinforcing yarns and sacrificial yarns. After dissolving the sacrificial yarn by a method described later, the reinforcing yarn has a function of maintaining strength of the electrolytic membrane and suppressing a dimensional change as a remaining yarn constituting the woven fabric.
In addition, it is preferable that the membrane be used in an electrolytic cell, for example, one that is resistant to high temperature in salt electrolysis and in the presence of chlorine, sodium hypochlorite, and a high concentration of sodium hydroxide. As a yarn satisfying these mechanical properties, heat resistance and chemical resistance, for example, a perfluorocarbon-based yarn is preferable. Further, in consideration of the improvement in the tear strength of the membrane, a preferred form is a 50 to 200 denier tape obtained by slitting a high-strength porous sheet made of polytetrafluoroethylene disclosed in JP-B-56-17216 into a tape shape. Yarn may be used.
【0011】強化糸断面は膜の折り曲げ強度を確保する
目的、及び強化織布の厚みを薄くする目的で、適切なア
スペクト比(ヤーンの幅/厚みで定義される扁平比)を
有することが好ましく、その比は2〜20、特には3〜
10が好ましい。糸の扁平化は通常、製織後加熱された
金属ロール間でのカレンダー処理により施される。犠牲
糸は電解槽での使用時、又は酸、ないしアルカリの化学
的処理でその一部、あるいは全てが溶解し、その溶解跡
に空孔(犠牲糸溶出孔)を生ぜしめるものである。犠牲
糸の素材としてはポリエチレンテレフタレート、レーヨ
ン、セルロース等が使用されるが、種類の豊富なポリエ
チレンテレフタレートマルチフィラメントが特に好まし
い。The reinforcing yarn cross section preferably has an appropriate aspect ratio (an aspect ratio defined by the width / thickness of the yarn) for the purpose of securing the bending strength of the membrane and reducing the thickness of the reinforced woven fabric. , The ratio of which is 2 to 20, especially 3 to
10 is preferred. The flattening of the yarn is usually performed by calendering between heated metal rolls after weaving. A part or all of the sacrificial yarn is dissolved in use in an electrolytic cell or by an acid or alkali chemical treatment, and pores (sacrificial yarn elution holes) are generated in the dissolution trace. Polyethylene terephthalate, rayon, cellulose or the like is used as a material for the sacrificial yarn, and a wide variety of polyethylene terephthalate multifilaments is particularly preferable.
【0012】犠牲糸溶出孔からの陽極液の漏れを防ぐた
めには、電解槽フランジ部分で犠牲糸溶出孔を押し潰
し、そのフランジ外へ向けた開口部を完全に塞ぐ必要が
ある。本発明では、電解槽フランジ部分で押し潰し易い
犠牲糸溶出孔形状として、その断面が膜平面方向に扁平
でなければならない。これに応じて、強化織布を構成す
るマルチフィラメント犠牲糸の断面も全体として織布平
面方向に扁平となるよう、マルチフィラメントの集合形
態を制御する必要がある。ここで、膜(織布)平面方向
に扁平な断面とは、断面形状が概略楕円形であって、そ
の楕円を規定する長軸が膜(織布)平面に対して概略平
行であることを意味する。特に好ましいマルチフィラメ
ント集合形態は、図1に示すように、フィラメントが互
いに織布厚方向に重なり合うことなく織布平面内に並列
している形態である。In order to prevent leakage of the anolyte from the sacrificial thread elution hole, it is necessary to crush the sacrificial thread elution hole at the flange portion of the electrolytic cell and completely close the opening to the outside of the flange. In the present invention, the shape of the sacrificial yarn elution hole which is easily crushed at the electrolytic cell flange portion must be flat in the membrane plane direction. Accordingly, it is necessary to control the aggregate form of the multifilaments so that the cross section of the multifilament sacrificial yarn constituting the reinforced woven fabric is also flat as a whole in the plane direction of the woven fabric. Here, the section that is flat in the membrane (woven cloth) plane direction means that the cross-sectional shape is substantially elliptical, and the major axis that defines the ellipse is substantially parallel to the membrane (woven cloth) plane. means. A particularly preferred form of multifilament assembly is a form in which the filaments are juxtaposed in the plane of the woven fabric without overlapping each other in the thickness direction of the woven fabric, as shown in FIG.
【0013】上記のマルチフィラメント犠牲糸の集合形
態を制御する方法との一つとして、製織時の犠牲糸撚数
を定めることが挙げられる。経糸は製織性を考慮し1m
当たり0〜350回の撚りを、緯糸は無撚で製織される
ことが好ましい。撚糸数があまりに多いと、撚りによる
単糸同士の重なりが多くなり、犠牲糸断面の扁平性が失
われる。経糸は必要に応じ糊付やインターレース加工も
付与できる。One of the methods for controlling the form of aggregation of the multifilament sacrificial yarn is to determine the number of twists of the sacrificial yarn at the time of weaving. Warp is 1m in consideration of weaving
It is preferred that the weft be woven with 0 to 350 twists per non-twist. If the number of twisted yarns is too large, the overlap between the single yarns due to twisting increases, and the flatness of the sacrificial yarn cross section is lost. The warp can be provided with a gluing or an interlacing if necessary.
【0014】更に、フィラメント数を4〜8、かつその
断面を円形にすることで、強化織布製織後の犠牲糸を織
布平面内に並列させることができる。フィラメント数が
これより少ない場合、フィラメント1本当たりのデニー
ル数が増加し、フィラメントを並列させても、犠牲糸断
面の扁平性が劣る。一方、フィラメント数が多すぎると
撚糸数が低くても、フィラメント同士の重なり合いが増
加する。又、フィラメント同士の接触点を増やし、犠牲
糸溶解跡に連続的な空間を残すためにも、フィラメント
断面が円形であることが望ましい。Furthermore, by making the number of filaments 4 to 8 and making the cross section circular, the sacrificial yarn after weaving the reinforced woven fabric can be arranged in parallel in the plane of the woven fabric. If the number of filaments is smaller than this, the number of denier per filament increases, and even if the filaments are arranged in parallel, the flatness of the cross section of the sacrificial yarn is inferior. On the other hand, if the number of filaments is too large, the overlap between filaments increases even if the number of twisted yarns is low. Further, in order to increase the number of contact points between the filaments and leave a continuous space in the dissolution trace of the sacrificial yarn, it is desirable that the filament has a circular cross section.
【0015】犠牲糸の太さは織布全体の厚み、開口率に
より変わるが、通常20〜50デニールが好ましい。2
0デニールより細い場合は十分な溶出孔としての空間が
得られない。一方、50デニールよりも太い場合は織布
全体の厚みが厚くなり、犠牲糸溶出孔を押し潰し難くな
る。本発明の織布における、強化糸の打ち込み本数は使
用する強化糸の太さや目的とする織布の開口率によって
異なるが4〜20本/吋である。更に100〜150デ
ニールのヤーンに限定した場合、8〜16本/吋が好ま
しい。又、強化糸と犠牲糸の打ち込み数比は、犠牲糸が
強化糸の偶数倍であることが必須である。奇数本の場
合、犠牲糸の溶解後、強化糸の経糸と緯糸の絡み合いが
失われ、両者が互いに平面的に交錯するのみで平織組織
が形成されず実用的で無い。その比は強化糸1に対し2
〜10倍である。製織上の問題点及び目ズレの問題から
強化糸、犠牲糸合わせて60〜100本/吋が好まし
い。The thickness of the sacrificial yarn varies depending on the thickness and the opening ratio of the whole woven fabric, but is usually preferably 20 to 50 denier. 2
If it is smaller than 0 denier, a sufficient space as an elution hole cannot be obtained. On the other hand, when the denier is larger than 50 denier, the thickness of the whole woven fabric becomes large, and it becomes difficult to crush the sacrificial yarn elution hole. In the woven fabric of the present invention, the number of reinforcing yarns to be driven is 4 to 20 yarns / inch depending on the thickness of the reinforcing yarn to be used and the opening ratio of the target woven fabric. Further, when limited to 100 to 150 denier yarn, 8 to 16 yarns / inch is preferable. In addition, it is essential that the ratio of the number of driving of the reinforcing yarn to the number of the sacrifice yarn is an even-number multiple of the sacrifice yarn. In the case of an odd number, after the sacrificial yarn is melted, the entanglement between the warp and the weft of the reinforcing yarn is lost, and the two only intersect with each other two-dimensionally, which is not practical because a plain weave structure is not formed. The ratio is 2 for 1 reinforcing yarn.
It is 10 times. From the viewpoint of weaving and the problem of misalignment, the total number of reinforcing yarns and sacrificial yarns is preferably 60 to 100 / inch.
【0016】犠牲糸溶出後の強化糸の繊維間間隙に基づ
く織布の開口率は70〜90%が好ましく、特に80〜
90%が適当である。70%より小さい場合は膜の電解
電圧の上昇が起こるだけでなく、強化糸により区切られ
た部分の実質電流密度が高くなり、電流効率の低下を招
くおそれがある。一方90%より大きい場合には織布に
よる膜の補強効果が低下する。The opening ratio of the woven fabric based on the inter-fiber gap of the reinforcing yarn after elution of the sacrificial yarn is preferably 70 to 90%, particularly preferably 80 to 90%.
90% is appropriate. If it is less than 70%, not only does the electrolysis voltage of the membrane increase, but also the substantial current density of the portion separated by the reinforcing yarn increases, which may cause a decrease in current efficiency. On the other hand, if it is more than 90%, the effect of reinforcing the membrane by the woven fabric is reduced.
【0017】なお、この開口率は通常光学顕微鏡を使用
した写真撮影で確認することができる。上述の手法で得
られた強化織布は製織後、犠牲糸断面及び強化糸断面の
扁平性を更に向上させるため、200℃以上の温度で平
滑化処理することが好ましく、処理後の厚みは好適には
30〜80μである。織布が厚すぎると、犠牲糸断面の
扁平性が劣ると同時に、膜の平滑性が悪化する可能性が
ある。織布の平滑化には、特に制限は無いが、熱ロール
や熱板等が一般的に用いられる。特に、好ましい方法と
しては、織布の経糸方向に張力を付与しながら、加熱さ
れた2本のロール間を連続的に通し圧延する方法であ
る。更に、ポリエチレンテレフタレート犠牲糸の経糸と
緯糸に互いに熱収縮率の異なる糸を用いれば、製織時に
並列していたマルチフィラメント犠牲糸が平滑処理中の
熱収縮により互いに重なり合うことを防ぐことができ
る。例えば、縦糸は張力により収縮率の制御が可能なた
め、一般的な沸水収縮率6%以上のポリエチレンテレフ
タレート糸を、張力の付与できない緯糸には、沸水収縮
率3%以下の低収縮率ポリエチレンテレフタレート糸が
使用できる。The aperture ratio can be generally confirmed by taking a photograph using an optical microscope. After weaving, the reinforced woven fabric obtained by the above-mentioned method is preferably subjected to a smoothing treatment at a temperature of 200 ° C. or more, in order to further improve the flatness of the sacrificial yarn cross section and the reinforcing yarn cross section, and the thickness after the treatment is preferable. Is 30 to 80 μm. If the woven fabric is too thick, the flatness of the cross section of the sacrificial yarn may be inferior and the smoothness of the film may be deteriorated. Although there is no particular limitation on the smoothing of the woven fabric, a hot roll, a hot plate or the like is generally used. In particular, a preferred method is a method of continuously passing and rolling between two heated rolls while applying tension in the warp direction of the woven fabric. Furthermore, if the warp and the weft of the polyethylene terephthalate sacrificial yarns have different heat shrinkage rates, it is possible to prevent the multifilament sacrificial yarns that were arranged in parallel at the time of weaving from overlapping with each other due to the heat shrinkage during the smoothing process. For example, since the warp can control the shrinkage by tension, a polyethylene terephthalate yarn having a general boiling water shrinkage of 6% or more can be used, and a low shrinkage polyethylene terephthalate having a boiling water shrinkage of 3% or less can be used for a weft to which no tension can be applied. Yarn can be used.
【0018】塩化アルカリ電解用イオン交換膜は、電気
抵抗は高いが高電流効率を示すカルボン酸基から成る層
及び低い電気抵抗を示すスルホン酸基から成る層の複層
構造を取ることが有用であることは良く知られている。
又、特開平5−98486に示す様に特定含水率を有す
る3層構造の膜が低い電解電圧、高い電流効率、高強度
の膜を提供する上で重要である。It is useful for the ion exchange membrane for alkali chloride electrolysis to have a multilayer structure of a layer composed of a carboxylic acid group having a high electric resistance but high current efficiency and a layer composed of a sulfonic acid group having a low electric resistance. Some are well known.
Also, as shown in JP-A-5-98486, a three-layer structure film having a specific water content is important for providing a film having a low electrolytic voltage, high current efficiency and high strength.
【0019】本発明で用いられる陰極に面する第1層の
カルボン酸を有する層は下記(式1)及び(式2)のそ
れぞれ選ばれた少なくとも2種類の単量体の共重合体か
ら成る。 CF2=CXaXb (式1) (ここでXa、Xb=F、Cl、H、又はCF3) CF2=CF(OCF2CFXc)nO(CF2)mY (式2) (ここでXc=F、又はCF3、m=1〜3の整数、n
=0又は1、Yはアルカリ性媒体中にて加水分解されカ
ルボン酸基となる前駆体であり、カルボン酸エステル基
―COOR(R=炭素数1〜4の低級アルキル基)、シ
アノ基―CN、酸ハライド―COZ(Z=ハロゲン原
子)の中から選ばれる。) 通常好適には(式1)で表される単量体として下記のも
のが例示され、 CF2=CF2 (式2)で表される単量体としてはカルボン酸エステル
基が採用され代表例として以下のものが示される。 CF2=CFOCF2CF(CF3)OCF2CF2COO
CH3 CF2=CFOCF2CF2COOCH3 CF2 =CFOCF2CF2CF2COOCH3 イオン交換容量としては、高い電流効率、生成する水酸
化アルカリ中の塩分濃度の低減を目的として、(式2)
単量体の構造及び加水分解条件、更にアルカリ濃度によ
り異なるが、例えばCF2=CF2との共重合体において
は0.7〜0.95meq/gが好ましい。更に第1層
の厚みは5〜40μ、好ましくは10〜30μである。The carboxylic acid-containing first layer facing the cathode used in the present invention comprises a copolymer of at least two kinds of monomers selected from the following (formula 1) and (formula 2). . CF 2 = CXaXb (Formula 1) (where Xa, Xb = F, Cl, H, or CF 3 ) CF 2 = CF (OCF 2 CFXc) nO (CF 2 ) mY (Formula 2) (where Xc = F Or CF 3 , m = 1 to an integer of 1 to 3, n
= 0 or 1, Y is a precursor which is hydrolyzed in an alkaline medium to form a carboxylic acid group, and includes a carboxylic acid ester group —COOR (R = lower alkyl group having 1 to 4 carbon atoms), a cyano group —CN, It is selected from acid halide-COZ (Z = halogen atom). Usually, preferably, the following compounds are exemplified as the monomer represented by (Formula 1). As the monomer represented by CF 2 CFCF 2 (Formula 2), a carboxylate group is employed. The following are shown as examples. CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 COO
CH 3 CF 2 CFCFOCF 2 CF 2 COOCH 3 CF 2 CFCFOCF 2 CF 2 CF 2 COOCH 3 As the ion exchange capacity, high current efficiency and reduction of the salt concentration in the generated alkali hydroxide can be obtained by the following formula (2). )
Although it depends on the structure of the monomer, the hydrolysis conditions and the alkali concentration, for example, a copolymer of CF 2 = CF 2 is preferably 0.7 to 0.95 meq / g. Further, the thickness of the first layer is 5 to 40 µ, preferably 10 to 30 µ.
【0020】第2層のスルホン酸基を有する層は(式
1)と下記(式3)のそれぞれ選ばれた2種類の単量体
の共重合体から成る。 CF2=CF(OCF2CFXc)nO(CF2)mW (式3) (ここでXc=F、又はCF3、m=1〜3の整数、n
=0、1又は2、Wはアルカリ性媒体中にて加水分解さ
れカスルホン酸基となる前駆体であり、ハロゲン化スル
フォニル基−SO2Xd(Xd=F、Cl、Brから選
ばれる)、或いはアルキルスルフォン酸−SO2R(R
=炭素数1〜4の低級アルキル基)から選ばれる。) 通常好適には(式3)の単量体はスルフォニルフルオラ
イド基を持ったものが採用され、代表例として下記単量
体が示される。 CF2=CFOCF2CF(CF3)OCF2CF2CF2S
O2F CF2=CFOCF2CF(CF3)OCF2CF2SO2F CF2=CFOCF2CF2CF2SO2F CF2=CFOCF2CF2SO2F イオン交換容量としては膜強度、生成する水酸化アルカ
リ中の塩分濃度の低減を目的として、(式3)の構造及
び加水分解条件、更にアルカリ濃度により異なるが、例
えばCF2=CF2との共重合体においては0.9〜1.
1meq/gが好ましい。又、第1層カルボン酸層との
電解中層間剥離を防止するため、第1層とのイオン交換
容量の差はできるだけ小さい方が好ましい。更に第2層
の厚みは強度支配するため60〜100μ、好ましくは
70〜90μである。The second layer having a sulfonic acid group is composed of a copolymer of two types of monomers selected from the following (Formula 1) and the following (Formula 3). CF 2 = CF (OCF 2 CFXc) nO (CF 2 ) mW (Formula 3) (where Xc = F, or CF 3 , m = 1 to 3 ;
= 0, 1 or 2, and W is a precursor which is hydrolyzed to a sulfonic acid group in an alkaline medium, and is a sulfonyl halide group —SO 2 Xd (Xd = F, Cl, Br) or an alkyl Sulfonic acid-SO 2 R (R
= Lower alkyl group having 1 to 4 carbon atoms). Usually, a monomer having a sulfonyl fluoride group is preferably used as the monomer of the formula (3), and the following monomers are shown as typical examples. CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CF 2 S
O 2 F CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F CF 2 = CFOCF 2 CF 2 CF 2 SO 2 F CF 2 = CFOCF 2 CF 2 SO 2 F for the purpose of reducing the salt concentration in the alkali hydroxide to be produced, the structure and hydrolysis conditions (equation 3), but still different by alkali concentration, for example in a copolymer of CF 2 = CF 2 0.9~ 1.
1 meq / g is preferred. In order to prevent delamination during electrolysis with the first carboxylic acid layer, it is preferable that the difference in ion exchange capacity with the first layer is as small as possible. Further, the thickness of the second layer is 60 to 100 μm, and preferably 70 to 90 μm, because the strength is dominant.
【0021】第3層のスルホン酸基を有する層は第2層
と同じ構造のポリマーから選択されるのが好ましく、同
じイオン交換容量、或いは電解電圧を低減させる目的
で、第2層よりも高いイオン交換容量が好適である。更
に第3層の厚みは犠牲糸溶出孔内に陽極液を浸入させる
ために必要な貫通孔を膜表面に効果的に形成させるため
にも、10〜30μが好ましい。30μ以上の場合貫通
孔が形成されず、溶出孔に陽極液が供給されないため膜
抵抗が増加する。The third layer having a sulfonic acid group is preferably selected from a polymer having the same structure as that of the second layer, and is higher than the second layer in order to reduce the same ion exchange capacity or electrolytic voltage. Ion exchange capacity is preferred. Further, the thickness of the third layer is preferably 10 to 30 μm in order to effectively form through-holes necessary for infiltrating the anolyte into the sacrificial yarn elution holes on the membrane surface. In the case of 30 μm or more, no through hole is formed, and the anolyte is not supplied to the elution hole, so that the membrane resistance increases.
【0022】本発明の膜の製法は公知の技術、例えば熱
プレス成型、ロール成型、押出成型等により可能である
が、特に好ましい方法としては、第1層と第2層を共押
出法によりフィルム化し、第3層は単層押出法にてフィ
ルム化し、例えば特開昭56−99234により開示さ
れている加熱源及び真空源を有しその表面に多数の細孔
を有する平板又はドラム上に透気性を有する耐熱性の離
型紙を会して第3層フィルム、カレンダーした平織強化
織布、第2/1複合フィルムの順に積層し、各ポリマー
が溶融する温度下で減圧により、各層間の空気を除去し
ながら一体化する方法である。ここで第1層と第2層を
共押出することは界面の接着強度を高めることに寄与し
ている。又減圧下で一体化する方法は加熱プレス法に比
べて強化織布上の第2層の厚みが大きくなり、第3層に
も十分食い込むため膜表面へ貫通孔を形成させ易いとい
う利点を有する。The film of the present invention can be produced by known techniques, for example, hot press molding, roll molding, extrusion molding, and the like. Particularly preferred is a method in which the first layer and the second layer are formed by coextrusion. The third layer is formed into a film by a single-layer extrusion method, and is passed through a flat plate or drum having a heating source and a vacuum source disclosed in Japanese Patent Application Laid-Open No. 56-99234 and having a large number of pores on the surface. A heat-resistant release paper having air temperture is laminated and laminated in the order of a third layer film, a calendered plain woven woven fabric, and a 2/1 composite film, and the air between the layers is reduced under reduced pressure at a temperature at which each polymer melts. It is a method of integrating while removing. Here, co-extrusion of the first layer and the second layer contributes to increasing the adhesive strength at the interface. In addition, the method of integrating under reduced pressure has the advantage that the thickness of the second layer on the reinforced woven fabric is larger than that of the hot press method, and the second layer is sufficiently penetrated into the third layer, so that it is easy to form a through hole in the membrane surface. .
【0023】一体化した積層物を加水分解してイオン交
換膜とする方法は公知の条件にて可能である。好ましい
方法の一例として、特開平1−140987に開示され
ている様な水溶性有機化合物とMOH(M=アルカリ金
属)用いた加水分解法がある。上記の手法で得られた電
解膜は必要に応じて陰極側表面及び陽極側表面にガス付
着防止のための無機物コーティング層を有しても良い。
該コーティング層は公知の方法にて実施することが可能
であり、例えば特開平3−137136に開示されてい
る測定の無機酸化物の微細粒子をバインダーポリマー溶
液に分散した液をスプレーにより塗布する方法が好適で
ある。The method of hydrolyzing the integrated laminate to form an ion-exchange membrane can be performed under known conditions. An example of a preferred method is a hydrolysis method using a water-soluble organic compound and MOH (M = alkali metal) as disclosed in JP-A-1-140987. The electrolyte membrane obtained by the above method may have an inorganic coating layer for preventing gas adhesion on the cathode side surface and the anode side surface as needed.
The coating layer can be formed by a known method, for example, a method disclosed in JP-A-3-137136 in which fine particles of an inorganic oxide measured in a binder polymer solution are applied by spraying. Is preferred.
【0024】[0024]
【発明の実施の形態】以下、実施例、比較例にて本発明
を更に詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to Examples and Comparative Examples.
【0025】[0025]
【実施例1】強化糸としてポリテトラフルオロエチレン
製(PTFE)150デニールのテープヤーンに900
回/mの撚りをかけ糸状とした。犠牲糸として経糸に沸
水収縮率6%以上、30デニール6フィラメントのポリ
エチレンテレフタレート(PET)糸に200回/mの
撚りをかけ、緯糸に沸水収縮率3%以下、35デニール
8フィラメントのポリエチレンテレフタレート製(PE
T)糸を撚糸せずに準備した。これらの糸を使用し、強
化糸PTFEが16本/吋、犠牲糸PETがPTFEに
対し4倍の64本/吋になるような平織強化織布を製織
した。この織布の厚みは100μであった。Example 1 A 900-denier tape yarn made of polytetrafluoroethylene (PTFE) was used as a reinforcing yarn.
Twist / m was twisted to form a thread. As a sacrificial yarn, a polyethylene terephthalate (PET) yarn having a boiling water shrinkage of 6% or more and 30 denier and 6 filaments is twisted at 200 turns / m, and a weft yarn having a boiling water shrinkage of 3% or less and 35 denier and 8 filaments is made of polyethylene terephthalate. (PE
T) The yarn was prepared without twisting. Using these yarns, a plain reinforced woven fabric was prepared in which the reinforcing yarn PTFE was 16 yarns / inch and the sacrificial yarn PET was 64 times / inch, which was four times the PTFE. The thickness of this woven fabric was 100 μ.
【0026】製織後2本の加熱された金属ロール間を通
して織布の厚みを68μに平滑化した。該織布のPTF
E強化糸のみの開口率は75%であった。この織布の表
面及び断面観察の結果、マルチフィラメント犠牲糸の断
面形状は織布平面方向に扁平であり、経緯糸共にフィラ
メントが互いに膜厚方向に重なり合うことなく並列して
いる形態であった。After weaving, the thickness of the woven fabric was smoothed to 68 μm by passing between two heated metal rolls. PTF of the woven fabric
The opening ratio of only the E-reinforced yarn was 75%. As a result of observation of the surface and cross section of this woven fabric, the cross-sectional shape of the multifilament sacrificial yarn was flat in the plane direction of the woven fabric, and both warp and weft yarns were in a form in which the filaments were juxtaposed without overlapping each other in the film thickness direction.
【0027】CF2=CF2とCF2 =CFOCF2CF
(CF3)OCF2CF2COOCH3の共重合体で等量重
量1100のポリマー(A)、及びCF2=CF2とCF
2=CFOCF2CF(CF3)OCF2CF2SO2Fの共
重合体で等量重量1030のポリマー(B)、及びポリ
マー(B)と同じ構造で等量重量950のポリマー
(C)を準備し、2台の押出機、共押出用Tダイ、及び
引き取り機を備えた装置によりポリマー(A)およびポ
リマー(B)を使用し、ポリマー(A)層の厚みが25
μ、ポリマー(B)層の厚みが90μの2層フィルム
(a)を得た。更に単層Tダイにより25μのポリマー
(C)のフィルム(b)を得た。CF 2 = CF 2 and CF 2 = CFOCF 2 CF
(CF 3 ) OCF 2 CF 2 COOCH 3 copolymer (A) having an equivalent weight of 1100, and CF 2 CFCF 2 and CF
2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F copolymer (B) having an equivalent weight of 1030, and polymer (C) having an equivalent weight of 950 having the same structure as polymer (B) Prepare and use polymer (A) and polymer (B) with an apparatus equipped with two extruders, a co-extrusion T-die, and a take-off machine.
μ, a two-layer film (a) having a polymer (B) layer thickness of 90 μ was obtained. Further, a film (b) of 25 μm of the polymer (C) was obtained by a single-layer T-die.
【0028】内部に加熱源及び真空源を有し、その表面
に多数の微細孔を有するドラム上に透気性のある離型
紙、フィルム(b)、強化織布、ポリマー(B)が織布
側に面するように2層フィルム(a)を順番に積層し2
30℃の温度及び−600mmHgの減圧下で中間の空
気を排除しながら一体化し複合膜を得た。水とエタノー
ルの50/50重量部の混合溶液に等量重量が950の
CF2 =CF2 とCF2 =CFOCF2 CF(CF3 )
OCF2 CF2 SO2 Fの共重合体を加水分解してなる
スルホン酸基を有するフッ素系重合体を5wt%溶解さ
せた。その溶液に1次粒子径0.02μの酸化ジルコニ
ウム20wt%を加えボールミルにて均一に分散させた
懸濁液を得た。この懸濁液を前記複合膜の両面にスプレ
ー法により塗布し乾燥するさせることにより、無機物層
を形成させた。Air-permeable release paper, film (b), reinforced woven fabric, and polymer (B) are placed on a woven fabric side on a drum having a heating source and a vacuum source inside and a large number of fine holes on the surface thereof. The two-layer films (a) are sequentially laminated so as to face
At a temperature of 30 ° C. and under a reduced pressure of −600 mmHg, integration was performed while excluding intermediate air to obtain a composite membrane. Equal amounts by weight in a mixed solution of a 50/50 parts by weight of water and ethanol 950 CF 2 = CF 2 and CF 2 = CFOCF 2 CF (CF 3)
5 wt% of a fluorinated polymer having a sulfonic acid group obtained by hydrolyzing a copolymer of OCF 2 CF 2 SO 2 F was dissolved. 20 wt% of zirconium oxide having a primary particle size of 0.02 μm was added to the solution, and a suspension was obtained which was uniformly dispersed by a ball mill. This suspension was applied to both surfaces of the composite membrane by a spray method and dried to form an inorganic layer.
【0029】この膜をジメチルスルホキシド(DMS
O)30wt%、水酸化カリウム(KOH)15wt%
を含む水溶液中で90℃の温度で60分間加水分解し、
水洗後25℃の2%重曹で平衡処理を行った。加水分解
後犠牲糸は全て溶解しており膜の開口率は80%であっ
た。この膜の断面を観察したところ、犠牲糸溶出孔の形
状も強化織布を構成するマルチフィラメント犠牲糸と同
じ扁平形状を有していた。This membrane is made of dimethyl sulfoxide (DMS)
O) 30 wt%, potassium hydroxide (KOH) 15 wt%
Is hydrolyzed at a temperature of 90 ° C. for 60 minutes in an aqueous solution containing
After washing with water, equilibration treatment was performed with 2% sodium bicarbonate at 25 ° C. After the hydrolysis, all the sacrificial yarns were dissolved, and the opening ratio of the membrane was 80%. Observation of the cross section of this film showed that the shape of the sacrificial yarn elution hole had the same flat shape as the multifilament sacrificial yarn constituting the reinforced woven fabric.
【0030】更にフィルム(b)表面を電子顕微鏡にて
観察したところ、経緯犠牲糸の交点上で微小な亀裂が形
成されていた。通電面積270dm2の電解槽において
無機物層を塗布したイオン交換膜のカルボン酸側に低水
素過電圧陰極を、スルホン酸側には低塩素過電圧陽極を
配置させ、ガスケットを介しシリコンシーラントを塗ら
ずに、面圧18kg/cm2で油圧プレス機により締め
付けた。その後陽極側に塩化ナトリウム水溶液205g
/lに調整しつつ供給し、陰極側のアルカリ濃度を32
%に保ちつつ40A/dm2、温度90℃の条件で電解
を行った。電解中にフランジ外の陽極側膜表面及び断面
からの陽極液の漏れは認められなかった。Further, when the surface of the film (b) was observed with an electron microscope, a fine crack was formed at the intersection of the sacrificial yarns. A low hydrogen overvoltage cathode is placed on the carboxylic acid side of the ion exchange membrane coated with the inorganic layer in the electrolytic cell having a current carrying area of 270 dm 2 , and a low chlorine overvoltage anode is placed on the sulfonic acid side, without applying a silicone sealant via a gasket. It was tightened with a hydraulic press at a surface pressure of 18 kg / cm 2 . Then, on the anode side, 205 g of aqueous sodium chloride solution
/ L while adjusting the alkali concentration on the cathode side to 32.
%, And electrolysis was performed under the conditions of 40 A / dm 2 and a temperature of 90 ° C. During the electrolysis, no leakage of the anolyte solution from the surface and the cross section of the anode side membrane outside the flange was observed.
【0031】[0031]
【実施例2】強化糸としてポリテトラフルオロエチレン
製(PTFE)100デニールのテープヤーンに100
0回/mの撚りをかけ糸状とした他は、「実施例1」と
同様にして平織強化織布を製織した。この織布の厚みは
80μであった。その後加熱ロールにより53μに平滑
化した。織布のPTFE強化糸のみの開口率は78%で
あった。Example 2 A 100-denier tape yarn made of polytetrafluoroethylene (PTFE) was used as a reinforcing yarn.
A plain reinforced woven fabric was woven in the same manner as in "Example 1", except that the yarn was twisted at 0 times / m. The thickness of this woven fabric was 80μ. Then, it was smoothed to 53 μm by a heating roll. The opening ratio of only the PTFE reinforcing yarn of the woven fabric was 78%.
【0032】この織布の表面及び断面観察の結果、マル
チフィラメント犠牲糸の断面形状は織布平面方向に扁平
であり、経緯糸共にフィラメントが互いに膜厚方向に重
なり合うことなく、並列している形態であった。この織
布を使用し「実施例1」と同様の方法、条件で複合膜を
作製した結果、加水分解後膜の開口率は81%であっ
た。この膜の断面を観察したところ、犠牲糸は全て溶解
しており、溶出孔の形状も強化織布を構成するマルチフ
ィラメント犠牲糸と同じ扁平形状を有していた。As a result of observation of the surface and cross section of the woven fabric, the cross-sectional shape of the multifilament sacrificial yarn was flat in the plane direction of the woven fabric, and the filaments of both warp and weft yarns were arranged in parallel without overlapping each other in the film thickness direction. Met. Using this woven fabric, a composite membrane was produced under the same method and conditions as in "Example 1". As a result, the opening ratio of the membrane after hydrolysis was 81%. When the cross section of this film was observed, all the sacrificial yarns were dissolved, and the shape of the elution hole had the same flat shape as the multifilament sacrificial yarn constituting the reinforced woven fabric.
【0033】更にフィルム(b)表面を電子顕微鏡にて
観察したところ、経緯犠牲糸の交点上で微小な亀裂が形
成されていた。その後「実施例1」と同様の条件で電解
した結果、電解中にフランジ外の陽極側膜表面及び断面
からの陽極液の漏れは無かった。Further, when the surface of the film (b) was observed with an electron microscope, a fine crack was formed at the intersection of the sacrificial yarns. Thereafter, electrolysis was performed under the same conditions as in "Example 1". As a result, there was no leakage of the anolyte from the surface and the cross section of the anode-side membrane outside the flange during electrolysis.
【0034】[0034]
【比較例1】強化糸としてポリテトラフルオロエチレン
製(PTFE)200デニールのテープヤーンに750
回/mの撚りをかけ糸状とした。犠牲糸として経緯糸双
方に沸水収縮率3%以下、30デニール12フィラメン
トのポリエチレンテレフタレート製(PET)糸に40
0回/mの撚りをかけた。これらの糸を使用し強化糸P
TFEが16本/吋、犠牲糸PETがPTFEに対し4
倍の64本/吋になるような平織混織織物を製織した。
その後2本の加熱された金属ロール間を通して100μ
の厚みに平滑化した。該強化織布のPTFE強化糸のみ
開口率は75%であった。[Comparative Example 1] A 750-denier tape yarn made of polytetrafluoroethylene (PTFE) was used as a reinforcing yarn.
Twist / m was twisted to form a thread. As sacrificial yarn, 40 warp yarn shrinkage of 3% or less for both warp yarns and 30 denier 12 filament polyethylene terephthalate (PET) yarn
Twist of 0 times / m was applied. Using these yarns, reinforcing yarn P
TFE is 16 / inch, and sacrificial thread PET is 4
A plain woven mixed woven fabric was woven at a rate of 64 lines / inch.
After that, 100 μm is passed between two heated metal rolls.
The thickness was smoothed. The opening ratio of only the PTFE reinforcing yarn of the reinforced woven fabric was 75%.
【0035】この織布の表面及び断面観察の結果、マル
チフィラメント犠牲糸の断面形状は織布平面方向に扁平
になっておらず、経緯糸共にフィラメント同士が膜厚方
向に重なり合う円に近い状態であった。この織布を使用
し「実施例1」と同様の方法、条件で複合膜を作製した
結果、加水分解後膜の開口率は78%であった。As a result of observation of the surface and cross section of this woven fabric, the cross-sectional shape of the multifilament sacrificial yarn was not flat in the plane direction of the woven fabric, and the warp and weft yarns were close to a circle in which the filaments overlap in the film thickness direction. there were. Using this woven fabric, a composite membrane was produced under the same method and conditions as in "Example 1". As a result, the opening ratio of the membrane after hydrolysis was 78%.
【0036】この膜の断面を観察したところ、犠牲糸は
全て溶解しており、溶出孔の形状も強化織布を構成する
マルチフィラメント犠牲糸と同じ円形の形状を有してい
た。更にフィルム(b)表面を電子顕微鏡にて観察した
ところ、経緯犠牲糸の交点上で微小な亀裂が形成されて
いた。その後「実施例1」と同様の条件で電解した結
果、通電前及び電解中にフランジ外の陽極側膜表面及び
断面からの陽極液の漏れが観察され、一部はつらら状に
結晶化していた。When the cross section of this membrane was observed, all the sacrificial yarns were dissolved, and the shape of the elution hole had the same circular shape as the multifilament sacrificial yarns constituting the reinforced woven fabric. Further, when the surface of the film (b) was observed with an electron microscope, a minute crack was formed at the intersection of the sacrificial yarns. Thereafter, electrolysis was performed under the same conditions as in "Example 1". As a result, leakage of the anolyte from the anode-side membrane surface and the cross section outside the flange was observed before energization and during electrolysis, and a part thereof was crystallized in an icicle shape. .
【0037】[0037]
【比較例2】 強化糸としてポリテトラフルオロエチレ
ン製(PTFE)100デニールのテープヤーンに10
00回/mの撚りをかけ糸状とした。犠牲糸として経糸
に沸水収縮率6%以上、30デニール18フィラメン
ト、フィラメントがW型断面を持つポリエチレンテレフ
タレート製(PET)糸に200回/mの撚りをかけ、
緯糸は経糸と同じ種類のポリエチレンテレフタレート製
(PET)糸を撚糸せずに準備した。これらの糸をその
まま使用し、強化糸PTFEが16本/吋、犠牲糸PE
TがPTFEに対し4倍の64本/吋になるような平織
混織織物を製織した。この織布の厚みは85μであっ
た。[Comparative Example 2] A polytetrafluoroethylene (PTFE) 100 denier tape yarn was used as a reinforcing yarn.
Twisting of 00 times / m was performed to form a thread. The sacrificial yarn is twisted at a rate of 200 times / m to a polyethylene terephthalate (PET) yarn having 30 denier 18 filaments and a W-shaped cross section, with a warp shrinkage of 6% or more, and a warp yarn of 6% or more.
The weft was prepared without twisting the same type of polyethylene terephthalate (PET) yarn as the warp. Using these yarns as they are, the reinforcing yarn PTFE is 16 yarns / inch, the sacrificial yarn PE
A plain woven mixed woven fabric was woven such that T was 64 times / inch, four times as large as PTFE. The thickness of this woven fabric was 85 μ.
【0038】製織後2本の加熱された金属ロール間を通
して54μの厚みに平滑化した。該強化織布のPTFE
強化糸のみの開口率は75%であった。この織布の表面
及び断面観察の結果、マルチフィラメント犠牲糸の断面
形状は織布平面方向に扁平になっていなかった。又、経
緯糸共に膜厚方向にフィラメントが分散して重なり合
い、織布平面方向に並列していなかった。この織布を使
用し「実施例1」と同様の方法、条件で複合膜を作製し
た結果、加水分解後膜の開口率は81%であった。After weaving, it was smoothed to a thickness of 54 μm by passing between two heated metal rolls. PTFE of the reinforced woven fabric
The opening ratio of only the reinforcing yarn was 75%. As a result of observing the surface and cross section of this woven fabric, the cross-sectional shape of the multifilament sacrificial yarn was not flat in the plane direction of the woven fabric. In addition, the filaments were dispersed and overlapped in the direction of film thickness in both warp and weft yarns, and were not arranged in parallel in the plane direction of the woven fabric. Using this woven fabric, a composite membrane was produced under the same method and conditions as in "Example 1". As a result, the opening ratio of the membrane after hydrolysis was 81%.
【0039】この膜の断面を観察したところ、犠牲糸は
全て溶解しており、溶出孔の形状も強化織布を構成する
マルチフィラメント犠牲糸と同じ円形の形状を有してい
た。更にフィルム(b)表面を電子顕微鏡にて観察した
ところ、経緯犠牲糸の交点上で微小な亀裂が形成されて
いた。その後「実施例1」と同様の条件で電解した結
果、通電前及び電解中にフランジ外の陽極側膜表面及び
断面からの陽極液の漏れが観察され、一部はつらら状に
結晶化していた。When the cross section of this film was observed, all the sacrificial yarns were dissolved, and the shape of the elution hole had the same circular shape as the multifilament sacrificial yarns constituting the reinforced woven fabric. Further, when the surface of the film (b) was observed with an electron microscope, a minute crack was formed at the intersection of the sacrificial yarns. Thereafter, electrolysis was performed under the same conditions as in "Example 1". As a result, leakage of the anolyte from the anode-side membrane surface and the cross section outside the flange was observed before energization and during electrolysis, and a part thereof was crystallized in an icicle shape. .
【0040】[0040]
【発明の効果】本発明の強化織布は犠牲糸溶出孔形状を
織布平面方向に扁平化することで、その溶出孔が電解槽
フランジ部分で押し潰れ易くなり、フランジ外への陽極
液の漏れを防止する効果がある。これにより、従来塗布
していたシリコンシーラントやフッ素系グリース塗布が
不要となり、容易に電解槽への装着が可能となる。The reinforcing woven fabric of the present invention flattens the shape of the sacrificial yarn elution hole in the plane of the woven fabric, so that the elution hole is easily crushed at the flange portion of the electrolytic cell, and the anolyte is discharged to the outside of the flange. It has the effect of preventing leakage. This eliminates the need for applying a silicone sealant or a fluorine-based grease, which has been conventionally applied, and makes it possible to easily mount the apparatus in an electrolytic cell.
【図1】実施例1の加水分解前イオン交換膜一部断面模
式図FIG. 1 is a schematic partial cross-sectional view of a pre-hydrolysis ion exchange membrane of Example 1.
【図2】比較例1の加水分解前イオン交換膜一部断面模
式図FIG. 2 is a schematic partial cross-sectional view of a pre-hydrolysis ion exchange membrane of Comparative Example 1.
【図3】比較例2の加水分解前イオン交換膜一部断面模
式図FIG. 3 is a schematic partial cross-sectional view of a pre-hydrolysis ion exchange membrane of Comparative Example 2.
1 ポリテトラフルオロエチレン強化糸 2 ポリエチレンテレフタレート犠牲糸 1 Polytetrafluoroethylene reinforced yarn 2 Polyethylene terephthalate sacrificial yarn
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D03D 15/06 D03D 15/06 Fターム(参考) 4D006 GA16 KE12P KE16P KE18P MA03 MA07 MA09 MA10 MA13 MA24 MA31 MA40 MB12 MB15 MC03X MC28X MC30X MC48X MC72X MC74X NA45 NA46 NA50 NA54 PB12 4F071 AA26X AA27C AA27X AA30X AA46C AH19 FA05 FA06 FB01 FC07 4J002 AB01Y BD12W BD15W BD15X BD17W BE04W CF06Y FA04X FA04Y GD01 4L048 AA14 AA21 AA34 AA40 AA50 AB07 AB10 AB12 AB13 AB27 AB28 AC19 BA01 BA02 CA00 CA01 DA24 EB04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) D03D 15/06 D03D 15/06 F-term (Reference) 4D006 GA16 KE12P KE16P KE18P MA03 MA07 MA09 MA10 MA13 MA24 MA31 MA40 MB12 MB15 MC03X MC28X MC30X MC48X MC72X MC74X NA45 NA46 NA50 NA54 PB12 4F071 AA26X AA27C AA27X AA30X AA46C AH19 FA05 FA06 FB01 FC07 4J002 AB01Y BD12W BD15W BD15X BD17W BE04W CF06A FAA14A01A04A04A04A04A04A04A04A14A CA01 DA24 EB04
Claims (6)
成る平織強化織布を有し、かつ断面が膜平面方向に扁平
な犠牲糸溶出孔を有するイオン交換膜。1. An ion-exchange membrane having a reinforcing yarn and a sacrificial yarn, or a plain-woven reinforcing woven fabric composed only of the reinforcing yarn, and having a sacrificial yarn elution hole whose cross section is flat in a membrane plane direction.
ルチフィラメントからなり、その犠牲糸断面が膜平面方
向に扁平である、請求項1に記載のイオン交換膜。2. The ion exchange membrane according to claim 1, wherein the sacrificial yarn is made of polyethylene terephthalate multifilament, and a cross section of the sacrificial yarn is flat in a membrane plane direction.
/m、緯糸が無撚である請求項1、ないし2に記載のイ
オン交換膜。3. The ion exchange membrane according to claim 1, wherein the number of twists of the warp is 0 to 350 times / m, and the weft is non-twisted.
し、かつ4〜8本の円形断面フィラメントからなる、請
求項1、ないし3に記載のイオン交換膜。4. The ion exchange membrane according to claim 1, wherein the sacrificial yarn has a thickness of 20 to 50 denier and comprises 4 to 8 circular cross-section filaments.
糸沸水収縮率が3%以下である請求項1、ないし4に記
載のイオン交換膜。5. The ion exchange membrane according to claim 1, wherein the sacrificial yarn has a warp boiling water shrinkage of 6% or more and a weft boiling water shrinkage of 3% or less.
ある請求項1、ないし5に記載のイオン交換膜。6. The ion exchange membrane according to claim 1, wherein the thickness of the plain woven woven fabric is 30 to 80 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11062243A JP2000256486A (en) | 1999-03-09 | 1999-03-09 | Reinforced cation exchange membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11062243A JP2000256486A (en) | 1999-03-09 | 1999-03-09 | Reinforced cation exchange membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000256486A true JP2000256486A (en) | 2000-09-19 |
Family
ID=13194517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11062243A Pending JP2000256486A (en) | 1999-03-09 | 1999-03-09 | Reinforced cation exchange membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000256486A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7649025B2 (en) * | 2002-10-17 | 2010-01-19 | Toyo Boseki Kabushiki Kaisha | Composite ion-exchange membrane |
JP2011189320A (en) * | 2010-03-16 | 2011-09-29 | Japan Organo Co Ltd | Electric type deionized water producing apparatus |
JP2012071289A (en) * | 2010-09-29 | 2012-04-12 | Kuraray Co Ltd | Mosaic charged membrane and method of manufacturing the same |
CN103243345A (en) * | 2012-02-13 | 2013-08-14 | 旭化成化学株式会社 | Cation exchange film and electrolytic tank with the same |
JP2014195806A (en) * | 2009-10-26 | 2014-10-16 | 旭化成ケミカルズ株式会社 | Method for producing cation exchange membrane and cation exchange membrane obtained from the same |
US9435044B2 (en) | 2012-02-27 | 2016-09-06 | Asahi Glass Company, Limited | Reinforced electrolyte membrane and process for producing same |
WO2016140283A1 (en) * | 2015-03-03 | 2016-09-09 | 旭硝子株式会社 | Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus |
CN111188050A (en) * | 2019-12-31 | 2020-05-22 | 山东东岳未来氢能材料有限公司 | Ultrathin perfluorinated sulfonic acid ion exchange membrane for alkali chloride electrolysis and preparation method thereof |
CN114214770A (en) * | 2021-11-23 | 2022-03-22 | 山东东岳高分子材料有限公司 | High-flatness reinforcing net for ion exchange membrane and application thereof |
-
1999
- 1999-03-09 JP JP11062243A patent/JP2000256486A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7649025B2 (en) * | 2002-10-17 | 2010-01-19 | Toyo Boseki Kabushiki Kaisha | Composite ion-exchange membrane |
JP2014195806A (en) * | 2009-10-26 | 2014-10-16 | 旭化成ケミカルズ株式会社 | Method for producing cation exchange membrane and cation exchange membrane obtained from the same |
JP2011189320A (en) * | 2010-03-16 | 2011-09-29 | Japan Organo Co Ltd | Electric type deionized water producing apparatus |
JP2012071289A (en) * | 2010-09-29 | 2012-04-12 | Kuraray Co Ltd | Mosaic charged membrane and method of manufacturing the same |
CN103243345A (en) * | 2012-02-13 | 2013-08-14 | 旭化成化学株式会社 | Cation exchange film and electrolytic tank with the same |
DE112013001160B4 (en) | 2012-02-27 | 2024-05-23 | AGC Inc. | Reinforced electrolyte membrane and process for its manufacture |
US9435044B2 (en) | 2012-02-27 | 2016-09-06 | Asahi Glass Company, Limited | Reinforced electrolyte membrane and process for producing same |
WO2016140283A1 (en) * | 2015-03-03 | 2016-09-09 | 旭硝子株式会社 | Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus |
CN107406995B (en) * | 2015-03-03 | 2019-04-09 | Agc株式会社 | Ion-exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis device |
US11434337B2 (en) | 2015-03-03 | 2022-09-06 | AGC Inc. | Ion exchange membrane for alkali chloride electrolysis, and alkali chloride electrolysis apparatus |
CN107406995A (en) * | 2015-03-03 | 2017-11-28 | 旭硝子株式会社 | Ion-exchange membrane for alkali chloride electrolysis and alkali chloride electrolysis device |
CN111188050A (en) * | 2019-12-31 | 2020-05-22 | 山东东岳未来氢能材料有限公司 | Ultrathin perfluorinated sulfonic acid ion exchange membrane for alkali chloride electrolysis and preparation method thereof |
CN111188050B (en) * | 2019-12-31 | 2021-07-09 | 山东东岳高分子材料有限公司 | Ultrathin perfluorinated sulfonic acid ion exchange membrane for alkali chloride electrolysis and preparation method thereof |
CN114214770A (en) * | 2021-11-23 | 2022-03-22 | 山东东岳高分子材料有限公司 | High-flatness reinforcing net for ion exchange membrane and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4872958A (en) | Ion exchange membrane for electrolysis | |
JP2609512B2 (en) | Modified Reno Weave fabric reinforced membrane | |
EP0119080B1 (en) | Reinforced membrane, electrochemical cell, and electrolysis process | |
TWI496617B (en) | A cation exchange membrane, an electrolytic cell using the same, and a method for producing a cation exchange membrane | |
JP5844653B2 (en) | Cation exchange membrane and electrolytic cell using the same | |
JP5793444B2 (en) | Cation exchange membrane and electrolytic cell using the same | |
JP4368509B2 (en) | Method for producing reinforced cation exchange membrane | |
JP2000256486A (en) | Reinforced cation exchange membrane | |
CA3018495C (en) | Ion exchange membrane and electrolyzer | |
US4990228A (en) | Cation exchange membrane and use | |
US4988364A (en) | Coated cation exchange yarn and process | |
JP2015158017A (en) | Cation-exchange membrane and electrolytic cell prepared using the same | |
JP3214571B2 (en) | Fluorine ion exchange membrane | |
JP2004043594A (en) | Ion-exchange membrane and manufacturing method therefor | |
CA1266020A (en) | Ion exchange membrane reinforced with perfluoropolymer leno cloth | |
JP2000273216A (en) | Cation exchange membrane reinforced by composite reinforcing woven fabric | |
US20230349058A1 (en) | Ion exchange membrane and electrolyzer | |
JPH07233267A (en) | Fabric-reinforced film | |
US4996098A (en) | Coated cation exchange fabric and process | |
JPS6040459B2 (en) | Reinforced ion exchange membrane | |
JP2018059163A (en) | Cation exchange membrane and electrolytic tank | |
JPH0660251B2 (en) | Cation exchange membrane reinforced with cation exchange fabric | |
JPH1149877A (en) | Reinforced fluorine-containing ion exchange film and production | |
JPS59172524A (en) | Reinforcing cloth for ion exchange resin membrane | |
JP7421898B2 (en) | Ion exchange membrane and electrolyzer |