JP2000254774A - Different material welding method and tube line member change method of hydrogen reforming device - Google Patents

Different material welding method and tube line member change method of hydrogen reforming device

Info

Publication number
JP2000254774A
JP2000254774A JP11061941A JP6194199A JP2000254774A JP 2000254774 A JP2000254774 A JP 2000254774A JP 11061941 A JP11061941 A JP 11061941A JP 6194199 A JP6194199 A JP 6194199A JP 2000254774 A JP2000254774 A JP 2000254774A
Authority
JP
Japan
Prior art keywords
welding
heat
pipe member
connection end
butt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11061941A
Other languages
Japanese (ja)
Inventor
Isao Ohata
勲 大畠
Kenji Takashi
賢治 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11061941A priority Critical patent/JP2000254774A/en
Publication of JP2000254774A publication Critical patent/JP2000254774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tube line member change method for a hydrogen reforming device not developing a welding crack to a welded part, a different material welding method high in reliability of the welded part after welding, easy in change work, short in working time and high in reliability of the welded part after changing. SOLUTION: In a different material welding method to connect by newly welding a Ni-Cr-Fe heat resistant alloy 9a to a Cr-Mo-Fe heat resistant steel 10 used for a long term in a hydrogen gas environment, after the neighborhood of a connecting part of the Cr-Mo-Fe heat resistant steel 10 is heated and subjected to dehydrogenization treatment, cladding by welding is done to the connection end of the Cr-Mo-Fe heat resistant steel 10 by using a Ni-Cr-Fe welding filler material 23, successively the cladding by welding part 24 and the connection part of the Ni-Cr-Fe heat resistant alloy 9a are butt-welded by using the Ni-Cr-Fe welding filler material 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異材溶接方法およ
び水素改質装置の管路部材交換方法に係り、特に、水素
改質装置の管路部材と熱交換器の導入側ノズルとの異材
溶接方法および長期間供用された水素改質装置の管路部
材を交換する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for welding dissimilar materials and a method for replacing pipe members of a hydrogen reformer, and more particularly to a method for welding dissimilar materials between a pipe member of a hydrogen reformer and an inlet nozzle of a heat exchanger. The present invention relates to a method and a method for replacing a pipe member of a hydrogen reformer that has been used for a long time.

【0002】[0002]

【従来の技術】触媒変換方式による水素ガス製造装置に
おける製造工程は、脱硫工程、改質工程、変成工程、お
よび脱炭酸工程の4工程にわかれている。この内、改質
を行う水素改質装置は、500〜550℃の温度、約2
0kgf/cm2 (約2MPa)の圧力で導入されたナ
フサなどの原料ガスおよび水蒸気を、改質炉内で更に高
温に加熱して水素ガス(不純物を含む)に改質するもの
である。
2. Description of the Related Art The production process of a hydrogen gas producing apparatus using a catalytic conversion system is divided into four processes: a desulfurization process, a reforming process, a shift process, and a decarbonation process. Of these, the hydrogen reformer that performs reforming has a temperature of 500 to 550 ° C.
Raw gas such as naphtha and steam introduced at a pressure of 0 kgf / cm 2 (about 2 MPa) are further heated to a high temperature in a reforming furnace to reform hydrogen gas (including impurities).

【0003】一般的な水素改質装置1は、図2、図3に
示すように、原料ガスG1 を供給するための原料ガス供
給管2と、原料ガス供給管2と接続される入口マニホー
ルド4と、改質炉外殻5内に垂直に設けられ、かつ、入
口マニホールド4に入口ピグテール6を介して接続され
る多数本(実際には100〜200本(図3中では15
本のみ図示))の反応管7と、各反応管7に出口ピグテ
ール8を介して接続される出口マニホールド9と、出口
マニホールド9と導入側ノズル10を介して接続される
熱交換器11とで構成されている。尚、各反応管7内に
は、水素改質触媒(図示せず)が充填されている。
As shown in FIGS. 2 and 3, a general hydrogen reformer 1 has a raw material gas supply pipe 2 for supplying a raw material gas G 1 , and an inlet manifold connected to the raw material gas supply pipe 2. 3 and a number (in practice, 100 to 200 (15 in FIG. 3) of a plurality of pipes provided vertically in the outer shell 5 of the reforming furnace and connected to the inlet manifold 4 via the inlet pigtail 6.
), An outlet manifold 9 connected to each reaction tube 7 via an outlet pigtail 8, and a heat exchanger 11 connected to the outlet manifold 9 via an inlet nozzle 10. It is configured. Each reaction tube 7 is filled with a hydrogen reforming catalyst (not shown).

【0004】ここで、原料ガス供給管2には水蒸気Sを
供給するための水蒸気供給管3が接続されている。ま
た、入口マニホールド4における原料ガス供給管2との
接続部および出口マニホールドにおける導入側ノズル1
0との接続部には、それぞれレジューサ4a,9aが形
成されている。さらに、改質炉外殻5内には、所定の箇
所に、各反応管7を加熱するためのバーナ12が設けら
れている。
Here, a steam supply pipe 3 for supplying steam S is connected to the raw material gas supply pipe 2. Further, a connection portion of the inlet manifold 4 with the raw material gas supply pipe 2 and the inlet nozzle 1 in the outlet manifold.
The reducer 4a, 9a is formed at the connection part with 0. Further, a burner 12 for heating each reaction tube 7 is provided at a predetermined location in the outer shell 5 of the reforming furnace.

【0005】各反応管7内で改質・製造された水素ガス
2 は900〜950℃の高温となっているため、製造
直後の高温の水素ガスG2 に晒される出口マニホールド
9及びそのレジューサ部9aは、Ni−Cr−Fe系耐
熱合金(例えば、Incoloy 800 (JIS 規格 NCF800 )等
;以下、Fe基超合金と呼ぶ)で構成されている。し
かし、Fe基超合金は非常に高価な材料であるため、同
じく高温(800〜850℃)の水素ガスG2 に晒され
る熱交換器11の導入側ノズル10は、550℃以下の
温度で使用される安価なCr−Mo鋼(Cr−Mo−F
e系耐熱鋼)からなる管の内側に、ポーラス状のキャス
タブルを内張りして形成している。
Since the hydrogen gas G 2 reformed and produced in each reaction tube 7 has a high temperature of 900 to 950 ° C., the outlet manifold 9 and the reducer thereof are exposed to the high-temperature hydrogen gas G 2 immediately after production. The portion 9a is made of a Ni—Cr—Fe heat-resistant alloy (for example, Incoloy 800 (JIS standard NCF800) or the like; hereinafter, referred to as an Fe-based superalloy). However, since the Fe-based superalloy is a very expensive material, the inlet side nozzle 10 of the heat exchanger 11 that is also exposed to the high temperature (800 to 850 ° C.) hydrogen gas G 2 is used at a temperature of 550 ° C. or less. Inexpensive Cr-Mo steel (Cr-Mo-F
A porous castable is lined and formed inside a pipe made of e-system heat-resistant steel).

【0006】この水素改質装置1を長期間(例えば、1
0年程度)に亘って使用していると、バーナ12で加熱
される反応管7および高温の水素ガスG2 に晒される出
口マニホールド9などの構成材が劣化してくるため、水
素改質装置1における管路部材(入口マニホールド4、
反応管7、出口マニホールド9)20の交換を行う。こ
の場合、原料ガス供給管2と入口マニホールド4のレジ
ューサ部(導入口;以下、入口レジューサと呼ぶ)4a
との接合部および出口マニホールド9のレジューサ部
(抜出口;以下、出口レジューサと呼ぶ)9aと導入側
ノズル10との接合部を切り離し、水素改質装置1にお
ける管路部材20全体の交換を行っている。
The hydrogen reformer 1 is operated for a long time (for example, 1
When using over approximately 2.0 years), since the structure material such as outlet manifold 9 which are exposed to the reaction tube 7 and the high-temperature hydrogen gas G 2 is heated by the burner 12 deteriorates, the hydrogen reformer 1 (inlet manifold 4,
The reaction tube 7 and the outlet manifold 9) 20 are exchanged. In this case, a reducer (inlet; hereinafter, referred to as an inlet reducer) 4a of the source gas supply pipe 2 and the inlet manifold 4
And the reducer portion (extraction / exit; hereinafter, referred to as an outlet reducer) 9a of the outlet manifold 9 and the junction portion of the introduction side nozzle 10 are cut off, and the entire pipe member 20 in the hydrogen reformer 1 is replaced. ing.

【0007】その後、新たな管路部材(図示せず)を改
質炉外殻5に組み込むと共に、原料ガス供給管2と入口
レジューサ4aとの突合わせ溶接および出口レジューサ
9aと導入側ノズル10との突合わせ溶接を行う。
After that, a new pipe member (not shown) is incorporated into the outer shell 5 of the reforming furnace, and butt welding of the raw material gas supply pipe 2 and the inlet reducer 4a, and the outlet reducer 9a, the inlet nozzle 10 and Butt welding.

【0008】この時、管路部材20の交換は、既存設備
に対して、すなわち、現地での作業となるため、交換作
業が容易であると共に、交換のための工期はできるだけ
短いことが好ましい。また、管路部材20および導入側
ノズル10には水素ガスG2が流れることから、出口レ
ジューサ9aと導入側ノズル10との溶接は確実に行わ
なければならない。
At this time, since the replacement of the pipe member 20 is performed on the existing equipment, that is, on-site work, it is preferable that the replacement work is easy and the construction period for the replacement is as short as possible. Further, since the flow of hydrogen gas G 2 is the conduit member 20 and the inlet side nozzle 10, welding the inlet side nozzle 10 and the outlet reducer 9a must ensured.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、出口レ
ジューサ9aと導入側ノズル10との溶接は異材溶接と
なるため、以下に述べる問題が生じる。
However, the welding between the outlet reducer 9a and the inlet nozzle 10 is a dissimilar material welding, so that the following problems occur.

【0010】 Cr−Mo鋼からなる導入側ノズル1
0は、長期間、高温の水素ガスG2 雰囲気に晒されてい
たため、水素脆性および焼戻し脆化(475℃脆性)が
生じており、十分な強度、延性、及び靱性を有していな
い。このため、高温の水素ガスG2 雰囲気に長期間晒さ
れた導入側ノズル10を、そのままの状態で、新たな出
口レジューサ9aとの突合わせ溶接を行うと、突合せ溶
接部(図示せず)において、溶接割れが生じるおそれが
ある。
[0010] Introducing nozzle 1 made of Cr-Mo steel
No. 0 has been exposed to a high-temperature hydrogen gas G 2 atmosphere for a long period of time, and therefore has hydrogen embrittlement and temper embrittlement (475 ° C. embrittlement), and does not have sufficient strength, ductility, and toughness. Therefore, the introduction side nozzles 10 that prolonged exposure to high temperature of the hydrogen gas G 2 atmosphere, as it is, when the butt welding of the new exit reducer 9a, the butt welds (not shown) , Welding cracks may occur.

【0011】 Cr−Mo鋼からなる導入側ノズル1
0は、含有Cによって強度が与えられているが、導入側
ノズル10と含有C量がCr−Mo鋼よりも少ないFe
基超合金からなる出口レジューサ9aとを直接溶接する
と、導入側ノズル10から出口レジューサ9aへと炭素
移行が生じると共にCr−Mo鋼の強度低下が生じ、溶
接後に義務付けられている本体付機械試験の曲げ試験に
おいて、割れが生じるおそれがある。よって、導入側ノ
ズル10の接続端に溶材を用いて肉盛り溶接を行う場合
もあるが、溶材の種類によっては、供用期間中、溶接部
において強度低下や割れが生じる。
Introducing nozzle 1 made of Cr—Mo steel
0, the strength is given by the content C, but the introduction side nozzle 10 and the content C content are smaller than that of the Cr-Mo steel.
When the outlet reducer 9a made of the base superalloy is directly welded, carbon is transferred from the inlet nozzle 10 to the outlet reducer 9a and the strength of the Cr-Mo steel is reduced. In the bending test, cracks may occur. Therefore, in some cases, build-up welding is performed using a welding material at the connection end of the introduction-side nozzle 10, but depending on the type of the welding material, a reduction in strength or cracks occurs in the welded portion during the service period.

【0012】 導入側ノズル10の接続端に対する肉
盛り溶接後は、Cr−Mo鋼の内部残留応力の除去およ
び組織改善を図るべく焼鈍処理を施す必要があるため、
交換作業の複雑化、工期の長期化を招く。
After the build-up welding to the connection end of the introduction nozzle 10, it is necessary to perform an annealing process to remove the internal residual stress of the Cr—Mo steel and improve the structure.
This complicates replacement work and prolongs the construction period.

【0013】そこで本発明は、上記課題を解決し、溶接
部に溶接割れが生じることなく、かつ、溶接後における
溶接部の信頼性が高い異材溶接方法を提供することにあ
る。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a dissimilar material welding method in which weld cracks do not occur in a weld portion and the weld portion after welding has high reliability.

【0014】また、本発明は、上記課題を解決し、交換
作業が容易で、工期が短期間で済み、かつ、交換後にお
ける溶接部の信頼性が高い水素改質装置の管路部材交換
方法を提供することにある。
Further, the present invention solves the above-mentioned problems, the replacement work is easy, the construction period is short, and the reliability of the welded portion after the replacement is high. Is to provide.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、水素ガス雰囲気中で長期間供用さ
れたCr−Mo−Fe系耐熱鋼材に、新たなNi−Cr
−Fe系耐熱合金材を溶接して接続する異材溶接方法に
おいて、上記Cr−Mo−Fe系耐熱鋼材の接続部近傍
を加熱して脱水素処理を施した後、そのCr−Mo−F
e系耐熱鋼材の接続端にNi−Cr−Fe系溶材を用い
て肉盛り溶接を行い、その後、その肉盛溶接部と上記N
i−Cr−Fe系耐熱合金材の接続端とを突合わせ、N
i−Cr−Fe系溶材を用いて突合せ溶接するものであ
る。
Means for Solving the Problems To solve the above-mentioned problems, the invention of claim 1 is to provide a new Ni-Cr-based heat-resistant steel material which has been used for a long time in a hydrogen gas atmosphere.
In a dissimilar material welding method for welding and connecting a Fe-based heat-resistant alloy material, the vicinity of a connection portion of the Cr-Mo-Fe-based heat-resistant steel material is heated and dehydrogenated, and then the Cr-Mo-F
The connection end of the e-based heat-resistant steel material is overlaid by using a Ni-Cr-Fe-based welding material, and then the overlaid weld portion and the N
Abut the connection end of the i-Cr-Fe heat-resistant alloy material,
Butt welding is performed using an i-Cr-Fe-based solvent.

【0016】請求項2の発明は、上記Cr−Mo−Fe
系耐熱鋼材の接続部近傍に加熱用ヒータを巻き付けた
後、350〜450℃で30分以上加熱して脱水素処理
を施す請求項1記載の異材溶接方法である。
The invention according to claim 2 is characterized in that the Cr-Mo-Fe
2. The dissimilar material welding method according to claim 1, wherein after a heater for heating is wound around the connection portion of the heat-resistant steel material, dehydrogenation treatment is performed by heating at 350 to 450 [deg.] C. for 30 minutes or more.

【0017】請求項3の発明は、上記Cr−Mo−Fe
系耐熱鋼材の接続端に、上記肉盛り溶接を多層に亘って
施す請求項1又は請求項2記載の異材溶接方法である。
The invention according to claim 3 is characterized in that the Cr-Mo-Fe
The dissimilar material welding method according to claim 1 or 2, wherein the overlay welding is performed in multiple layers on the connection end of the heat-resistant steel material.

【0018】以上の方法によれば、Cr−Mo−Fe系
耐熱鋼材の接続部近傍に脱水素処理を施しているため、
Cr−Mo−Fe系耐熱鋼材とNi−Cr−Fe系耐熱
合金材との突合わせ溶接部に溶接割れが生じることがな
い。また、Cr−Mo−Fe系耐熱鋼材の接続端に、N
i−Cr−Fe系溶材を用いて、多層に亘って肉盛り溶
接を施しているため、肉盛り溶接部に焼鈍処理を施さな
くても、突合わせ溶接後における突合わせ溶接部に強度
低下や割れが生じることがない。
According to the above method, since the dehydrogenation treatment is performed in the vicinity of the connection portion of the Cr—Mo—Fe heat resistant steel,
Weld cracking does not occur at the butt weld between the Cr-Mo-Fe heat-resistant steel material and the Ni-Cr-Fe heat-resistant alloy material. In addition, the connection end of the Cr—Mo—Fe heat-resistant steel
Since the build-up welding is performed over multiple layers using the i-Cr-Fe-based welding material, the strength of the butt-welded portion after the butt-weld is reduced without performing the annealing process on the build-up weld. No cracks occur.

【0019】請求項4の発明は、原料ガス供給系から供
給される原料ガスを管路部材の導入口から導入すると共
に、管路部材の反応管を高温に加熱して原料ガスを水素
ガスに改質し、その高温の水素ガスを管路部材の抜出口
を介して熱交換器の導入側ノズルに送給する水素改質装
置における管路部材の交換方法において、交換すべき水
素改質装置の上記管路部材を、上記導入口端および上記
抜出口端の部分で切断した後、上記抜出口と切り離され
た熱交換器のCr−Mo−Fe系耐熱鋼からなる上記導
入側ノズルの接続端近傍に脱水素処理を施し、その後、
その導入側ノズルの接続端にNi−Cr−Fe系溶材を
用いて肉盛り溶接を行い、しかる後、その肉盛溶接部と
新たな管路部材のNi−Cr−Fe系耐熱合金からなる
上記抜出口とを突合せ、Ni−Cr−Fe系溶材を用い
て突合せ溶接するものである。
According to a fourth aspect of the present invention, a source gas supplied from a source gas supply system is introduced from an inlet of a pipe member, and the reaction gas of the pipe member is heated to a high temperature to convert the source gas to hydrogen gas. In a method of replacing a pipe member in a hydrogen reformer that reforms and sends the high-temperature hydrogen gas to an inlet nozzle of a heat exchanger through an outlet of a pipe member, the hydrogen reformer to be replaced is After cutting the pipe member at the inlet end and the outlet end, connecting the inlet nozzle made of heat-resistant Cr-Mo-Fe steel of the heat exchanger separated from the outlet. Dehydrogenation treatment near the end, then
At the connection end of the introduction side nozzle, overlay welding is performed using a Ni-Cr-Fe-based welding material, and thereafter, the overlay welding portion and a new pipe member made of a Ni-Cr-Fe-based heat-resistant alloy are used. The outlet and the outlet are butt-welded and butt-welded using a Ni-Cr-Fe-based solvent.

【0020】請求項5の発明は、上記導入側ノズルの接
続端近傍に加熱用ヒータを巻き付けた後、350〜45
0℃で30分以上加熱して脱水素処理を施す請求項4記
載の水素改質装置の管路部材交換方法である。
According to a fifth aspect of the present invention, after a heater for heating is wound around the connection end of the introduction-side nozzle, the heating temperature is set to 350 to 45
The method according to claim 4, wherein the dehydrogenation treatment is performed by heating at 0 ° C for 30 minutes or more.

【0021】請求項6の発明は、上記導入側ノズルの接
続端に、上記肉盛り溶接を多層に亘って施す請求項4又
は請求項5記載の水素改質装置の管路部材交換方法であ
る。
According to a sixth aspect of the present invention, there is provided the method of replacing a pipe member of a hydrogen reforming apparatus according to the fourth or fifth aspect, wherein the overlay welding is performed in multiple layers on the connection end of the introduction-side nozzle. .

【0022】以上の方法によれば、脱水素処理以外は熱
処理を必要としないため、交換作業が容易で、工期が短
期間で済み、かつ、管路部材交換後における管路部材の
抜出口と熱交換器の導入側ノズルとの突合わせ溶接部の
信頼性が高くなる。
According to the above method, no heat treatment is required except for the dehydrogenation treatment, so that the replacement work is easy, the construction period is short, and the removal of the pipe member after the replacement of the pipe member is performed. The reliability of the butt weld with the inlet nozzle of the heat exchanger is improved.

【0023】[0023]

【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

【0024】図2および図3に示した水素改質装置1に
対して適用される本発明の管路部材20の交換方法は、
先ず、交換すべき水素改質装置1の管路部材20におけ
る原料ガス供給管2と入口レジューサ(導入口)4aと
の接合部および出口レジューサ(抜出口)9aと導入側
ノズル10との接合部を切り離す。
The method for replacing the pipe member 20 of the present invention applied to the hydrogen reformer 1 shown in FIGS.
First, a joint between the raw material gas supply pipe 2 and the inlet reducer (inlet) 4a and a joint between the outlet reducer (extraction and outlet) 9a and the inlet nozzle 10 in the pipe member 20 of the hydrogen reformer 1 to be replaced. Disconnect.

【0025】その後、新たな管路部材(図示せず)を改
質炉外殻5に組み込むと共に、原料ガス供給管2と入口
レジューサ4aとの突合わせ溶接および出口レジューサ
9aと導入側ノズル10との突合わせ溶接を行い、管路
部材の交換を終了する。本発明においては、この突合せ
溶接の際、以下に示す手順で異材溶接を行う。
Thereafter, a new pipe member (not shown) is incorporated into the outer shell 5 of the reforming furnace, and the butt welding of the raw material gas supply pipe 2 and the inlet reducer 4a and the outlet reducer 9a and the inlet nozzle 10 are connected. Is performed, and the exchange of the pipe member is completed. In the present invention, at the time of this butt welding, dissimilar material welding is performed in the following procedure.

【0026】本発明の異材溶接方法の模式図を図1に示
す。ここで、図1(a)は導入側ノズルに脱水素処理を
施す際の導入側ノズル接続端の部分縦断面図を示し、図
1(b)は導入側ノズルの接続端に肉盛り溶接した後の
導入側ノズル接続端の部分縦断面図を示し、図1(c)
は導入側ノズルと出口レジューサとを突合せ溶接する際
の導入側ノズル接続端および出口レジューサの部分縦断
面図を示し、図1(d)は突合せ溶接後の導入側ノズル
接続端および出口レジューサの部分縦断面図を示してい
る。
FIG. 1 is a schematic view of the dissimilar material welding method of the present invention. Here, FIG. 1A shows a partial longitudinal sectional view of a connection end of the introduction-side nozzle when dehydrogenating the introduction-side nozzle, and FIG. FIG. 1C shows a partial vertical cross-sectional view of the later-described introduction side nozzle connection end, and FIG.
1 shows a partial longitudinal sectional view of an inlet-side nozzle connecting end and an outlet reducer when butt-welding an inlet-side nozzle and an outlet reducer, and FIG. 1D shows a part of the inlet-side nozzle connecting end and an outlet reducer after butt welding. It shows a longitudinal section.

【0027】図1(a)に示すように、本発明の異材溶
接方法は、導入側ノズル10と出口レジューサ9aとの
突合せ溶接の際、溶接割れの発生を防ぐべく、突合せ溶
接に先立って、出口レジューサ9aと切り離された熱交
換器11におけるCr−Mo鋼からなる導入側ノズル1
0の接続端近傍に、断熱材21で覆われた加熱用ヒータ
22を巻き付けると共に、350〜450℃の温度で3
0分以上加熱し、脱水素処理を施す。
As shown in FIG. 1 (a), the dissimilar material welding method according to the present invention is performed prior to the butt welding in order to prevent the occurrence of welding cracks at the time of butt welding between the inlet nozzle 10 and the outlet reducer 9a. Introducing nozzle 1 made of Cr-Mo steel in heat exchanger 11 separated from outlet reducer 9a
In the vicinity of the connection end 0, a heating heater 22 covered with a heat insulating material 21 is wound, and at a temperature of 350 to 450 ° C.
Heat for 0 minutes or more to perform dehydrogenation treatment.

【0028】次に、図1(b)に示すように、その導入
側ノズル10の接続端に肉盛り溶接を施す。この時、異
材溶接後(水素改質装置1の供用期間中)の溶接部にお
いて、強度低下や割れが生じないようにすべく、肉盛り
溶接を行う溶材の種類を選定しなければならない。ま
た、導入側ノズル10の肉厚Tは中肉厚(20mm前
後)であり、それ程厚いものではないため、できれば肉
盛り溶接後の焼鈍処理は省略したい。
Next, as shown in FIG. 1 (b), build-up welding is performed on the connection end of the introduction side nozzle 10. At this time, it is necessary to select the type of the welding material to be subjected to the build-up welding in order to prevent strength reduction and cracking from occurring in the welded portion after the dissimilar material welding (during the service period of the hydrogen reformer 1). In addition, the thickness T of the introduction-side nozzle 10 is a medium thickness (about 20 mm) and is not so large, so that it is desirable to omit the annealing process after the build-up welding if possible.

【0029】そこで、本発明の異材溶接方法において
は、出口レジューサ9aの構成材がFe基超合金である
ことを考慮して、Ni−Cr−Fe系溶材(YNiCr
−3;例えば、Inconel 82など)23を用いて、肉盛り
溶接を10層前後の多層に亘って施す。この時、肉盛り
溶接部24の層厚tは、導入側ノズル10の肉厚Tの少
なくとも約半分以上とする。
Therefore, in the dissimilar material welding method of the present invention, considering that the constituent material of the outlet reducer 9a is an Fe-based superalloy, a Ni-Cr-Fe-based molten material (YNiCr
-3; for example, Inconel 82) 23, and build-up welding is performed over about 10 layers. At this time, the layer thickness t of the weld overlay 24 is at least about half the thickness T of the introduction-side nozzle 10.

【0030】しかる後、図1(c),(d)に示すよう
に、新たな管路部材30を改質炉外殻(図示せず)に組
み込んで、導入側ノズル10の肉盛溶接部24と新たな
管路部材30のFe基超合金からなる出口レジューサ9
aとを突合せ、Ni−Cr−Fe系溶材23を用いて突
合せ溶接を行い、水素改質装置1における管路部材20
の交換を完了する。尚、突合せ溶接部25に対する焼鈍
処理は行う必要がない。
Thereafter, as shown in FIGS. 1 (c) and 1 (d), a new pipe member 30 is incorporated into the outer shell (not shown) of the reforming furnace, and the overlay welding portion of the introduction side nozzle 10 is welded. Outlet reducer 24 made of Fe-based superalloy 24 and new pipe member 30
a, and butt welding is performed using the Ni—Cr—Fe-based solution material 23 to form the pipe member 20 in the hydrogen reformer 1.
Complete the exchange. Note that it is not necessary to perform an annealing process on the butt weld 25.

【0031】本発明の異材溶接方法によれば、導入側ノ
ズル10と出口レジューサ9aとの突合せ溶接に先立っ
て、導入側ノズル10の接続端近傍に脱水素処理を施し
ているため、突合せ溶接部25において、溶接割れが生
じるおそれがない。
According to the dissimilar material welding method of the present invention, prior to the butt welding of the inlet nozzle 10 and the outlet reducer 9a, the dehydrogenation treatment is performed near the connection end of the inlet nozzle 10, so that the butt welding portion In 25, there is no possibility that welding cracks may occur.

【0032】また、Cr−Mo鋼からなる導入側ノズル
10の接続端に対する肉盛り溶接、および導入側ノズル
10とFe基超合金からなる出口レジューサ9aとの突
合わせ溶接の溶材に、Ni−Cr−Fe系溶材23を用
いているため、突合わせ溶接後における突合わせ溶接部
25に強度低下や割れが生じることがない。
Further, Ni-Cr is used as a weld material for build-up welding on the connection end of the introduction side nozzle 10 made of Cr-Mo steel and butt welding between the introduction side nozzle 10 and the outlet reducer 9a made of an Fe-based superalloy. -Since the Fe-based molten material 23 is used, the butt-welded portion 25 after the butt-welding does not suffer from strength reduction or cracking.

【0033】さらに、導入側ノズル10の接続端に、1
0層前後の多層に亘って肉盛り溶接を施しているため、
肉盛り溶接中の層の肉盛り溶接部24が、導入側ノズル
10の接続端および既に肉盛り溶接された層の肉盛り溶
接部24に対してノルマライジング(焼きならし)効果
を付与する。これによって、肉盛り溶接部24に対して
焼鈍処理を施さなくとも、肉盛り溶接のままで、焼鈍処
理を施したのと同様の効果が得られる。
Further, at the connection end of the introduction side nozzle 10, 1
Because the build-up welding is applied over multiple layers around 0 layers,
The build-up weld 24 of the layer under build-up welding provides a normalizing effect to the connection end of the introduction side nozzle 10 and the build-up weld 24 of the build-up welded layer. Thus, the same effect can be obtained as in the case where the build-up welding is performed and the build-up welding is performed without performing the annealing process.

【0034】すなわち、本発明の水素改質装置1の管路
部材20の交換方法によれば、脱水素処理以外は熱処理
を必要としないため、現地における管路部材20の交換
作業が容易となると共に、管路部材20の交換のための
工期が短期間で済む。
That is, according to the method of replacing the pipe member 20 of the hydrogen reforming apparatus 1 of the present invention, since heat treatment is not required except for the dehydrogenation treatment, the replacement work of the pipe member 20 on site becomes easy. At the same time, the work period for replacing the pipe member 20 is short.

【0035】また、導入側ノズル10の接続端に、Ni
−Cr−Fe系溶材23を用いて、多層に亘って肉盛り
溶接を施しているため、肉盛り溶接部24に焼鈍処理を
施さなくても、突合わせ溶接後(管路部材20の交換
後)における管路部材30の出口レジューサ9aと熱交
換器11の導入側ノズル10との突合わせ溶接部25に
強度低下や割れが生じることがなく、突合わせ溶接部2
5の信頼性が高い。
Further, the connecting end of the introduction side nozzle 10 is
-Since the build-up welding is performed over multiple layers using the Cr-Fe-based welding material 23, the butt-weld (after replacement of the pipe line member 20) can be performed without performing the annealing process on the build-up welded portion 24. The strength of the butt weld 25 between the outlet reducer 9a of the pipe member 30 and the inlet side nozzle 10 of the heat exchanger 11 in the butt weld 25 is not reduced and the butt weld 2
5 is highly reliable.

【0036】[0036]

【実施例】先ず、交換すべき水素改質装置の管路部材に
おける原料ガス供給管と入口レジューサとの接合部およ
び出口レジューサと導入側ノズルとの接合部を切り離
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the joint between the feed gas supply pipe and the inlet reducer and the joint between the outlet reducer and the inlet nozzle in the pipe member of the hydrogen reformer to be replaced are cut off.

【0037】次に、切り離されたCr−Mo鋼(JIS 規
格 SCMV-4 ) からなる肉厚16mmの導入側ノズル
の、接続端から80mmの部分に断熱材で覆われた加熱
用ヒータを巻き付ける。その後、加熱用ヒータを200
℃/hr以下の速度で昇温して350〜450℃に保っ
た後、0.5時間加熱して脱水素処理を施す。
Next, a heating heater covered with a heat insulating material is wound around a portion 80 mm from the connection end of a 16 mm-thick inlet nozzle made of the cut-off Cr-Mo steel (JIS standard SCMV-4). After that, the heating heater is turned on for 200 hours.
After the temperature is raised at a rate of not more than ℃ / hr and maintained at 350 to 450 ° C, heating is performed for 0.5 hour to carry out a dehydrogenation treatment.

【0038】次に、加熱用ヒータを275℃/hr以下
の速度で降温して200℃に保った後、加熱用ヒータを
取り外して導入側ノズルの接続端に、Inconel 82からな
るφ2.4mmの溶材を用い、層厚7mmの肉盛り溶接
(TIG溶接)を6層に亘って施す。シールドガスであ
るArガスの圧力は2.49MPa、1層目の肉盛り溶
接時の電流は100〜130A、電圧は14〜16V、
2〜6層目の肉盛り溶接時の電流は120〜150A、
電圧は15〜17Vとし、肉盛り溶接後は、導入側ノズ
ルの接続端を石綿で覆って徐冷を行う。
Next, the temperature of the heater for heating was lowered at a rate of 275 ° C./hr or less to maintain the temperature at 200 ° C. Then, the heater for heating was removed, and the connection end of the inlet nozzle was connected to a φ2.4 mm φ made of Inconel 82. Using a molten material, build-up welding (TIG welding) with a layer thickness of 7 mm is performed over six layers. The pressure of Ar gas as a shielding gas is 2.49 MPa, the current at the time of overlay welding of the first layer is 100 to 130 A, the voltage is 14 to 16 V,
The current at the time of overlay welding of the second to sixth layers is 120 to 150 A,
The voltage is set to 15 to 17 V, and after the overlay welding, the connection end of the introduction-side nozzle is covered with asbestos and gradually cooled.

【0039】しかる後、新たな管路部材を改質炉外殻に
組み込んで、導入側ノズルの肉盛溶接部と新たな管路部
材のFe基超合金(JIS 規格 NCF800 ) からなる出口
レジューサとを突合せ、Inconel 82からなるφ2.4m
mの溶材を用いて突合せ溶接を行い、水素改質装置にお
ける管路部材の交換を完了する。
Thereafter, a new pipe member was incorporated into the outer shell of the reforming furnace, and a build-up weld of the inlet nozzle and an outlet reducer made of a Fe-based superalloy (JIS standard NCF800) of the new pipe member were added. And 2.4m of Inconel 82
Butt welding is performed using the molten material of m to complete the replacement of the pipe member in the hydrogen reformer.

【0040】導入側ノズルと出口レジューサとの突合わ
せ溶接部に対して、本体付機械試験の曲げ試験を行った
結果、割れは観察されなかった。また、突合わせ溶接部
に対して、2.94MPaの耐圧試験および2.16M
Paの気密試験を行った結果、割れ及び漏れ等は観察さ
れなかった。
A bending test of a mechanical test with a main body was performed on a butt-welded portion between the inlet nozzle and the outlet reducer. As a result, no crack was observed. In addition, a 2.94 MPa pressure resistance test and 2.16 M
As a result of performing an airtightness test of Pa, cracking, leakage, and the like were not observed.

【0041】[0041]

【発明の効果】以上要するに本発明によれば、以下に述
べる優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0042】(1) Cr−Mo鋼材に脱水素処理を施
した後、Cr−Mo鋼材とFe基超合金材との突合せ溶
接を行うことで、突合せ溶接部において、溶接割れが生
じるおそれがない。
(1) By performing butt welding between the Cr-Mo steel material and the Fe-based superalloy material after performing the dehydrogenation treatment on the Cr-Mo steel material, there is no possibility that welding cracks occur in the butt welded portion. .

【0043】(2) Cr−Mo鋼材の接続端に対する
肉盛り溶接、およびCr−Mo鋼材とFe基超合金材と
の突合わせ溶接の溶材に、Ni−Cr−Fe系溶材を用
いることで、突合わせ溶接後、突合わせ溶接部に強度低
下や割れが生じることがない。
(2) By using a Ni-Cr-Fe-based material as a filler material for build-up welding on the connection end of the Cr-Mo steel material and butt welding between the Cr-Mo steel material and the Fe-based superalloy material, After butt welding, there is no strength reduction or cracking in the butt weld.

【0044】(3) Cr−Mo鋼材の接続端に多層に
亘って肉盛り溶接を施すことで、肉盛り溶接部に対して
焼鈍処理を施さなくとも、肉盛り溶接のままで、焼鈍処
理を施したのと同様の効果が得られる。
(3) By performing the overlay welding on the connection end of the Cr-Mo steel material in multiple layers, the annealing process can be performed with the overlay welding as it is without performing the annealing process on the overlay welding portion. The same effect as that obtained by the application can be obtained.

【0045】(4) 水素改質装置の管路部材の交換の
際、脱水素処理以外は熱処理を必要としないため、現地
における管路部材の交換作業が容易となると共に、管路
部材交換のための工期が短期間で済む。
(4) Since the heat treatment is not required except for the dehydrogenation treatment at the time of replacing the pipe member of the hydrogen reformer, the pipe member replacement work on site becomes easy and the replacement of the pipe member is easy. Work period is short.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異材溶接方法を示す模式図である。FIG. 1 is a schematic view showing a dissimilar material welding method of the present invention.

【図2】水素改質装置の縦断面模式図である。FIG. 2 is a schematic longitudinal sectional view of a hydrogen reformer.

【図3】水素改質装置における管路部材の模式図であ
る。
FIG. 3 is a schematic diagram of a pipe member in the hydrogen reformer.

【符号の説明】[Explanation of symbols]

1 水素改質装置 2 原料ガス供給管(原料ガス供給系) 4a 入口レジューサ(導入口) 7 反応管 9a 出口レジューサ(抜出口,Ni−Cr−Fe系耐
熱合金材) 10 導入側ノズル(Cr−Mo−Fe系耐熱鋼材) 11 熱交換器 20,30 管路部材 22 加熱用ヒータ 23 Ni−Cr−Fe系溶材 24 肉盛溶接部 G1 原料ガス G2 水素ガス
DESCRIPTION OF SYMBOLS 1 Hydrogen reformer 2 Source gas supply pipe (source gas supply system) 4a Inlet reducer (inlet) 7 Reaction tube 9a Outlet reducer (extraction outlet, Ni-Cr-Fe heat-resistant alloy material) 10 Inlet nozzle (Cr- Mo-Fe heat-resistant steel) 11 heat exchanger 20, 30 conduit member 22 for heating the heater 23 Ni-Cr-Fe-based welding material 24 overlay weld part G 1 raw material gas G 2 hydrogen gas

フロントページの続き Fターム(参考) 4E081 AA02 AA05 AA12 BA02 BA11 BA16 BA40 BA41 BB15 CA07 CA11 DA05 DA10 DA14 FA11 YH02 YH03 Continued on front page F-term (reference) 4E081 AA02 AA05 AA12 BA02 BA11 BA16 BA40 BA41 BB15 CA07 CA11 DA05 DA10 DA14 FA11 YH02 YH03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水素ガス雰囲気中で長期間供用されたC
r−Mo−Fe系耐熱鋼材に、新たなNi−Cr−Fe
系耐熱合金材を溶接して接続する異材溶接方法におい
て、上記Cr−Mo−Fe系耐熱鋼材の接続部近傍を加
熱して脱水素処理を施した後、そのCr−Mo−Fe系
耐熱鋼材の接続端にNi−Cr−Fe系溶材を用いて肉
盛り溶接を行い、その後、その肉盛溶接部と上記Ni−
Cr−Fe系耐熱合金材の接続端とを突合わせ、Ni−
Cr−Fe系溶材を用いて突合せ溶接することを特徴と
する異材溶接方法。
1. C for a long time in a hydrogen gas atmosphere
New Ni-Cr-Fe for r-Mo-Fe heat resistant steel
In a dissimilar material welding method of welding and connecting a heat-resistant heat-resistant steel material, the vicinity of the connection portion of the heat-resistant Cr-Mo-Fe steel material is subjected to dehydrogenation treatment, and then the Cr-Mo-Fe heat-resistant steel material is heated. Overlay welding is performed on the connection end using a Ni-Cr-Fe-based welding material, and then the overlaid weld and the Ni-
The connection end of the Cr-Fe heat-resistant alloy material is abutted and Ni-
A dissimilar material welding method, characterized in that butt welding is performed using a Cr-Fe-based molten material.
【請求項2】 上記Cr−Mo−Fe系耐熱鋼材の接続
部近傍に加熱用ヒータを巻き付けた後、350〜450
℃で30分以上加熱して脱水素処理を施す請求項1記載
の異材溶接方法。
2. After a heating heater is wound around the connection portion of the Cr—Mo—Fe heat resistant steel material,
The dissimilar material welding method according to claim 1, wherein the dehydrogenation treatment is performed by heating at 30C for 30 minutes or more.
【請求項3】 上記Cr−Mo−Fe系耐熱鋼材の接続
端に、上記肉盛り溶接を多層に亘って施す請求項1又は
請求項2記載の異材溶接方法。
3. The dissimilar material welding method according to claim 1, wherein the build-up welding is performed in multiple layers on the connection end of the Cr—Mo—Fe heat-resistant steel material.
【請求項4】 原料ガス供給系から供給される原料ガス
を管路部材の導入口から導入すると共に、管路部材の反
応管を高温に加熱して原料ガスを水素ガスに改質し、そ
の高温の水素ガスを管路部材の抜出口を介して熱交換器
の導入側ノズルに送給する水素改質装置における管路部
材の交換方法において、交換すべき水素改質装置の上記
管路部材を、上記導入口端および上記抜出口端の部分で
切断した後、上記抜出口と切り離された熱交換器のCr
−Mo−Fe系耐熱鋼からなる上記導入側ノズルの接続
端近傍に脱水素処理を施し、その後、その導入側ノズル
の接続端にNi−Cr−Fe系溶材を用いて肉盛り溶接
を行い、しかる後、その肉盛溶接部と新たな管路部材の
Ni−Cr−Fe系耐熱合金からなる上記抜出口とを突
合せ、Ni−Cr−Fe系溶材を用いて突合せ溶接する
ことを特徴とする水素改質装置の管路部材交換方法。
4. A raw material gas supplied from a raw material gas supply system is introduced from an inlet of a pipe member, and a raw material gas is reformed into hydrogen gas by heating a reaction tube of the pipe member to a high temperature. In a method of replacing a pipe member in a hydrogen reformer that supplies high-temperature hydrogen gas to an inlet nozzle of a heat exchanger via an outlet of the pipe member, the pipe member of the hydrogen reformer to be replaced is provided. Is cut at the inlet end and the outlet end, and then the Cr of the heat exchanger separated from the outlet is cut off.
A dehydrogenation process is performed near the connection end of the introduction-side nozzle made of -Mo-Fe-based heat-resistant steel, and then a build-up welding is performed on the connection end of the introduction-side nozzle using a Ni-Cr-Fe-based molten material, Thereafter, the overlay welding portion is butt-joined to the above-mentioned outlet made of a Ni-Cr-Fe-based heat-resistant alloy of a new pipe member, and butt-welded using a Ni-Cr-Fe-based solvent. A method for replacing a pipe member of a hydrogen reformer.
【請求項5】 上記導入側ノズルの接続端近傍に加熱用
ヒータを巻き付けた後、350〜450℃で30分以上
加熱して脱水素処理を施す請求項4記載の水素改質装置
の管路部材交換方法。
5. The pipeline of the hydrogen reformer according to claim 4, wherein a heating heater is wound around the connection end of the introduction nozzle, and then heated at 350 to 450 ° C. for 30 minutes or more to perform dehydrogenation treatment. How to replace parts.
【請求項6】 上記導入側ノズルの接続端に、上記肉盛
り溶接を多層に亘って施す請求項4又は請求項5記載の
水素改質装置の管路部材交換方法。
6. The method according to claim 4, wherein the build-up welding is applied to the connection end of the introduction-side nozzle in multiple layers.
JP11061941A 1999-03-09 1999-03-09 Different material welding method and tube line member change method of hydrogen reforming device Pending JP2000254774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11061941A JP2000254774A (en) 1999-03-09 1999-03-09 Different material welding method and tube line member change method of hydrogen reforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11061941A JP2000254774A (en) 1999-03-09 1999-03-09 Different material welding method and tube line member change method of hydrogen reforming device

Publications (1)

Publication Number Publication Date
JP2000254774A true JP2000254774A (en) 2000-09-19

Family

ID=13185729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11061941A Pending JP2000254774A (en) 1999-03-09 1999-03-09 Different material welding method and tube line member change method of hydrogen reforming device

Country Status (1)

Country Link
JP (1) JP2000254774A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349684C (en) * 2004-03-02 2007-11-21 上海重型机器厂 Welding process for large-scale forged-welded member
CN104551337A (en) * 2015-01-23 2015-04-29 中誉远发国际建设集团有限公司 30CrMo heat resistant steel pipeline welding construction method
US9598962B2 (en) 2012-06-22 2017-03-21 Mitsubishi Hitachi Power Systems, Ltd. Turbine rotor, manufacturing method thereof and steam turbine using turbine rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349684C (en) * 2004-03-02 2007-11-21 上海重型机器厂 Welding process for large-scale forged-welded member
US9598962B2 (en) 2012-06-22 2017-03-21 Mitsubishi Hitachi Power Systems, Ltd. Turbine rotor, manufacturing method thereof and steam turbine using turbine rotor
CN104551337A (en) * 2015-01-23 2015-04-29 中誉远发国际建设集团有限公司 30CrMo heat resistant steel pipeline welding construction method

Similar Documents

Publication Publication Date Title
CN101011774A (en) Method of welding dissimilar steel 10Cr9Mo1VNb and 1Cr18Ni9
JP4633959B2 (en) Welded joint of high-strength heat-resistant steel and its welding method
CN111331315B (en) Ethylene cracking furnace tube welding repair method
JPS6237077B2 (en)
Bhaumik et al. Failure of reformer tube of an ammonia plant
CN110421236B (en) Welding repair method for furnace tube of reforming furnace for hydrogen production through service deterioration
JP2004276035A (en) Welded joint excellent in resistance to caulking of metallic composite pipe
JP2000254774A (en) Different material welding method and tube line member change method of hydrogen reforming device
JP3170720B2 (en) Dissimilar material welding method
CN108581139A (en) A kind of welding method of oil and gas transmission bimetal compound pipeline
JP4885710B2 (en) How to protect equipment against corrosion at high temperatures
JP3268367B2 (en) Heat exchanger
JP2008080347A (en) Tube welded structure, tube welding method, and boiler equipment provided with tube welded structure
US6307178B1 (en) Method for welding shaped bodies made of carburized heat-resistant steel
JP2918099B2 (en) Heat exchanger for styrene monomer production
Penso et al. Stress Relaxation Cracking of Thick-Wall Stainless Steel Piping in Various Refining Units
US11878377B2 (en) Method for welding iron-aluminum intermetallic compound microporous material and welded part made thereby
CN101896789A (en) Pipe, manufacturing process and application that the inner surface that uses in smelting furnace increases
EP0015621B1 (en) A tube for a cracking plant
Vekeman et al. Repair welding of HP40-Nb
JP2006028566A (en) Member for hydrocarbon reforming device
JP2001512786A (en) Ferrite alloys for structural use
CN115072661B (en) Method for preventing dew point corrosion of conversion gas steam converter and steam converter
KR101478821B1 (en) Reformer tube apparatus having variable wall thickness and associated method of manufacture
JPH10273303A (en) Heat exchange type reformer