JP2000254512A - Solid acid catalyst and preparation thereof - Google Patents

Solid acid catalyst and preparation thereof

Info

Publication number
JP2000254512A
JP2000254512A JP11062368A JP6236899A JP2000254512A JP 2000254512 A JP2000254512 A JP 2000254512A JP 11062368 A JP11062368 A JP 11062368A JP 6236899 A JP6236899 A JP 6236899A JP 2000254512 A JP2000254512 A JP 2000254512A
Authority
JP
Japan
Prior art keywords
gallium
acid catalyst
solid acid
silicate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11062368A
Other languages
Japanese (ja)
Inventor
Miki Niwa
幹 丹羽
Kazu Okumura
和 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP11062368A priority Critical patent/JP2000254512A/en
Publication of JP2000254512A publication Critical patent/JP2000254512A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain a solid acid catalyst having high activity and no corrosiveness. SOLUTION: Silicate having meso pores and containing gallium (solid acid catalyst) is obtained by using 8-30C alkyltrimethylammonium as a template to introduce gallium into crystalline silicate. Gallium may be substituted with a part of silicate or may be supported on silicate. This solid acid catalyst is useful as a Lewis acid catalyst, for example, as an acylating or alkylating reaction catalyst due to Friedel-Crafts reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、異性化反応、フリ
ーデルフラフツ反応、重合反応などに有用な新規な固体
酸触媒およびその調製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel solid acid catalyst useful for isomerization reaction, Friedel-Frafts reaction, polymerization reaction and the like, and a method for preparing the same.

【0002】[0002]

【従来の技術】従来、工業的に種々の酸触媒が使用され
ている。例えば、ルイス酸触媒として金属ハロゲン化物
(塩化アルミニウムなど)が一般的に使用されている。
しかし、この方法では、多量の金属ハロゲン化物を含有
する廃触媒が生成し、その廃棄又は処理が困難である。
また、金属ハロゲン化物は吸水性が激しいため、工業的
取扱い性が低い。さらに、金属ハロゲン化物は腐食性が
あるため、耐食性の高い反応装置を使用する必要があ
り、コスト高になる。さらに、触媒の分離には煩雑な作
業を必要とする。
2. Description of the Related Art Conventionally, various acid catalysts have been industrially used. For example, metal halides (such as aluminum chloride) are commonly used as Lewis acid catalysts.
However, in this method, a waste catalyst containing a large amount of metal halide is generated, and it is difficult to dispose or treat the waste catalyst.
In addition, metal halides have high water absorption, and therefore have low industrial handling properties. Furthermore, since metal halides are corrosive, it is necessary to use a reactor having high corrosion resistance, which increases the cost. Further, a complicated operation is required for separating the catalyst.

【0003】一方、これらの課題を解決するため、固体
酸触媒、例えば、BF3 を担体(アルミナなど)に担持
した触媒や、メソ孔を有する結晶性鉄シリケートなどが
提案されている。しかし、これら固体酸触媒は活性が低
く、工業的に利用するのが困難である。
On the other hand, in order to solve these problems, a solid acid catalyst, for example, a catalyst in which BF 3 is supported on a carrier (such as alumina) and a crystalline iron silicate having mesopores have been proposed. However, these solid acid catalysts have low activity and are difficult to use industrially.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、高活性な固体酸触媒およびその調製方法を提供する
ことにある。
Accordingly, an object of the present invention is to provide a highly active solid acid catalyst and a method for preparing the same.

【0005】本発明の他の目的は、腐食性がなく、分離
回収も容易な固体酸触媒およびその調製方法を提供する
ことにある。
Another object of the present invention is to provide a solid acid catalyst which is non-corrosive and easy to separate and recover, and a method for preparing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を達成するため鋭意検討した結果、メソ孔を有する結晶
性シリケート系固体触媒にガリウムを導入すると、腐食
性がなく、しかも高い活性を有する固体酸触媒が得られ
ることを見いだし、本発明を完成した。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object. As a result, when gallium is introduced into a crystalline silicate-based solid catalyst having mesopores, it has no corrosive property and high activity. It was found that a solid acid catalyst having the following formula was obtained, and the present invention was completed.

【0007】すなわち、本発明の固体酸触媒は、メソ孔
を有し、かつガリウムを含有する結晶性シリケートで構
成されており、ガリウムは、シリケートの一部との置換
や、シリケートへの担持などにより含有させることがで
きる。このような固体酸触媒は、種々の酸触媒、例え
ば、ルイス酸触媒反応(アシル化やアルキル化のための
フリーデルクラフツ反応など)に利用できる。
That is, the solid acid catalyst of the present invention is composed of a crystalline silicate having mesopores and containing gallium, and the gallium is substituted with a part of the silicate or supported on the silicate. Can be contained. Such solid acid catalysts can be used for various acid catalysts, for example, Lewis acid catalyzed reactions (such as Friedel-Crafts reactions for acylation and alkylation).

【0008】本発明の前記固体酸触媒は、メソ孔を有
し、かつガリウムが導入された結晶性シリケートを調製
する方法において、メソ孔を形成するためのテンプレー
トとしてC8-30アルキルトリメチルアンモニウム塩を用
いることにより調製できる。
The solid acid catalyst according to the present invention is a method for preparing a crystalline silicate having mesopores and into which gallium has been introduced, wherein the C8-30 alkyltrimethylammonium salt is used as a template for forming mesopores. Can be prepared.

【0009】[0009]

【発明の実施の形態】本発明の固体酸触媒は、細孔を有
しているとともに、ガリウムを含有する結晶性シリケー
トで形成されている。前記細孔の平均孔径は、触媒活性
を損なわない範囲、例えば、1.3〜10nm程度の範
囲から選択できる。前記細孔の平均孔径は、通常、メソ
孔の範疇に属している。
BEST MODE FOR CARRYING OUT THE INVENTION The solid acid catalyst of the present invention has pores and is formed of gallium-containing crystalline silicate. The average pore size of the pores can be selected from a range that does not impair the catalytic activity, for example, a range of about 1.3 to 10 nm. The average pore diameter of the pores usually belongs to the category of mesopores.

【0010】細孔(特にメソ孔)を有する結晶性シリケ
ートは、例えば、細孔(特にメソ孔)が略規則的に配列
した六方細孔構造(ヘキサゴナル構造)を有するメソポ
ーラスモレキュラーシーブで構成できる。メソ孔を有す
る結晶性シリケートは「MCM−41」として知られて
いる。なお、前記平均孔径(2r)は、固体触媒の表面
積(S)と平均細孔容積(Vp)とに基づいて算出で
き、前記メソポーラスモレキュラーシーブ構造は、X線
回折により確認できる。
The crystalline silicate having pores (particularly, mesopores) can be composed of, for example, a mesoporous molecular sieve having a hexagonal pore structure (hexagonal structure) in which pores (particularly, mesopores) are arranged substantially regularly. A crystalline silicate having mesopores is known as "MCM-41". The average pore size (2r) can be calculated based on the surface area (S) of the solid catalyst and the average pore volume (Vp), and the mesoporous molecular sieve structure can be confirmed by X-ray diffraction.

【0011】前記固体酸触媒の表面積は、触媒活性を損
なわない広い範囲、例えば、100〜2000m2 /g
程度の範囲から選択でき、通常、200〜1500m2
/g程度、好ましくは300〜1200m2 /g(例え
ば、500〜1,000m2/g)程度である。なお、
触媒の表面積は、窒素を用いた吸着法(窒素吸着法)に
より測定できる。固体酸触媒における細孔容積は、例え
ば、0.1〜5ml/g程度、好ましくは0.2〜2.
5ml/g(例えば、0.3〜1ml/g)程度であ
る。
The surface area of the solid acid catalyst is in a wide range that does not impair the catalytic activity, for example, 100 to 2000 m 2 / g.
Can be selected from the range of about 200 to 1500 m 2
/ G, preferably about 300 to 1200 m 2 / g (eg, about 500 to 1,000 m 2 / g). In addition,
The surface area of the catalyst can be measured by an adsorption method using nitrogen (nitrogen adsorption method). The pore volume of the solid acid catalyst is, for example, about 0.1 to 5 ml / g, preferably 0.2 to 2.
It is about 5 ml / g (for example, 0.3 to 1 ml / g).

【0012】本発明の固体酸触媒は、主成分としてのシ
リケート(特に結晶性シリケート)とガリウムとを含有
している。ガリウムの含有形態は特に制限されず、例え
ば、ガリウムが前記結晶性シリケートへ担持した形態
(すなわち、ガリウム担持結晶性シリケート)、シリケ
ートの一部がガリウムで置換された形態(すなわち、結
晶性ガリウムシリケート)であってもよい。なお、シリ
ケートのケイ素がガリウムで置換されているか否かは、
EXAFS解析により、Ga2 3 に認められるGa−
Ga結合由来のピークが消失し、Ga−O結合由来のピ
ークが観察されるか否かを基準にして判断できる。
The solid acid catalyst of the present invention contains silicate (particularly crystalline silicate) and gallium as main components. The gallium-containing form is not particularly limited. For example, a form in which gallium is supported on the crystalline silicate (that is, gallium-supported crystalline silicate), a form in which part of the silicate is substituted with gallium (that is, crystalline gallium silicate) ). In addition, whether the silicon of the silicate is replaced by gallium,
By EXAFS analysis, it found in Ga 2 O 3 Ga-
The determination can be made based on whether the peak derived from the Ga bond disappears and the peak derived from the Ga—O bond is observed.

【0013】固体酸触媒において、ケイ素とガリウムと
の割合は、触媒活性を損なわない範囲、例えば、ガリウ
ム1モルに対して、ケイ素10〜120モル程度の範囲
から選択でき、通常、ガリウム1モルに対して、ケイ素
12〜120モル、好ましくは13〜50モル、さらに
好ましくは15〜40モル(例えば、15〜30モル)
程度である。ケイ素の割合が小さいと、固体酸触媒の熱
安定性が低下し、ケイ素の割合が大きいと、触媒の酸量
及び酸強度の低下に伴って、触媒活性も低下しやすい。
In the solid acid catalyst, the ratio of silicon to gallium can be selected from a range that does not impair the catalytic activity, for example, a range of about 10 to 120 mol of silicon with respect to 1 mol of gallium. On the other hand, silicon is 12 to 120 mol, preferably 13 to 50 mol, more preferably 15 to 40 mol (for example, 15 to 30 mol).
It is about. When the proportion of silicon is small, the thermal stability of the solid acid catalyst decreases, and when the proportion of silicon is large, the catalytic activity tends to decrease with a decrease in the acid amount and acid strength of the catalyst.

【0014】本発明の固体酸触媒はルイス酸型触媒を形
成する。すなわち、固体酸にピリジンを吸着させ、赤外
吸収スペクトルを測定したとき、ルイス酸型酸点に対応
する吸収域AL と、ブレンステッド型酸点に対応する吸
収域AB との割合が、AL /AB =80/20〜100
/0(面積比)程度、好ましくは90/10〜100/
0(面積比)程度、さらに好ましくは95/5〜99/
1(面積比)程度である。ルイス酸型酸点に対応する吸
収域AL は、通常、波数1447〜1460cm-1(例
えば、1455〜1460cm-1)、特に1457cm
-1に主ピークを有する吸収域であり、ブレンステッド型
酸点に対応する吸収域AB は、通常、波数1530〜1
560cm-1(例えば、1540〜1550cm-1)、
特に1545cm-1に主ピークを有する吸収域である。
The solid acid catalyst of the present invention forms a Lewis acid type catalyst. That is, when pyridine is adsorbed on the solid acid and the infrared absorption spectrum is measured, the ratio of the absorption region A L corresponding to the Lewis acid type acid point and the absorption region A B corresponding to the Bronsted type acid point is: A L / A B = 80 / 20~100
/ 0 (area ratio), preferably 90/10 to 100 /
0 (area ratio), more preferably 95/5 to 99 /
It is about 1 (area ratio). Absorption range A L corresponding to the Lewis acid type acid point is usually wavenumber 1447~1460cm -1 (e.g., 1455~1460cm -1), especially 1457cm
-1 is the absorption zone having a main peak, the absorption region A B corresponding to Bronsted-type acid point, usually wavenumber 1530-1
560 cm -1 (for example, 1540-1550 cm -1 ),
In particular, it is an absorption region having a main peak at 1545 cm -1 .

【0015】固体酸触媒の酸量は、触媒にアンモニア
(NH3 )ガスを吸着させ、その吸着量を測定する方法
(気体塩基吸着法、NH3 −TPD)により測定でき、
例えば、0.1meq/g以上、好ましくは0.2me
q/g以上(例えば、0.2〜0.8meq/g程度)
である。なお、固体酸触媒の酸強度は、前記気体塩基吸
着法において、吸着したNH3 の脱離温度を測定するこ
とにより算出できる。
The acid amount of the solid acid catalyst can be measured by a method of adsorbing ammonia (NH 3 ) gas on the catalyst and measuring the amount of adsorption (gas base adsorption method, NH 3 -TPD).
For example, 0.1 meq / g or more, preferably 0.2 meq / g
q / g or more (for example, about 0.2 to 0.8 meq / g)
It is. The acid strength of the solid acid catalyst can be calculated by measuring the desorption temperature of the adsorbed NH 3 in the gas base adsorption method.

【0016】(固体酸触媒の調製方法)本発明の固体酸
触媒は、細孔(特にメソ孔)を有し、かつガリウムを結
晶性シリケートに導入することにより調製できる。この
方法において、前記細孔を形成するためのテンプレート
として、アルキルトリメチルアンモニウム塩を用いるこ
とが肝要である。すなわち、前記テンプレートを用いて
細孔を形成し、ガリウムをシリケートに導入する限り、
本発明の固体酸触媒の調製方法は特に限定されない。
(Method for Preparing Solid Acid Catalyst) The solid acid catalyst of the present invention has pores (particularly, mesopores) and can be prepared by introducing gallium into a crystalline silicate. In this method, it is important to use an alkyltrimethylammonium salt as a template for forming the pores. That is, as long as pores are formed using the template and gallium is introduced into the silicate,
The method for preparing the solid acid catalyst of the present invention is not particularly limited.

【0017】具体的な固体酸触媒の調製方法としては、
(1)テンプレートの存在下、シリカ成分とガリウム成
分とを加熱処理することにより、ガリウムが導入され、
かつ細孔を有する結晶性シリケート(結晶性ガリウムシ
リケート)を得る方法、(2)前記テンプレートを用い
て調製された細孔を有する結晶性シリケートへ、ガリウ
ム成分を担持させることにより、ガリウムが導入された
結晶性シリケート(ガリウム担持結晶性シリケート)を
得る方法などが例示できる。
A specific method for preparing a solid acid catalyst is as follows.
(1) Gallium is introduced by heating the silica component and the gallium component in the presence of the template,
And a method of obtaining a crystalline silicate having pores (crystalline gallium silicate). (2) gallium is introduced by supporting a gallium component on the crystalline silicate having pores prepared using the template. And a method for obtaining a crystalline silicate (gallium-supporting crystalline silicate).

【0018】前記方法(1)において、固体酸触媒は、
通常、前記テンプレートを用い、水性溶媒系でシリカ成
分とガリウム成分とを加熱処理する水熱合成法を利用し
て行うことができ、この反応は常圧又は加圧下で行うこ
とができる。
In the above method (1), the solid acid catalyst comprises:
In general, the template can be used to carry out a hydrothermal synthesis method in which a silica component and a gallium component are heat-treated in an aqueous solvent system, and this reaction can be carried out at normal pressure or under pressure.

【0019】シリカ成分としては、結晶性シリケートを
形成可能な種々のケイ素含有化合物、例えば、シリカア
ルコキシド(テトラメトキシシラン、テトラエトキシシ
ラン、テトラブトキシシラン、トリメトキシメチルシラ
ンなど)、ケイ酸塩(ケイ酸ソーダなど)、シリカゾ
ル、コロイダルシリカなどが挙げられる。好ましいシリ
カ成分は、結晶性シリケート、例えば、コロイダルシリ
カが挙げられる。
As the silica component, various silicon-containing compounds capable of forming a crystalline silicate, for example, silica alkoxide (tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, trimethoxymethylsilane, etc.), silicate (silicone) Acid soda), silica sol, colloidal silica, and the like. Preferred silica components include crystalline silicates, for example, colloidal silica.

【0020】ガリウム成分としては、通常、水溶性ガリ
ウム化合物が使用され、例えば、ガリウムと無機酸との
塩(硝酸ガリウム(Ga(NO3 3 など)が挙げられ
る。ガリウム化合物としては、通常、原子価1〜3(特
に原子価3)のガリウム化合物が使用される。なお、シ
リカ成分に対するガリウム成分の使用量は、固体酸触媒
におけるケイ素とガリウムとの割合に対応させて選択で
きる。
As the gallium component, a water-soluble gallium compound is usually used, for example, a salt of gallium and an inorganic acid (such as gallium nitrate (Ga (NO 3 ) 3 )). A gallium compound having a valence of 1 to 3 (especially, a valence of 3) is used, and the amount of the gallium component to the silica component can be selected according to the ratio of silicon to gallium in the solid acid catalyst.

【0021】本発明で用いるアルキルトリメチルアンモ
ニウム塩は、炭素数8〜30の高級(又は長鎖)アルキ
ル基と3個のメチル基とを有している。高級アルキル基
の炭素数により、固体酸触媒の平均孔径を調整できる。
高級アルキル基としてのC8- 30アルキル基は直鎖又は分
岐鎖アルキル基であってもよく、例えば、オクチル基、
デシル基、ドデシル基、テトラデシル基、ペンタデシル
基、ヘキサデシル基、オクタデシル基、イコシル基、ド
コシル基などが例示できる。好ましい高級アルキル基に
はC10-25 アルキル基(例えば、C10-20アルキル
基)、特にC12-18アルキル基(例えば、C12-16アルキ
ル基)が含まれる。
The alkyltrimethylammonium salt used in the present invention has a higher (or long-chain) alkyl group having 8 to 30 carbon atoms and three methyl groups. The average pore size of the solid acid catalyst can be adjusted by the carbon number of the higher alkyl group.
C 8- 30 alkyl group as higher alkyl groups may be straight-chain or branched-chain alkyl group, for example, octyl group,
Examples include decyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, octadecyl, icosyl, and docosyl groups. Preferred higher alkyl groups include C 10-25 alkyl groups (eg, C 10-20 alkyl groups), especially C 12-18 alkyl groups (eg, C 12-16 alkyl groups).

【0022】アルキルトリメチルアンモニウム塩として
は、例えば、ハロゲンイオンとの塩(塩素イオン、臭素
イオンなどとの塩)などが挙げられる。これらのC8-30
アルキルトリメチルアンモニウム塩は単独で又は二種以
上組み合わせて使用できる。
Examples of the alkyltrimethylammonium salt include salts with halogen ions (salts with chloride ions, bromine ions, etc.). These C 8-30
The alkyltrimethylammonium salts can be used alone or in combination of two or more.

【0023】水性溶媒としては、通常、水が使用され、
必要に応じて水と相溶性のある親水性又は水溶性溶媒
(アルコール類、ケトン類、エーテル類、カルボン酸類
など、特にメタノールなどのアルコール類)を併用して
もよい。これら溶媒は、一種又は二種以上組み合わせて
使用できる。
As the aqueous solvent, water is usually used,
If necessary, a hydrophilic or water-soluble solvent (alcohols, ketones, ethers, carboxylic acids, etc., particularly alcohols such as methanol) compatible with water may be used in combination. These solvents can be used alone or in combination of two or more.

【0024】シリカ成分とガリウム成分との水熱合成温
度は、例えば、60〜300℃程度、好ましくは80〜
200℃(例えば、80〜120℃)程度である。圧力
は、前記加熱温度に対応して適宜選択でき、通常、例え
ば、1〜10気圧程度、好ましくは1〜5気圧程度の範
囲から適当に選択できる。加熱時間は、反応温度に応じ
て、例えば、1時間〜30日程度、好ましくは5時間〜
10日程度の範囲から選択できる。反応は、撹拌下又は
非撹拌下で行うことができる。
The hydrothermal synthesis temperature of the silica component and the gallium component is, for example, about 60 to 300 ° C., preferably 80 to 300 ° C.
It is about 200 ° C (for example, 80 to 120 ° C). The pressure can be appropriately selected according to the heating temperature, and can be appropriately selected usually from, for example, a range of about 1 to 10 atm, preferably about 1 to 5 atm. The heating time depends on the reaction temperature, for example, about 1 hour to 30 days, preferably 5 hours to
You can select from a range of about 10 days. The reaction can be carried out with or without stirring.

【0025】反応過程において、必要に応じて、反応系
のpHを、例えば、8〜12程度(好ましくは10〜1
2程度)に調整してもよい。pHの調整は、例えば、加
熱過程で、酸又はアルカリ溶液(特に酸溶液、例えば酢
酸溶液)を連続的又は間欠的に添加することにより行う
ことができる。
In the course of the reaction, if necessary, the pH of the reaction system is, for example, about 8 to 12 (preferably 10 to 1).
2). The pH can be adjusted, for example, by continuously or intermittently adding an acid or alkali solution (particularly an acid solution, for example, an acetic acid solution) during the heating process.

【0026】このようにして、テンプレート剤としての
アルキルトリメチルアンモニウム塩(特に、C8-30アル
キルトリメチルアンモニウム塩)の存在下、シリカ成分
とガリウム成分とを加熱することにより、ガリウム含有
シリケート(特に結晶性ガリウムシリケート)を得るこ
とができる。生成したガリウム含有シリケートは、慣用
の精製工程(洗浄、乾燥など)に供し、不純物(塩成
分、水など)を除去してもよい。例えば、ガリウム含有
シリケートを水洗することにより、塩成分(ハロゲンイ
オンなど)などの水溶性不純物を除去できる。
As described above, by heating the silica component and the gallium component in the presence of an alkyltrimethylammonium salt (particularly, a C 8-30 alkyltrimethylammonium salt) as a template agent, a gallium-containing silicate (particularly, Gallium silicate). The generated gallium-containing silicate may be subjected to a conventional purification step (washing, drying, etc.) to remove impurities (salt component, water, etc.). For example, by washing gallium-containing silicate with water, water-soluble impurities such as salt components (eg, halogen ions) can be removed.

【0027】さらに、空気などの酸素含有雰囲気下、適
当な温度、例えば、300〜700℃程度(例えば、4
00〜600℃程度)で結晶性ガリウムシリケートを焼
成することにより、テンプレート剤などの有機成分を除
去できる。
Further, under an atmosphere containing oxygen such as air, at an appropriate temperature, for example, about 300 to 700 ° C. (for example,
By baking the crystalline gallium silicate at about 00 to 600 ° C.), organic components such as a template agent can be removed.

【0028】精製したガリウム含有シリケート(結晶性
又は結晶質ガリウムシリケート)は、さらにシリカ成分
由来のアルカリ金属又はアルカリ土類金属を、アンモニ
ウムイオンにイオン交換してもよい。アンモニウムイオ
ンにイオン交換した後、焼成することにより、触媒を高
度に活性化できる。イオン交換は、通常、アンモニア又
はアンモニウム塩含有水溶液(硝酸アンモニウム水溶
液、硫酸アンモニウム水溶液、塩化アンモニウム水溶
液、臭化アンモニウム水溶液など)に、ガリウム含有シ
リケートを浸漬し、撹拌又は静置することにより行うこ
とができる。焼成は、例えば、適当な雰囲気(例えば、
酸素含有雰囲気又は不活性ガス雰囲気)下、300〜7
00℃程度、好ましくは400〜600℃程度で行うこ
とができる。
In the purified gallium-containing silicate (crystalline or crystalline gallium silicate), an alkali metal or an alkaline earth metal derived from a silica component may be further subjected to ion exchange with ammonium ions. The catalyst can be highly activated by baking after ion exchange with ammonium ions. Ion exchange can be usually performed by immersing gallium-containing silicate in an aqueous solution containing ammonia or an ammonium salt (an aqueous solution of ammonium nitrate, an aqueous solution of ammonium sulfate, an aqueous solution of ammonium chloride, an aqueous solution of ammonium bromide, etc.) and stirring or standing. Firing is performed, for example, in an appropriate atmosphere (for example,
Under oxygen-containing atmosphere or inert gas atmosphere)
It can be performed at about 00 ° C, preferably about 400 to 600 ° C.

【0029】また、前記方法(2)において、ガリウム
成分の担持又は沈着は、慣用の方法、例えば、(2a)
ガリウム化合物を含む水性溶媒にシリケート(通常、粉
粒状の形態)を浸漬する方法、(2b)シリケート(通
常、粉粒状の形態)に、水溶性ガリウム化合物を含有す
る水性溶媒を散布する方法、(2c)シリケートとガリ
ウム成分とを含む混合液に酸又はアルカリを添加してガ
リウム成分をシリケートに沈着する方法などが例示でき
る。なお、シリケートとしては、前記テンプレートを用
いて調製された細孔を有する結晶性シリケートが使用で
きる。ガリウム担持結晶性シリケートは、前記ガリウム
成分が担持されたシリケートを、必要により洗浄・乾燥
し、上記と同様にして焼成することにより調製できる。
In the method (2), the gallium component is supported or deposited by a conventional method, for example, (2a)
A method of dipping a silicate (usually in a granular form) in an aqueous solvent containing a gallium compound, (2b) a method of spraying an aqueous solvent containing a water-soluble gallium compound in a silicate (usually in a granular form), 2c) A method of adding an acid or an alkali to a mixed solution containing a silicate and a gallium component to deposit the gallium component on the silicate can be exemplified. Note that, as the silicate, a crystalline silicate having pores prepared using the template can be used. The gallium-supported crystalline silicate can be prepared by washing and drying the silicate on which the gallium component is supported, if necessary, and firing it in the same manner as described above.

【0030】本発明の固体酸触媒の形態は特に制限され
ず、例えば、粉粒状、ペレット状、フレーク状、ロッド
状、フレーク状、錠剤状、ハニカム状などであってもよ
い。また、固体酸触媒は、加圧成形、押し出し成形など
の成形法により所定形状の形成した成形体であってもよ
い。
The form of the solid acid catalyst of the present invention is not particularly limited, and may be, for example, in the form of powder, granules, pellets, flakes, rods, flakes, tablets, honeycombs, or the like. Further, the solid acid catalyst may be a molded article having a predetermined shape formed by a molding method such as pressure molding or extrusion molding.

【0031】このようにして得られた本発明の固体酸触
媒は、触媒活性が高く、しかも腐食性を大きく低減でき
る。また、触媒の形態が固体であるため、反応混合物か
らの分離回収も容易である。そのため、触媒量を低減し
たり、反応温度を低くしても、高い収率で目的化合物を
工業的に有利に製造できる。
The solid acid catalyst of the present invention thus obtained has high catalytic activity and can greatly reduce corrosiveness. Further, since the catalyst is in a solid form, separation and recovery from the reaction mixture are easy. Therefore, even if the amount of the catalyst is reduced or the reaction temperature is lowered, the target compound can be industrially advantageously produced in a high yield.

【0032】本発明の固体酸触媒は、種々の酸触媒反応
(特にルイス酸触媒反応)、例えば、フリーデルクラフ
ツ反応(フリーデルクラフツ反応を利用したアシル化反
応、アルキル化反応など)、エステル化反応(カルボン
酸又はその反応性誘導体とアルコールとのエステル化反
応など)、異性化反応(直鎖炭化水素から分岐鎖炭化水
素への異性化反応など)、アセタール化反応、重合反応
(エチレン、プロピレンなどのビニル化合物、ジエン類
などの重合)などにおける触媒として有用である。ま
た、本発明の固体酸触媒は、液相又は気相系のいずれの
反応系にも利用できる。
The solid acid catalyst of the present invention can be used in various acid catalyzed reactions (particularly Lewis acid catalyzed reactions), for example, Friedel-Crafts reaction (acylation reaction utilizing Friedel-Crafts reaction, alkylation reaction, etc.), esterification Reaction (such as esterification reaction between carboxylic acid or its reactive derivative and alcohol), isomerization reaction (such as isomerization reaction from linear hydrocarbon to branched chain hydrocarbon), acetalization reaction, and polymerization reaction (ethylene and propylene) It is useful as a catalyst in polymerization of vinyl compounds, dienes and the like. Further, the solid acid catalyst of the present invention can be used for any reaction system of a liquid phase or a gas phase.

【0033】なお、本発明の固体酸触媒を用いる反応は
慣用の方法で行うことができる。例えば、フリーデルク
ラフツ反応によるアシル化反応は、反応体[例えば、芳
香族性化合物(ベンゼン、トルエン、ナフタレンなどの
炭化水素)]をアシル化剤(代表的には、カルボン酸ハ
ライド、カルボン酸無水物など)によりアシル化するこ
とにより行うことができる。このアシル化反応におい
て、本発明の固体酸触媒を用いると、高い触媒活性を有
しているため、少ない触媒量であっても、比較的穏和な
条件(例えば、反応温度が10〜80℃、好ましくは2
0〜60℃程度)で反応させることができる。また、フ
リーデルクラフツ反応を利用したアルキル化反応におい
ても、前記アシル化剤に代えてアルキル化剤(アルキル
ハライド、アルケン、アルキン、アルコール、エーテ
ル、エステルなど)を用いることにより、効率的に芳香
族性化合物をアルキル化できる。
The reaction using the solid acid catalyst of the present invention can be carried out by a conventional method. For example, an acylation reaction by the Friedel-Crafts reaction involves reacting a reactant [eg, an aromatic compound (eg, a hydrocarbon such as benzene, toluene, or naphthalene)] with an acylating agent (typically, a carboxylic acid halide or a carboxylic acid anhydride). , Etc.). In the acylation reaction, when the solid acid catalyst of the present invention is used, the catalyst has a high catalytic activity. Preferably 2
(About 0 to 60 ° C.). Also, in an alkylation reaction utilizing the Friedel-Crafts reaction, an aromatic agent is efficiently used by using an alkylating agent (alkyl halide, alkene, alkyne, alcohol, ether, ester, etc.) instead of the acylating agent. Sexual compounds can be alkylated.

【0034】[0034]

【発明の効果】本発明では、固体酸触媒が、細孔を有す
るガリウム含有結晶性シリケートで構成されているた
め、固体酸触媒に高い触媒活性を付与できる。また、ハ
ロゲン化物を実質的に含有していないため、腐食性が殆
どなく、反応混合物からの分離回収も容易である。
According to the present invention, since the solid acid catalyst is composed of gallium-containing crystalline silicate having pores, a high catalytic activity can be imparted to the solid acid catalyst. Further, since it does not substantially contain a halide, it has little corrosiveness and is easily separated and recovered from the reaction mixture.

【0035】[0035]

【実施例】以下に、実施例に基づいて本発明をより詳細
に説明するが、本発明はこれらの実施例によって限定さ
れるものではない。
The present invention will be described below in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0036】実施例1 (触媒調製)テトラデシルトリメチルアンモニウムブロ
ミド(テンプレート剤)13.1gと、コロイダルシリ
カ(Ludox−40、デュポン社製、シリカ含有量:
40重量%、)33gと、硝酸ガリウム3.0gとを含
有する水溶液220gを500mlのポリプロピレン製
ボトルに加え、オートクレーブ中、100℃で5日間静
置し、水熱合成反応を行った。反応系には、pHを約1
1に維持するため、5規定の酢酸水溶液を24時間毎に
添加した。反応終了後、冷却し、オートクレープから反
応混合物を取り出し、残留ブロムイオンが無くなるまで
反応混合物を水洗し、130℃で乾燥した。得られた結
晶性生成物を、空気中、500℃で焼成することによ
り、残留テトラデシルトリメチルアンモニウムブロミド
を除去した。焼成により得られた粉末結晶1gを0.5
規定の硝酸アンモニウム水溶液100mlに浸漬し、室
温(約20℃)で24時間浸漬してイオン交換処理し
た。水洗後、粉末結晶を100℃で乾燥した。さらに、
空気中、450℃で5時間焼成することによりメソ孔を
有する結晶性ガリウムシリケートを得た。
Example 1 (Preparation of catalyst) 13.1 g of tetradecyltrimethylammonium bromide (template agent) and colloidal silica (Ludox-40, manufactured by DuPont, silica content:
220 g of an aqueous solution containing 33 g of 40% by weight) and 3.0 g of gallium nitrate were added to a 500 ml polypropylene bottle, and the mixture was allowed to stand at 100 ° C. for 5 days in an autoclave to perform a hydrothermal synthesis reaction. The pH of the reaction system is about 1
To maintain 1, a 5N aqueous acetic acid solution was added every 24 hours. After the completion of the reaction, the reaction mixture was cooled, the reaction mixture was taken out of the autoclave, washed with water until the residual bromide ion disappeared, and dried at 130 ° C. The resulting crystalline product was calcined at 500 ° C. in air to remove residual tetradecyltrimethylammonium bromide. 1 g of the powder crystal obtained by firing was
It was immersed in a prescribed ammonium nitrate aqueous solution (100 ml) and immersed at room temperature (about 20 ° C.) for 24 hours to perform ion exchange treatment. After washing with water, the powder crystals were dried at 100 ° C. further,
By baking in air at 450 ° C. for 5 hours, crystalline gallium silicate having mesopores was obtained.

【0037】メソ孔を有する結晶性ガリウムシリケート
の構造を、X線回析により確認したところ、2.45
°,4.49°,4.94°に解析ピークが見られ、ヘ
キサゴナル構造の規則性を有することが確認できた。ま
た、窒素吸着法による固体酸触媒の表面積は864m2
/g、細孔容積0.57ml/gであり、細孔は、平均
孔径(平均細孔径)2.4nmのメソ孔であった。
The structure of the crystalline gallium silicate having mesopores was confirmed by X-ray diffraction.
Analytical peaks were observed at °, 4.49 ° and 4.94 °, confirming that the hexagonal structure had regularity. The surface area of the solid acid catalyst obtained by the nitrogen adsorption method was 864 m 2.
/ G, the pore volume was 0.57 ml / g, and the pores were mesopores having an average pore diameter (average pore diameter) of 2.4 nm.

【0038】また、固体酸触媒のEXAFS解析におい
て、Ga−Ga結合由来のピークが存在せず、Ga−O
結合由来のピークのみが観察され、ガリウムがシリカの
ネットワークに取り込まれていることが確認できた。な
お、各結合ピークの位置は、Ga2 3 のピーク位置を
基準にして定めた。
In the EXAFS analysis of the solid acid catalyst, there was no peak derived from Ga—Ga bond, and Ga—O
Only the peak derived from the bond was observed, confirming that gallium was incorporated into the silica network. The position of each binding peak was determined based on the peak position of Ga 2 O 3 .

【0039】さらに、酸点の種類を同定するとともに酸
点の割合を調べるため、室温で固体酸触媒にピリジンを
吸着させた後、100℃で真空脱気して物理吸着したピ
リジンを除去し、赤外吸収スペクトル(IR)を測定し
た。すなわち、ルイス酸型酸点に吸着したピリジニウム
イオンの吸収ピーク(1545cm-1)と、ブレンステ
ッド酸型酸点に吸着したピリジニウムイオンの吸収ピー
ク(1457cm-1)との面積比を算出した。この結
果、ルイス酸型酸点とブレンステッド型酸点との割合
は、97/3(面積比)であった。また、NH3 −TP
D法により測定した固体酸触媒の酸量は、0.51me
g/gであった。
Further, in order to identify the type of acid sites and to examine the ratio of acid sites, pyridine was adsorbed on a solid acid catalyst at room temperature, and then pyridine physically adsorbed was removed by vacuum degassing at 100 ° C. An infrared absorption spectrum (IR) was measured. That is, the area ratio between the absorption peak of pyridinium ion adsorbed at the Lewis acid-type acid site (1545 cm -1 ) and the absorption peak of pyridinium ion adsorbed at the Bronsted acid-type acid site (1457 cm -1 ) was calculated. As a result, the ratio between Lewis acid type acid points and Bronsted type acid points was 97/3 (area ratio). NH 3 -TP
The acid amount of the solid acid catalyst measured by Method D is 0.51 me
g / g.

【0040】(フリーデルクラフツ反応によるアルキル
化)攪拌器付きの50mlのフラスコ中、ベンゼン7.
8g(100mmol)と、塩化ベンジル668mg
(5mmol)と、固体酸触媒30mgとを、窒素気流
下、40℃で2時間攪拌することにより反応させた。生
成したジフェニルメタンの生成量を、ガスクロマトグラ
フィーにより測定したところ、ジフェニルメタンが44
モル%で生成していた。
(Alkylation by Friedel-Crafts reaction) In a 50 ml flask equipped with a stirrer, benzene 7.
8 g (100 mmol) and 668 mg of benzyl chloride
(5 mmol) and 30 mg of the solid acid catalyst were reacted by stirring at 40 ° C. for 2 hours under a nitrogen stream. When the amount of the generated diphenylmethane was measured by gas chromatography, it was found that diphenylmethane was 44%.
Mole%.

【0041】比較例1〜3 硝酸ガリウムを使用しない以外は、実施例1と同様にし
てメソ孔を有する結晶性シリケートを得た(比較例
1)。また、硝酸ガリウムに代えて、硝酸アルミニウム
又は硝酸鉄を用いる以外は、実施例1と同様にして、メ
ソ孔を有する結晶性アルミノシリケート(比較例2)、
メソ孔を有する結晶性鉄シリケートを得た(比較例
3)。
Comparative Examples 1-3 Crystalline silicates having mesopores were obtained in the same manner as in Example 1 except that gallium nitrate was not used (Comparative Example 1). Further, in the same manner as in Example 1 except that aluminum nitrate or iron nitrate was used instead of gallium nitrate, crystalline aluminosilicate having mesopores (Comparative Example 2),
A crystalline iron silicate having mesopores was obtained (Comparative Example 3).

【0042】得られた結晶性シリケート、結晶性アルミ
ノシリケート、又は結晶性鉄シリケートを、実施例1の
フリーデルクラフツ反応によるアルキル化反応に用いた
ところ、いずれも反応は全く進行しなかった。
When the obtained crystalline silicate, crystalline aluminosilicate or crystalline iron silicate was used in the alkylation reaction by the Friedel-Crafts reaction in Example 1, none of the reactions proceeded.

【0043】実施例2〜6 硝酸ガリウムの使用量を調整する以外は、実施例1と同
様にして、ガリウムの含有量が異なる結晶性ガリウムシ
リケート(Si/Ga=14〜63モル%)を調製し
た。得られた固体酸触媒のガリウムの含有量及び触媒活
性(ジフェニルメタンの収率)を表1に示す。
Examples 2-6 Crystalline gallium silicates (Si / Ga = 14-63 mol%) having different gallium contents were prepared in the same manner as in Example 1 except that the amount of gallium nitrate used was adjusted. did. Table 1 shows the gallium content and catalytic activity (yield of diphenylmethane) of the obtained solid acid catalyst.

【0044】[0044]

【表1】 [Table 1]

【0045】実施例7及び8 比較例1で得られたメソ孔を有する結晶性シリケート1
gを、0.3重量%の硝酸ガリウムのメタノール溶液に
含浸させた。含浸後、100℃で乾燥し、500℃で焼
成することによりガリウムの担持量が異なる固体酸触媒
(ガリウム担持量3.1重量%、5.9重量%)を調製
した。得られた固体酸触媒のガリウムの含有量と触媒活
性(ジフェニルメタンの収率)を表2に示す。
Examples 7 and 8 Mesoporous crystalline silicate 1 obtained in Comparative Example 1
g was impregnated with a 0.3% by weight solution of gallium nitrate in methanol. After the impregnation, the solid acid catalyst was dried at 100 ° C. and calcined at 500 ° C. to prepare a solid acid catalyst having a different amount of gallium (3.1% by weight of gallium, 5.9% by weight). Table 2 shows the gallium content and catalytic activity (yield of diphenylmethane) of the obtained solid acid catalyst.

【0046】[0046]

【表2】 [Table 2]

【0047】比較例4 結晶性シリケートに代えて非晶質シリカを用いる以外は
実施例7と同様にして、ガリウム担持非晶質シリケート
を調製した。フリーデルクラフツ反応によるアルキル化
反応に用いたところ、ジフェニルメタン収率0.1モル
%であった。
Comparative Example 4 A gallium-supported amorphous silicate was prepared in the same manner as in Example 7 except that amorphous silica was used instead of the crystalline silicate. When used for the alkylation reaction by the Friedel-Crafts reaction, the yield of diphenylmethane was 0.1 mol%.

【0048】実施例9〜11 テンプレート剤として、アルキル基の炭素数が異なるア
ルキルトリメチルアンモニウムブロミドを用いる以外
は、実施例8と同様にして固体酸触媒(結晶性ガリウム
シリケート)を調製した。なお、テンプレート剤とし
て、ヘキサデシルトリメチルアンモニウムブロミド(実
施例9)、テトラデシルトリメチルアンモニウムブロミ
ド(実施例10)、又はデシルトリメチルアンモニウム
ブロミド(実施例11)を用いた。
Examples 9 to 11 Solid acid catalysts (crystalline gallium silicate) were prepared in the same manner as in Example 8, except that alkyltrimethylammonium bromide having a different number of carbon atoms in the alkyl group was used as the template agent. In addition, hexadecyltrimethylammonium bromide (Example 9), tetradecyltrimethylammonium bromide (Example 10), or decyltrimethylammonium bromide (Example 11) was used as a template agent.

【0049】上記テンプレート剤のアルキル基の炭素数
と、得られた結晶性ガリウムシリケートの触媒活性(ジ
フェニルメタンの収率)を表3に示す。
Table 3 shows the number of carbon atoms in the alkyl group of the template agent and the catalytic activity (yield of diphenylmethane) of the obtained crystalline gallium silicate.

【0050】[0050]

【表3】 [Table 3]

【0051】実施例12及び比較例5 (フリーデルクラフツ反応によるアシル化)実施例1で
得られた結晶性ガリウムシリケートと、比較例3で得た
結晶性鉄シリケート触媒とを用い、2−メトキシナフタ
レンのアセチル化を行った。すなわち、攪拌器付きの5
0mlのフラスコに、反応溶媒のニトロベンゼン7.1
7gと2−メトキシナフタレン5mmol(790m
g)、アセチルクロライド1.2mmol(94m
g)、固体酸触媒80mgを仕込み、窒素気流下、反応
温度40℃で12時間反応を行ない、アセチル化メトキ
シナフタレン(アセチル化物)の収率と、メトキシナフ
タレンの1−位、6−位、8−位にアセチル基が置換し
たアセチルメトキシナフタレンの選択率をガスクロマト
グラフィにより測定したところ、下記の結果を得た。
Example 12 and Comparative Example 5 (Acylation by Friedel-Crafts Reaction) Using the crystalline gallium silicate obtained in Example 1 and the crystalline iron silicate catalyst obtained in Comparative Example 3, 2-methoxy Acetylation of naphthalene was performed. That is, 5 with stirrer
In a 0 ml flask, add nitrobenzene 7.1 as a reaction solvent.
7 g and 2-methoxynaphthalene 5 mmol (790 m
g), 1.2 mmol of acetyl chloride (94 m
g), 80 mg of a solid acid catalyst was charged, and reacted at a reaction temperature of 40 ° C. for 12 hours under a nitrogen stream to obtain the yield of acetylated methoxynaphthalene (acetylated product) and the 1-, 6-, and 8-positions of methoxynaphthalene. When the selectivity of acetylmethoxynaphthalene having an acetyl group substituted at the -position was measured by gas chromatography, the following results were obtained.

【0052】実施例12:実施例1の固体酸触媒を使用 アセチル化物の収率55モル% アセチル化物の生成比率: 1位アセチル化物の生成比率40% 6位アセチル化物の生成比率47% 8位アセチル化物の生成比率13% 比較例5:比較例3の固体酸触媒を使用 アセチル化物の収率33モル% アセチル化物の生成比率: 1位アセチル化物の生成比率66% 6位アセチル化物の生成比率19% 8位アセチル化物の生成比率15%Example 12: The solid acid catalyst of Example 1 was used. The yield of acetylated product was 55 mol%. The production ratio of acetylated product: The production ratio of acetylated product at 1-position was 40%. The production ratio of acetylated product at 6-position was 47%. Comparative Example 5: Use of the solid acid catalyst of Comparative Example 3 Yield of acetylated product: 33 mol% Production ratio of acetylated product: Production ratio of 1-acetylated product: 66% Production ratio of 6-acetylated product: 13% 19% 8% acetylated product 15%

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4G069 AA08 AA11 BA07A BA07B BA44A BA45A BB10B BC17A BC17B BD06A BD06B BD13B BE17A BE17B BE33B CB59 CB61 CB62 DA05 EC14Y ZA37A ZA37B ZB08 ZC07 4H006 AC24 AC44 BA09 BA33 BA55 BA64 BA67 BA68 4H039 CA41 CA62 CD10 CD20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // C07B 61/00 300 C07B 61/00 300 F term (reference) 4G069 AA08 AA11 BA07A BA07B BA44A BA45A BB10B BC17A BC17B BD06A BD06B BD13B BE17A BE17B BE33B CB59 CB61 CB62 DA05 EC14Y ZA37A ZA37B ZB08 ZC07 4H006 AC24 AC44 BA09 BA33 BA55 BA64 BA67 BA68 4H039 CA41 CA62 CD10 CD20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 メソ孔を有し、かつガリウムを含有する
結晶性シリケートで構成されている固体酸触媒。
1. A solid acid catalyst having mesopores and comprising gallium-containing crystalline silicate.
【請求項2】 シリケートの一部との置換又はシリケー
トへの担持によりガリウムが含有されている請求項1記
載の固体酸触媒。
2. The solid acid catalyst according to claim 1, wherein gallium is contained by substitution with a part of the silicate or by loading on the silicate.
【請求項3】 ルイス酸触媒である請求項1記載の固体
酸触媒。
3. The solid acid catalyst according to claim 1, which is a Lewis acid catalyst.
【請求項4】 フリーデルクラフツ反応用触媒である請
求項1記載の固体酸触媒。
4. The solid acid catalyst according to claim 1, which is a Friedel-Crafts reaction catalyst.
【請求項5】 フリーデルクラフツ反応によるアシル化
又はアルキル化反応用触媒である請求項1記載の固体酸
触媒。
5. The solid acid catalyst according to claim 1, which is a catalyst for acylation or alkylation reaction by Friedel-Crafts reaction.
【請求項6】 メソ孔を有し、かつガリウムを導入した
結晶性シリケートで構成された固体酸触媒を調製する方
法であって、メソ孔を形成するためのテンプレートとし
てC8-30アルキルトリメチルアンモニウム塩を用いる固
体酸触媒の調製方法。
6. A method for preparing a solid acid catalyst having a mesopore and comprising a gallium-introduced crystalline silicate, wherein the C8-30 alkyltrimethylammonium is used as a template for forming the mesopore. A method for preparing a solid acid catalyst using a salt.
JP11062368A 1999-03-09 1999-03-09 Solid acid catalyst and preparation thereof Pending JP2000254512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11062368A JP2000254512A (en) 1999-03-09 1999-03-09 Solid acid catalyst and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11062368A JP2000254512A (en) 1999-03-09 1999-03-09 Solid acid catalyst and preparation thereof

Publications (1)

Publication Number Publication Date
JP2000254512A true JP2000254512A (en) 2000-09-19

Family

ID=13198118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11062368A Pending JP2000254512A (en) 1999-03-09 1999-03-09 Solid acid catalyst and preparation thereof

Country Status (1)

Country Link
JP (1) JP2000254512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515584A (en) * 2002-12-06 2006-06-01 エービービー ルマス グローバル インコーポレイテッド Mesoporous materials with active metals
CN108130589A (en) * 2016-12-01 2018-06-08 北京理工大学 It is a kind of to prepare the controllable hydro-thermal method of monocrystalline
CN110624598A (en) * 2019-09-29 2019-12-31 西安石油大学 Preparation of metal/acid bifunctional catalyst and separation method of metal/acid bifunctional catalyst for 2,4/2, 5-mixed xylenol
CN115341050A (en) * 2022-07-17 2022-11-15 浙江晟格生物科技有限公司 Preparation method of lactulose

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515584A (en) * 2002-12-06 2006-06-01 エービービー ルマス グローバル インコーポレイテッド Mesoporous materials with active metals
CN108130589A (en) * 2016-12-01 2018-06-08 北京理工大学 It is a kind of to prepare the controllable hydro-thermal method of monocrystalline
CN110624598A (en) * 2019-09-29 2019-12-31 西安石油大学 Preparation of metal/acid bifunctional catalyst and separation method of metal/acid bifunctional catalyst for 2,4/2, 5-mixed xylenol
CN115341050A (en) * 2022-07-17 2022-11-15 浙江晟格生物科技有限公司 Preparation method of lactulose
CN115341050B (en) * 2022-07-17 2023-07-28 浙江晟格生物科技有限公司 Lactulose preparation method

Similar Documents

Publication Publication Date Title
JPH0557314B2 (en)
Rác et al. Sulfonic acid-functionalized phenylene-bridged periodic mesoporous organosilicas as catalyst materials
TWI402253B (en) Process for the preparation of carbonylation products
MXPA02004460A (en) Immobilised ionic liquids.
JP2004537410A (en) Catalyst and its use in the synthesis of hydrogen peroxide
Li et al. Synthesis of SBA-15 type mesoporous organosilicas with diethylenebenzene in the framework and post-synthetic framework modification
JP2012526787A (en) Carbonylation process
Li et al. Preparation of highly ordered mesoporous AlSBA-15–SO3H hybrid material for the catalytic synthesis of chalcone under solvent-free condition
EP1585705B1 (en) Method for the preparation of high surface area metal fluorides
WO1990003354A1 (en) Process for producing internal olefin
GB2269377A (en) Silica gel and process for making it from polysilicic acid
RU2039596C1 (en) Catalyst and catalytic system for n-butane dehydroisomerization and isobutene production method
JPS62114656A (en) Catalyst for inverting hydrocarbon, manufacture thereof and inversion reaction method of hydrocarbon
TWI222438B (en) Ester synthesis
KR100887001B1 (en) Process for preparing a group ?-metal containing catalyst, use thereof for preparing an alkenyl carboxylate
JP2000254512A (en) Solid acid catalyst and preparation thereof
JP4524427B2 (en) Composition comprising heteropolyacid salt and inorganic oxide and method for producing the same
Szöllősi et al. Preparation of Pt nanoparticles in the presence of a chiral modifier and catalytic applications in chemoselective and asymmetric hydrogenations
CN114479098B (en) Controllable micro mesoporous metal organic framework HKUST-1 material and preparation method and application thereof
Mnasri-Ghnimi et al. Effect of Al and Ce on Zr-pillared bentonite and their performance in catalytic oxidation of phenol
WO2021179458A1 (en) Inorganic solid silicon-based sulfonic acid and/or phosphoric acid catalyst, preparation method therefor, and application thereof
JPH0859566A (en) Production of methylamines
Naghdi et al. Building MOF bottles (MIL-101 family as heterogeneous single-site catalysts) around Fe 3 O 4 ships: A highly efficient and magnetically separable catalyst for oxidation of alcohols
CN112844453A (en) ZSM-5 catalyst, and preparation method and application thereof
JP3260591B2 (en) Solid acid-base catalyst and method of using the same