JP2000252233A - Method and system for fabricating semiconductor device - Google Patents

Method and system for fabricating semiconductor device

Info

Publication number
JP2000252233A
JP2000252233A JP11055518A JP5551899A JP2000252233A JP 2000252233 A JP2000252233 A JP 2000252233A JP 11055518 A JP11055518 A JP 11055518A JP 5551899 A JP5551899 A JP 5551899A JP 2000252233 A JP2000252233 A JP 2000252233A
Authority
JP
Japan
Prior art keywords
processed
current
plating
thickness
electroplating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11055518A
Other languages
Japanese (ja)
Inventor
Masako Mizushima
賢子 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11055518A priority Critical patent/JP2000252233A/en
Publication of JP2000252233A publication Critical patent/JP2000252233A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To make uniform the plating thickness over the entire surface of a matter to be processed while protecting element in a region close to a conduction electrode against damage by performing electroplating while varying the position where the conduction electrode touches the matter to be processed having a region to be plated over the entire surface. SOLUTION: Electroplating is performed while varying the position where a conduction electrode touches a matter 1 to be processed having a region to be plated over the entire surface in a plating liquid 4 through a drive means 5. The contact position is varied by fixing the conduction electrode 2 and moving the matter 1 to be processed continuously or intermittently. Alternatively, the matter 1 to be processed is fixed and the conduction electrode 2 is moved continuously or intermittently. According to the method, a plating film can be formed at a constant thickness on the surface of the matter 1 to be processed while suppressing the problem of electroplating system, i.e., uneven film thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法およびその製造装置に関し、さらに具体的には半導体
装置の銅配線形成技術に関する。デバイスの高信頼化・
多機能化を実現する上で、配線の多層化と高速化は非常
に重要である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device and an apparatus for manufacturing the same, and more particularly, to a technique for forming copper wiring of a semiconductor device. Higher device reliability
In order to realize multi-function, it is very important to increase the number of wiring layers and increase the speed.

【0002】素子の微細化に伴い、配線断面積の減少に
よる抵抗値の上昇、電流密度の増加によるエレクトロマ
イグレーション(EM)耐性の劣化などの問題が懸念さ
れる。
With the miniaturization of elements, there are concerns about problems such as an increase in resistance value due to a decrease in wiring cross-sectional area and deterioration in electromigration (EM) resistance due to an increase in current density.

【0003】銅配線は従来から使用されているAl−C
u合金配線に比べ40〜50%低い抵抗値であることば
かりでなく、2桁高いEM耐性を持つことから、従来の
Al−Cu合金配線の限界に対する対策として注目され
ている。
[0003] Copper wiring is a conventional Al-C
In addition to having a resistance value that is 40 to 50% lower than that of the u-alloy wiring, as well as having an EM resistance that is two orders of magnitude higher, attention has been paid to measures against the limitations of conventional Al-Cu alloy wiring.

【0004】しかし、銅を使用した配線技術はアルミニ
ウムの場合と異なった問題がある。すなわち、薄膜を所
定の微細な配線形状に加工するためのドライエッチング
が銅に対しては困難であり、銅薄膜の微細加工特性が悪
いという点が挙げられる。
[0004] However, the wiring technique using copper has a different problem from that of aluminum. That is, dry etching for processing a thin film into a predetermined fine wiring shape is difficult for copper, and the fine processing characteristics of the copper thin film are poor.

【0005】そこで、ドライエッチングが困難な配線材
料に対する微細パターン形成方法としてダマシン法と呼
ばれる手法が報告されており、実用に供されている。
Therefore, a method called a damascene method has been reported as a method for forming a fine pattern on a wiring material which is difficult to dry-etch, and is being put to practical use.

【0006】すなわち、絶縁膜(主に酸化シリコン膜)
に所定の配線形状となるような溝状の凹部をあらかじめ
形成しておき、この溝内を含む全面に電気めっき法ある
いはCVD法などによって金属膜を埋め込むように堆積
させ、その後金属膜を絶縁膜の表面まで化学機械研磨
(Chemical Mechanical Polishと称する加工法のこと
で、以降CMP加工と呼ぶ)することにより、金属膜を
所定の微細な配線形状に形成する方法である。
That is, an insulating film (mainly a silicon oxide film)
A groove-shaped concave portion having a predetermined wiring shape is formed in advance, and a metal film is deposited so as to be embedded by electroplating or CVD over the entire surface including the inside of the groove. Is a method of forming a metal film into a predetermined fine wiring shape by performing chemical mechanical polishing (hereinafter, referred to as CMP processing) up to the surface of the metal film.

【0007】この銅配線の埋め込み方法としてはスパッ
タリフロー法やCVD−Cu法、めっき−Cu法などが
知られている。これらの中でもめっき法で銅を成膜する
方法は他の手法に比較してコストも低く、また高アスペ
クト比をもつ溝状パターンへの埋め込みも可能なことか
ら近年注目されてきている。
As a method of embedding the copper wiring, a sputter reflow method, a CVD-Cu method, a plating-Cu method, and the like are known. Among these, the method of forming a copper film by plating has attracted attention in recent years because it is lower in cost than other methods and can be embedded in a groove pattern having a high aspect ratio.

【0008】[0008]

【従来の技術】めっきで銅を成膜する方法には電気めっ
き法と無電解めっき法とがあるが、成膜速度が早いこ
と、めっき液の取扱いが容易なことなどから現在は電気
めっき法が主流となっている。
2. Description of the Related Art There are an electroplating method and an electroless plating method as a method of forming a copper film by plating. Currently, the electroplating method is used due to a high film forming speed and easy handling of a plating solution. Is the mainstream.

【0009】半導体製造における銅配線形成技術として
現在使用されている電気めっき法の一例を記述すると次
のようなものがある。
The following is an example of an electroplating method currently used as a copper wiring forming technique in semiconductor manufacturing.

【0010】すなわち、ウェーハの表面全面にシードと
なる銅薄膜をスパッタ法により成膜し、この膜を陰極と
する。このウェーハをめっき浴に入れ、この陰極とめっ
き液中に設置してある陽極との間に電位をかけると電流
が流れ、めっき液中の銅イオンが陰極であるウェーハ表
面に到達し、銅膜が堆積していく。
That is, a copper thin film serving as a seed is formed on the entire surface of the wafer by sputtering, and this film is used as a cathode. When this wafer is placed in a plating bath and a potential is applied between the cathode and the anode provided in the plating solution, an electric current flows, and copper ions in the plating solution reach the surface of the wafer serving as the cathode, and the copper film is formed. Accumulates.

【0011】[0011]

【発明が解決しようとする課題】電気めっき法でめっき
膜を形成するに際し、めっき厚さがその測定場所によっ
て異なることが知られている。
It is known that when a plating film is formed by an electroplating method, the thickness of the plating varies depending on the measurement site.

【0012】個々の被処理体において電流の強いところ
と弱いところの違いがあることはよく経験することで、
メッキが薄くしか付かないとか、全く付かない部分がで
きることもある。
It is often experienced that there is a difference between a place where a current is strong and a place where a current is weak in each object to be processed.
There may be areas where the plating is only thin or not at all.

【0013】したがって、めっき厚さのばらつきをでき
るだけ小さく抑えるためには、まず被処理体上の電流分
布を考えなければならない。
Therefore, in order to minimize variations in plating thickness, the current distribution on the object to be processed must be considered first.

【0014】均一電着性については文献(例えば、日本
プレーティング協会編の「現場技術者のための実用めっ
き2」)には次のように説明されている。
The literature (for example, “Practical plating 2 for field engineers” edited by the Japan Plating Association) describes the throwing power as follows.

【0015】均一電着性は電気めっき被膜が各部分に均
一の厚さに析出する能力をあらわしており、各部分が均
一の厚さとなるためには陰極の有効面の各点が金属を析
出するのに必要な分解電圧に達していることと、各点の
電流密度が均一であることが必要である。
The throwing power indicates the ability of the electroplating film to deposit a uniform thickness on each part. In order for each part to have a uniform thickness, each point on the effective surface of the cathode deposits metal. It is necessary that the decomposition voltage required for the operation has been reached, and that the current density at each point be uniform.

【0016】したがって、電流密度を均一に与える能力
が高いものが高い均一電着性を与えることになる。
Therefore, a material having a high ability to provide a uniform current density provides a high throwing power.

【0017】すなわち、均一電着性とは、めっき厚さの
ばらつきに関する性質を巨視的な立場からみたものであ
り、表面上の電流密度分布が均一であることが重要であ
る。
That is, the throwing power is a macroscopic view of the properties relating to variations in plating thickness, and it is important that the current density distribution on the surface is uniform.

【0018】均一電着性に影響する要因としては、被処
理体の形状、陰極と陽極との相対的な大きさ、位置、形
状などの幾何学的形状の差などがあり、これらによって
生じる電流分布を一次電流分布という。
Factors that affect the throwing power include the shape of the object to be processed, the relative size, position, shape, and other geometrical differences between the cathode and the anode. The distribution is called a primary current distribution.

【0019】一次電流分布が異なると各部の電流密度が
違ってくるので、これによって異なる分極を生じ、新た
に分極抵抗が加わって新しく二次電流分布を生じるため
に、同じ形状のものに対しても作業条件(電流密度、温
度、攪拌の有無、液組成など)によってめっき厚さの分
布は異なってくる。
If the primary current distribution is different, the current density of each part will be different. This causes a different polarization, and a new polarization resistance is added to generate a new secondary current distribution. Also, the distribution of the plating thickness differs depending on the working conditions (current density, temperature, presence or absence of stirring, solution composition, etc.).

【0020】したがって、幾何学的配置による一次電流
分布が分極によって二次電流分布を生じて平均化させる
能力が均一電着性といえる。
Therefore, it can be said that the ability of the primary current distribution due to the geometrical arrangement to generate and average the secondary current distribution by polarization is uniform electrodeposition.

【0021】電気めっきの特徴として、陰極の被処理体
に対しては通電用電極から電流が供給されるために通電
用電極近辺での銅の析出速度が上がり、通電用電極から
遠くなるにしたがって析出速度が遅くなるということが
ままある。
As a feature of the electroplating, a current is supplied from a current-carrying electrode to an object to be treated as a cathode, so that the deposition rate of copper near the current-carrying electrode increases, and as the distance from the current-carrying electrode increases, the rate of copper deposition increases. The rate of deposition remains slow.

【0022】また、通電用電極の接触抵抗が均一になり
にくいことや、めっき液の組成・循環条件・温度、イオ
ン濃度の分布などといった変動要因が数多くあるため、
均一電着性を得る方法を一言で表現することはできない
が、結果として不均一なめっき厚さとなってしまうた
め、不均一な厚さとなった銅膜を化学機械研磨で均一な
厚さにすることが困難なことは容易に理解できる。
In addition, there are many fluctuation factors such as the difficulty in making the contact resistance of the current-carrying electrode uniform, and the distribution of plating solution composition, circulation conditions, temperature, ion concentration, etc.
The method of obtaining uniform electrodeposition cannot be described in a single word, but the resulting uneven plating thickness results in a nonuniform copper film having a uniform thickness by chemical mechanical polishing. It is easy to understand what is difficult to do.

【0023】さらに、通電用電極と被処理体との接触部
にはめっき膜が形成されないため、通電用電極に近い素
子は不良品となる確率が高い。
Furthermore, since a plating film is not formed at a contact portion between the current-carrying electrode and the object to be processed, an element near the current-carrying electrode is likely to be defective.

【0024】従来技術で使用されているフェイスダウン
方式のめっき装置の断面の一部を示す構成図を図4に示
す。
FIG. 4 is a configuration diagram showing a part of a cross section of a face-down type plating apparatus used in the prior art.

【0025】従来から使用されているめっき装置には被
処理体に給電する通電用電極が例えば6点といったよう
に複数点あるのが一般的であり、この通電用電極を介し
て被処理体に電流が供給される。
Generally, a plating apparatus which has been used conventionally has a plurality of energizing electrodes for supplying power to the object to be processed, for example, six points. Current is supplied.

【0026】図5はそのときの被処理体側からみた通電
用電極の位置を示している。めっき膜の厚さの分布は通
電用電極の数や位置の影響を受け、被処理体の通電用電
極の周囲で特に影響が大きい。
FIG. 5 shows the position of the current-carrying electrode as viewed from the object to be processed at that time. The thickness distribution of the plating film is affected by the number and position of the current-carrying electrodes, and is particularly affected around the current-carrying electrodes of the object to be processed.

【0027】また、従来技術で使用されているめっき装
置では通電用電極が接触する位置は固定されたままなの
で、通電用電極と接触している被処理体部にはめっきは
されず、めっき処理終了後には接触部が孔として残るこ
とになる。
Further, in the plating apparatus used in the prior art, the position where the current-carrying electrode is in contact is kept fixed, so that the object to be processed in contact with the current-carrying electrode is not plated. After completion, the contact portion will remain as a hole.

【0028】これらのように、通電用電極近傍のめっき
膜の厚さの変動が被処理体全体の面内ばらつきを発生さ
せる原因のひとつとなっている。
As described above, the variation in the thickness of the plating film in the vicinity of the current-carrying electrode is one of the causes of in-plane variation of the entire object to be processed.

【0029】図6、7は被処理体の半径方向のめっき厚
さの分布の例を示したものであり、通電用電極付近で厚
くなったり、逆に薄くなったりすることを示している。
中心に行くにつれ膜厚は安定するものの、通電用電極に
近いところほど、膜厚の変動が大きくなっていることが
わかる。
FIGS. 6 and 7 show examples of the distribution of the plating thickness in the radial direction of the object to be processed, and show that the thickness increases near the current-carrying electrode, and conversely, decreases.
It can be seen that the film thickness stabilizes toward the center, but the film thickness varies more near the current-carrying electrode.

【0030】このことは、図8に示したことからも明ら
かである。すなわち、この図は被処理体のシート抵抗値
の面内分布の例を示したものであり、被処理体の面内膜
厚分布に逆比例する値となるシート抵抗を測定する装置
(KLAテンコール社製.装置名 prometrix) で面内4
9点を計測したときの等高線マップ(omunimap) であ
る。したがって通電用電極に由来する分布をもっている
ことが明らかである。
This is also apparent from FIG. That is, this figure shows an example of the in-plane distribution of the sheet resistance value of the object to be processed, and an apparatus for measuring the sheet resistance that is inversely proportional to the in-plane film thickness distribution of the object (KLA Tencor) 4 in the plane with the device name prometrix)
It is a contour map (omunimap) when 9 points are measured. Therefore, it is apparent that the distribution has a distribution derived from the current-carrying electrode.

【0031】この図8の中で太い線の部分が49点の平
均抵抗値を示しており、マイナスで表示されているとこ
ろは平均よりも低いシート抵抗値(膜厚は厚い)を、プ
ラスで表示されているところは平均よりも高いシート抵
抗値(膜厚は薄い)を持っている。
In FIG. 8, the thick line indicates the average resistance value at 49 points, and the negative values indicate the sheet resistance values (thicker film thickness) lower than the average and the positive values. The area shown has a sheet resistance value (thin film thickness) higher than the average.

【0032】さらに前述したように、めっき厚さの分布
は通電用電極の位置ばかりでなく、めっき液の組成・循
環条件・温度、イオン濃度の分布といった要因の影響を
受けるものであるが、少なくとも通電用電極の付近で大
きくめっき厚が変化し易いことだけは明らかである。
Further, as described above, the distribution of the plating thickness is affected not only by the position of the current-carrying electrode but also by factors such as the composition of the plating solution, the circulation conditions, the temperature, and the distribution of the ion concentration. It is clear only that the plating thickness tends to change greatly near the current-carrying electrode.

【0033】本発明は、通電用電極に近い領域の素子が
不良とならず、しかも被処理体の全面のめっき厚が均一
化するようにした半導体装置の製造方法の提供を目的と
する。
An object of the present invention is to provide a method of manufacturing a semiconductor device in which elements in a region close to a current-carrying electrode do not become defective and the plating thickness over the entire surface of an object to be processed is made uniform.

【0034】[0034]

【課題を解決するための手段】本発明者らが課題を解決
するために鋭意検討を行った結果、上記の課題は、めっ
き浴中において、全面に被めっき処理域をもつ被処理体
に通電用電極を接触させるとともに、該被処理体に対す
る該通電用電極の接触位置を変化させながら電気めっき
を施す工程を含む半導体装置の製造方法とすることによ
って解決される。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, the above-mentioned problems have been solved by energizing an object to be processed having a whole area to be plated in a plating bath. The problem is solved by a method for manufacturing a semiconductor device including a step of applying an electroplating while changing the contact position of the current-carrying electrode with respect to the object to be processed while bringing the electrode for contact into contact.

【0035】すなわち、上記本発明の製造方法とするこ
とによってめっき厚の均一化が確保できる。
That is, according to the manufacturing method of the present invention, uniform plating thickness can be ensured.

【0036】めっき浴中において、全面に被めっき処理
域をもつ被処理体に通電用電極を接触させるとともに、
該被処理体に対する該通電用電極の接触位置を変化させ
る駆動手段としては、次の方法がある。
In a plating bath, a current-carrying electrode is brought into contact with an object to be treated having an area to be plated on the entire surface,
As a driving means for changing the contact position of the current-carrying electrode with respect to the object to be processed, there is the following method.

【0037】すなわち、ひとつは前記通電用電極を固定
しておき、前記被処理体を連続的にまたは間欠的に移動
させる方法である。本発明の製造方法とすることによっ
てめっき厚の均一化が確保できる。
That is, one is a method in which the current-carrying electrode is fixed and the object to be processed is continuously or intermittently moved. According to the manufacturing method of the present invention, uniform plating thickness can be ensured.

【0038】さらに、もうひとつは前記被処理体を固定
しておき、前記通電用電極を連続的にまたは間欠的に移
動させる方法である。本発明の製造方法とすることによ
ってめっき厚の均一化が確保できる。
The other is a method in which the object to be processed is fixed, and the current-carrying electrode is moved continuously or intermittently. According to the manufacturing method of the present invention, uniform plating thickness can be ensured.

【0039】[0039]

【発明の実施の形態】以下、実施例により本発明をさら
に詳細に説明するが、本発明はこれらに限定されるもの
ではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

【0040】図1は本発明によるフェイスダウン方式の
電気めっき装置の断面の一部を示す構成図である。
FIG. 1 is a configuration diagram showing a part of a cross section of a face-down type electroplating apparatus according to the present invention.

【0041】図2は通電用電極を固定して被処理体を移
動する構成の部分拡大図を示し、図3は被処理体を固定
して通電用電極を移動する構成の部分拡大図を示してい
る。
FIG. 2 is a partially enlarged view of a structure in which the object to be processed is moved while fixing the current-carrying electrode, and FIG. 3 is a partially enlarged view of a structure in which the object to be processed is moved while fixing the object to be processed. ing.

【0042】図中において、1は被処理体、2は通電用
電極、3は陽極、4はめっき液、5は駆動手段をそれぞ
れ表している。
In the drawing, reference numeral 1 denotes an object to be processed, 2 denotes a current-carrying electrode, 3 denotes an anode, 4 denotes a plating solution, and 5 denotes a driving means.

【0043】この実施例では被処理体1として半導体装
置のシリコンウェーハを用いた。この8インチのシリコ
ンウェーハの外周部から2mmのところをクランプし、
被めっき処理域全面にシードとなる銅膜をスパッタ法で
厚さ150nm成膜した。
In this embodiment, a silicon wafer of a semiconductor device was used as the object 1 to be processed. Clamp 2mm from the outer circumference of this 8-inch silicon wafer,
A copper film serving as a seed was formed to a thickness of 150 nm over the entire area to be plated by sputtering.

【0044】〔実施例1〕従来技術で使用されている通
電用電極2の6本をそのまま採用し、被処理体1である
シリコンウェーハを駆動手段5によって5回/分の一定
速度で回転させながら、次に示す条件で電気めっき処理
を行った。
[Example 1] Six current-carrying electrodes 2 used in the prior art are employed as they are, and a silicon wafer as an object to be processed 1 is rotated at a constant speed of 5 times / minute by a driving means 5. The electroplating process was performed under the following conditions.

【0045】 めっき液: 硫酸銅めっき液 金属銅 18g/L 硫酸 180g/L 塩素イオン 50ppm パラメータ: めっき温度 25℃ めっき液流量 5.5gal/分 電流値 8.6A 通電時間 2分 この結果、平均的には1μm厚の銅めっきが成膜された
が、そのときの通電用電極位置の円周方向のめっき厚の
分布は図9の(c)に示すものであり、1σは0.02
%であった。なお、図9の(a)に示した従来技術での
めっき厚の分布の1σは5%である。
Plating solution: Copper sulfate plating solution Metallic copper 18 g / L Sulfuric acid 180 g / L Chloride ion 50 ppm Parameter: Plating temperature 25 ° C. Plating solution flow rate 5.5 gal / min Current value 8.6 A Energizing time 2 minutes As a result, average In FIG. 9, (c) shows a distribution of the plating thickness in the circumferential direction at the position of the current-carrying electrode, and 1σ is 0.02.
%Met. Note that 1σ of the plating thickness distribution in the conventional technique shown in FIG. 9A is 5%.

【0046】また、ウェーハの面内分布をシート抵抗値
としてprometrix で49ポイント測定を行ったところ、
平均値は2.1×10e-2Ω/cm2 であり、1σは
4.3%であった。
When 49 points were measured by prometrix using the in-plane distribution of the wafer as the sheet resistance value.
The average value was 2.1 × 10 e −2 Ω / cm 2 , and 1σ was 4.3%.

【0047】〔実施例2〕シリコンウェーハは固定し、
電気めっきを継続したままで通電用電極2を搭載した被
処理体1の保持蓋を駆動手段5によって5回転/分の一
定速度で回転させながら電気めっき処理を行った。その
他の条件は実施例1と同様である。
Example 2 A silicon wafer was fixed,
While the electroplating was continued, the electroplating process was performed while rotating the holding lid of the workpiece 1 on which the energizing electrode 2 was mounted at a constant speed of 5 rotations / minute by the driving means 5. Other conditions are the same as in the first embodiment.

【0048】この結果、図示していないが平均的には1
μm厚の銅めっきが成膜され、そのときの通電用電極位
置の円周方向のめっき厚の分布の1σは0.05%であ
った。
As a result, although not shown, the average is 1
A μm-thick copper plating film was formed, and 1σ of the distribution of the plating thickness in the circumferential direction at the position of the conducting electrode at that time was 0.05%.

【0049】〔実施例3〕シリコンウェーハは回転せず
に電気めっきを継続したままで10秒間電気めっきを施
し、続いてシリコンウェーハを駆動手段5によって9回
転/分の速度で1秒間回転させるという動作を2分間繰
り返した。その他の条件は実施例1と同様である。
[Embodiment 3] Electroplating is performed for 10 seconds while the electroplating is continued without rotating the silicon wafer, and then the silicon wafer is rotated by the driving means 5 at a speed of 9 revolutions / minute for 1 second. The operation was repeated for 2 minutes. Other conditions are the same as in the first embodiment.

【0050】この結果、平均的には1μm厚の銅めっき
が成膜されたが、そのときの通電用電極位置の円周方向
のめっき厚の分布は図9の(b)に示すもので、1σは
1%であった。 〔実施例4〕シリコンウェーハは固定し、電気めっきを
継続したままで通電用電極2も固定した状態で10秒間
電解めっき処理を施し、続いて通電用電極2を駆動手段
5によって9回転/分の速度で1秒間回転させるという
動作を2分間繰り返した。その他の条件は実施例1と同
様である。
As a result, a copper plating having a thickness of 1 μm was formed on average, and the distribution of the plating thickness in the circumferential direction at the position of the energizing electrode at that time is as shown in FIG. 1σ was 1%. Example 4 A silicon wafer was fixed, electroplating was performed for 10 seconds while the electroplating was continued, and the energizing electrode 2 was also fixed, and then the energizing electrode 2 was driven by the driving means 5 at 9 revolutions / minute. The operation of rotating at a speed of 1 second for 1 second was repeated for 2 minutes. Other conditions are the same as in the first embodiment.

【0051】この結果、図示していないが平均的には1
μm厚の銅めっきが成膜され、そのときの通電用電極位
置の円周方向のめっき厚の分布の1σは1.5%であっ
た。
As a result, although not shown, the average is 1
A μm-thick copper plating film was formed, and 1σ of the distribution of the plating thickness in the circumferential direction at the position of the conducting electrode at that time was 1.5%.

【0052】なお、図9には相対移動をしない従来例の
めっき厚の分布も(a)として参考までに記入してあ
る。
In FIG. 9, the distribution of the plating thickness of the conventional example which does not move relative to each other is also shown for reference as (a).

【0053】以上の実施例1〜4から明らかなように、
請求項1記載の製造方法とすることで、従来技術による
製造方法に比べ、より安定で均一なめっき厚とすること
ができる。
As is clear from the above Examples 1-4,
According to the manufacturing method of the first aspect, a more stable and uniform plating thickness can be obtained as compared with the manufacturing method according to the related art.

【0054】なお、この実施例ではフェイスダウン方式
の電気めっき装置を用いた場合について説明したが、フ
ェイスアップ方式の電気めっき装置および縦置き式の電
気めっき装置を用いた場合にも同じように実施すること
ができる。
In this embodiment, the case where a face-down type electroplating apparatus is used has been described, but the same applies to the case where a face-up type electroplating apparatus and a vertical type electroplating apparatus are used. can do.

【0055】[0055]

【発明の効果】以上説明したように本発明によれば、電
気めっき装置を用いた場合の問題点である膜厚分布の不
均一性を低減させながら被処理体表面に一定の厚さでめ
っき膜を形成することを容易にし、また均一性を向上す
ることでその後のCMP加工でのグローバル段差の低減
にも多大な影響を与えることができ、それらのもたらす
効果として、電気めっきによる銅配線形成プロセスにお
ける歩留りの向上に寄与するところが大きい。
As described above, according to the present invention, plating with a constant thickness on the surface of the object to be processed can be achieved while reducing the nonuniformity of the film thickness distribution, which is a problem when using an electroplating apparatus. By facilitating the formation of the film and improving the uniformity, it can greatly affect the reduction of the global step in the subsequent CMP processing. It greatly contributes to the improvement of the yield in the process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明によるフェイスダウン方式の電気めっ
き装置の断面を示す構成図
FIG. 1 is a configuration diagram showing a cross section of a face-down type electroplating apparatus according to the present invention.

【図2】 本発明による通電用電極を固定して被処理体
を移動する構成の部分拡大図
FIG. 2 is a partially enlarged view of a configuration in which an object to be processed is moved while fixing a current-carrying electrode according to the present invention.

【図3】 本発明による被処理体を固定して通電用電極
を移動する構成の部分拡大図
FIG. 3 is a partially enlarged view of a configuration in which an object to be processed is fixed and an energizing electrode is moved according to the present invention.

【図4】 従来技術で使用されているフェイスダウン方
式のめっき装置の断面の一部を示す構成図
FIG. 4 is a configuration diagram showing a part of a cross section of a face-down type plating apparatus used in the prior art.

【図5】 通電用電極の位置を示す図FIG. 5 is a diagram showing a position of a current-carrying electrode.

【図6】 被処理体の半径方向のめっき厚の分布を示す
例(1)
FIG. 6 is an example (1) showing a distribution of plating thickness in a radial direction of an object to be processed;

【図7】 被処理体の半径方向のめっき厚の分布を示す
例(2)
FIG. 7 is an example (2) showing a distribution of a plating thickness in a radial direction of an object to be processed;

【図8】 めっき後の被処理体面内のシート抵抗値の等
高線マップを示す図
FIG. 8 is a diagram showing a contour map of sheet resistance values in the surface of the object after plating.

【図9】 通電用電極を固定し、被処理体を移動したと
きの被処理体の通電用電極位置付近の円周方向のめっき
厚分布を示す図
FIG. 9 is a diagram showing a plating thickness distribution in a circumferential direction near a position of a current-carrying electrode of a target object when the target electrode is moved while the target electrode is fixed.

【符号の説明】 1 被処理体 2 通電用電極 3 陽極 4 めっき液 5 駆動手段[Description of Signs] 1 Workpiece 2 Electrode for conduction 3 Anode 4 Plating solution 5 Driving means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 めっき浴中において、全面に被めっき処
理域をもつ被処理体に通電用電極を接触させるととも
に、該被処理体に対する該通電用電極の接触位置を変化
させながら電気めっきを施す工程を含む半導体装置の製
造方法。
In a plating bath, a current-carrying electrode is brought into contact with an object to be treated having an area to be plated on the entire surface, and electroplating is performed while changing the contact position of the current-carrying electrode with respect to the object to be treated. A method for manufacturing a semiconductor device including steps.
【請求項2】 前記通電用電極を固定しておき、前記被
処理体を連続的にまたは間欠的に移動させる請求項1記
載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the current-carrying electrode is fixed, and the object is moved continuously or intermittently.
【請求項3】 前記被処理体を固定しておき、前記通電
用電極を連続的にまたは間欠的に移動させる請求項1記
載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the object to be processed is fixed, and the current-carrying electrode is moved continuously or intermittently.
【請求項4】 被処理体に電気めっきを施すに際し、該
被処理体に対する前記通電用電極の接触位置を変化させ
る駆動手段を有する半導体装置の製造装置。
4. An apparatus for manufacturing a semiconductor device, comprising: driving means for changing a contact position of the current-carrying electrode with respect to an object when electroplating the object.
JP11055518A 1999-03-03 1999-03-03 Method and system for fabricating semiconductor device Withdrawn JP2000252233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11055518A JP2000252233A (en) 1999-03-03 1999-03-03 Method and system for fabricating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11055518A JP2000252233A (en) 1999-03-03 1999-03-03 Method and system for fabricating semiconductor device

Publications (1)

Publication Number Publication Date
JP2000252233A true JP2000252233A (en) 2000-09-14

Family

ID=13000935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11055518A Withdrawn JP2000252233A (en) 1999-03-03 1999-03-03 Method and system for fabricating semiconductor device

Country Status (1)

Country Link
JP (1) JP2000252233A (en)

Similar Documents

Publication Publication Date Title
US6174425B1 (en) Process for depositing a layer of material over a substrate
US7435323B2 (en) Method for controlling thickness uniformity of electroplated layers
US6942780B2 (en) Method and apparatus for processing a substrate with minimal edge exclusion
US20110155563A1 (en) Apparatus and method for depositing and planarizing thin films of semiconductor wafers
JP2002541655A (en) Method and apparatus for plating and polishing
CN113260739A (en) Electrodeposition of nano-twin copper structures
US6627052B2 (en) Electroplating apparatus with vertical electrical contact
US8099861B2 (en) Current-leveling electroplating/electropolishing electrode
US20040188260A1 (en) Method of plating a semiconductor structure
EP1113094A2 (en) Plating analysis method
US10167567B2 (en) High resistance virtual anode for electroplating cell
US6384484B1 (en) Semiconductor device
US8415770B2 (en) Apparatus and methods for uniform metal plating
US7204924B2 (en) Method and apparatus to deposit layers with uniform properties
US7544281B2 (en) Uniform current distribution for ECP loading of wafers
JP2000252233A (en) Method and system for fabricating semiconductor device
JPH11293493A (en) Electroplating device
US7202161B2 (en) Substrate processing method and apparatus
US20030168345A1 (en) In-situ monitor seed for copper plating
JP3053016B2 (en) Copper plating apparatus and plating method
JP2006291289A (en) Apparatus and method for producing semiconductor device
JP2002322592A (en) Method for manufacturing semiconductor device
US20040217013A1 (en) Apparatus and method for electropolishing a metal wiring layer on a semiconductor device
JP3186734B2 (en) Method to improve uniformity of chemical mechanical polishing using electrolytic conductor layer
JP2003268590A (en) Plating method and method of producing semiconductor system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509