JP2000251821A - Focus adjusting method of charged particle beam apparatus, and the charged particle beam apparatus - Google Patents

Focus adjusting method of charged particle beam apparatus, and the charged particle beam apparatus

Info

Publication number
JP2000251821A
JP2000251821A JP11052720A JP5272099A JP2000251821A JP 2000251821 A JP2000251821 A JP 2000251821A JP 11052720 A JP11052720 A JP 11052720A JP 5272099 A JP5272099 A JP 5272099A JP 2000251821 A JP2000251821 A JP 2000251821A
Authority
JP
Japan
Prior art keywords
lens
charged particle
particle beam
axis
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11052720A
Other languages
Japanese (ja)
Inventor
Hiroyasu Shimizu
弘泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11052720A priority Critical patent/JP2000251821A/en
Publication of JP2000251821A publication Critical patent/JP2000251821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate focus adjustment and to keep the magnification ratio or magnification of an image constant by varying a focus position in the X-axis direction and the Y-axis direction, according to the variation of an image surface position so as to set it to that of the new image surface. SOLUTION: An optical axis takes an X-Y-Z orthogonal coordinate system of the Z-axis. It is assumed that the magnetic permeability of vacuum is μ0, the absolute value of the charge of charged particles is (q), its sign is (s), the mass of the charged particles is (m), the axial potential is ϕ[Z], an object surface is Z0, an image surface is Z1, two paraxial trajectories in the X-direction are expressed by the expression I and the equation II on the object surface Z0, and two paraxial trajectories in the Y direction are expressed by the equation III and the equation IV on the object surface X0. The astigmatic field P2j [Z] of the j-th Q lens is expressed by the product of the axial astigmatic field distribution D2j [Z] per unit current multiplied by the expression V when the j-th Q lens is an electromagnetic Q lens, and by the quotient of the axial astigmatic field distribution D2j [Z] divided by ϕ Z, when the j-th Q lens is an electrostatic Q lens. A height deviation ΔZ of the image surface when the equation VI and the equation VII are satisfied is detected, and variations Ij, Ik of excitation currents or voltages of the j-th and k-th Q lenses are set in the equations VIII and IX, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体露光装置
等、荷電粒子線発生装置から発生する荷電粒子線を物面
に照射し、物面に形成されているパターンの像を像面に
結像させる荷電粒子線装置に関するものであり、さらに
詳しくは、Qレンズを用いた荷電粒子線装置において、
像面の位置が変化した場合に、X軸方向、Y軸方向共
に、新しい像面に対応して焦点を調整する方法、および
この方法が可能な荷電粒子線装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of irradiating a charged particle beam generated from a charged particle beam generator, such as a semiconductor exposure apparatus, onto an object surface to form an image of a pattern formed on the object surface on an image surface. More specifically, the present invention relates to a charged particle beam device using a Q lens,
The present invention relates to a method of adjusting the focus in accordance with a new image plane in both the X-axis direction and the Y-axis direction when the position of the image plane changes, and a charged particle beam apparatus capable of performing this method.

【0002】[0002]

【従来の技術】従来の荷電粒子線装置の例として、電子
線露光装置の概要を図4に示す。図4において、不図示
の荷電粒子源を出た荷電粒子は、不図示の照明光学系を
介して、Qレンズ系14a、14bの物面12を照明す
る。物面12を出た荷電粒子線は、X軸方向の電子線軌
道15X、Y軸方向の電子線軌道15Yに示されるよう
に、第1Qレンズ14a、第2Qレンズ14bによって
像面13に結像する。
2. Description of the Related Art As an example of a conventional charged particle beam apparatus, an outline of an electron beam exposure apparatus is shown in FIG. In FIG. 4, charged particles emitted from a charged particle source (not shown) illuminate the object surface 12 of the Q lens systems 14a and 14b via an illumination optical system (not shown). The charged particle beam that has exited the object surface 12 is imaged on the image plane 13 by the first Q lens 14a and the second Q lens 14b as shown by the electron beam trajectory 15X in the X-axis direction and the electron beam trajectory 15Y in the Y-axis direction. I do.

【0003】Qレンズの例として静電Qレンズを光軸方
向から見た図を図5に示す。Qレンズ電極21a及び2
1cには同じ電圧を与え、電極21b及び21dには、
光軸上の電圧を基準として電極21a、21cとは逆の
電圧を与える。また、Qレンズの別の例として電磁Qレ
ンズを光軸方向から見た図を図6に示す。Qレンズ磁極
22a及び22cには光軸に対して同じ向きに磁場が発
生するようにコイルに電流を与え、磁極22b及び22
dには、磁極22a、22cとは逆の方向に磁場が発生
するように電流を与える。このような励磁電流または電
圧を与えることで、図4のX方向の軌道15X、Y方向
の軌道15Yに示すようにそれぞれの方向で軌道が違っ
てくる。
FIG. 5 shows an electrostatic Q lens viewed from the optical axis direction as an example of a Q lens. Q lens electrodes 21a and 2
The same voltage is applied to 1c, and the electrodes 21b and 21d are
A voltage opposite to that of the electrodes 21a and 21c is applied with reference to the voltage on the optical axis. FIG. 6 shows another example of the Q lens when the electromagnetic Q lens is viewed from the optical axis direction. A current is applied to the coils so that a magnetic field is generated in the same direction with respect to the optical axis on the Q lens magnetic poles 22a and 22c,
A current is applied to d so that a magnetic field is generated in a direction opposite to that of the magnetic poles 22a and 22c. By applying such an exciting current or voltage, the trajectory differs in each direction as shown in the trajectory 15X in the X direction and the trajectory 15Y in the Y direction in FIG.

【0004】[0004]

【発明が解決しようとする課題】上記のような荷電粒子
線装置においては、図7のように像面の位置が13’に
示す位置にずれた場合、一つのQレンズを調整しただけ
では、一方向の焦点が合っても他方向の焦点は更にずれ
てしまう。すなわち、図7に示すように、第2Qレンズ
14bを調整して、X軸方向の荷電粒子軌道を15x’
に変え、新しい像面13’に合わせると、Y軸方向の荷
電粒子軌道は15y’のようになり、新しい像面13’
からさらに遠ざかるようになる。
In the charged particle beam apparatus as described above, when the position of the image plane is shifted to the position indicated by 13 'as shown in FIG. 7, only one Q lens is adjusted. Even if the focus in one direction is focused, the focus in the other direction is further shifted. That is, as shown in FIG. 7, by adjusting the second Q lens 14b, the charged particle trajectory in the X-axis direction is set to 15x ′.
To the new image plane 13 ', the trajectory of the charged particle in the Y-axis direction becomes like 15y', and the new image plane 13 '
Will be further away from

【0005】そのため、少なくとも2個のQレンズの組
合わせによって焦点を合わせ直す必要があり、調整が非
常に難しかった。本発明は、上記のような従来の問題点
に鑑みてなされたもので、焦点調整が容易に行なえ、更
に、像の倍率比、または、像の倍率を一定に保つことの
できる荷電粒子線装置の焦点調整方法、及び当該焦点調
整方法が可能な荷電粒子線装置を提供することを課題と
する。
[0005] Therefore, it is necessary to refocus by combining at least two Q lenses, which is very difficult to adjust. SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and enables a focus adjustment to be easily performed, and further, a charged particle beam apparatus capable of maintaining a constant image magnification ratio or image magnification. It is an object to provide a focus adjustment method and a charged particle beam apparatus capable of performing the focus adjustment method.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
の第1の手段は、物面から放出される荷電粒子線を2段
以上のQレンズを用いて像面に結像させる荷電粒子線装
置において、光軸をZ軸とするX−Y−Z直交座標系を
とり、真空の透磁率をμ0、荷電粒子の電荷の絶対値を
q、その符号をs、荷電粒子の質量をm、軸上電位をφ
[Z]とし、物面をZo、像面をZiとし、X方向の2つ
の近軸軌道を物面Zoで Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面Zoで Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、j番目のQレンズについて、電磁Q
レンズの場合は単位電流当たりの軸上非点場分布D2j
[Z]にs×μ0×{2q/(φ[Z]m)}1/2をかけた
もの、静電Qレンズの場合は単位電圧当たりの軸上非点
場分布F2j[Z]をφ[Z]で割ったものをj番目の
Qレンズの非点場P2j[Z]とし、
A first means for solving the above-mentioned problem is that a charged particle beam emitted from an object surface is imaged on an image plane by using two or more stages of Q lenses. In the apparatus, an XYZ orthogonal coordinate system with the optical axis as the Z axis is taken, the magnetic permeability of vacuum is μ 0 , the absolute value of the charge of the charged particle is q, the sign is s, and the mass of the charged particle is m , The on-axis potential is φ
And [Z], the object plane is Z o, the image plane and Z i, the object plane two paraxial trajectory of X-direction Z o at Xa [Z o] = 0, Xa '[Z o] = 1 Xb [ Z o] = 1, Xb ' [Z o] = 0 object surface two paraxial trajectory in the Y-direction Z o at Ya [Z o] = 0, Ya' [Z o] = 1 Yb [Z o] = 1, Yb ′ [Z o ] = 0, and the electromagnetic Q
In the case of a lens, on-axis astigmatic field distribution D2 j per unit current
[Z] multiplied by s × μ 0 × {2q / (φ [Z] m)} 1/2. In the case of an electrostatic Q lens, axial astigmatic field distribution F2 j [Z] per unit voltage Is divided by φ [Z] to obtain the astigmatism field P2 j [Z] of the j -th Q lens,

【0007】[0007]

【数10】 (Equation 10)

【0008】としたとき、像面の高さずれΔZを検出
し、Qレンズのうちj番目とk番目の2つの励磁電流ま
たは電圧の変化分Ij、Ik
Then, the height shift ΔZ of the image plane is detected, and the j-th and k-th excitation currents or voltage changes I j and I k of the Q lens are determined.

【0009】[0009]

【数11】 [Equation 11]

【0010】に設定することを特徴とする荷電粒子線装
置の焦点調整方法(請求項1)である。ただし、’は、
各変数のZによる微分値を示す。
A focus adjusting method for a charged particle beam apparatus, wherein Where '
The differential value of each variable by Z is shown.

【0011】なお、本明細書においては、P2k[Z]、
ΔZxk等の、一見定義されていない量が記載されてい
るが、これらは、P2j[Z]、ΔZxj等が定義されてい
るときは、その添え字を変えたものに等しいと考える。
In this specification, P2 k [Z],
Although seemingly undefined quantities such as ΔZx k are described, when P2 j [Z], ΔZx j and the like are defined, they are considered to be equivalent to those with different subscripts.

【0012】光軸をZ軸とするX−Y−Z直交座標系に
おいて、真空の透磁率をμ0、荷電粒子の電荷の絶対値
をq、その符号をs、荷電粒子の質量をm、軸上電位を
φ[Z]とし、電磁Qレンズの場合は軸上非点場分布D
2[Z]にs×μ0×{2q/(φ[Z]m)}1/2をかけ
たもの、静電Qレンズの場合は軸上非点場分布F2
[Z]をφ[Z]で割ったものをQレンズの非点場P2
[Z]とし、物面をZo、像面をZiとしすると、近軸軌
道の方程式は、 X"[Z]+φ'[Z]・X'[Z]/(2φ[Z])+φ"[Z]・X[Z]/(4φ[Z])-P2[Z]・X[Z]=0 …(15) Y"[Z]+φ'[Z]・Y'[Z]/(2φ[Z])+φ"[Z]・Y[Z]/(4φ[Z])+P2[Z]・Y[Z]=0 …(16) となる。
In an XYZ orthogonal coordinate system with the optical axis as the Z axis, the magnetic permeability of vacuum is μ 0 , the absolute value of the charge of the charged particles is q, the sign is s, the mass of the charged particles is m, The on-axis potential is φ [Z], and in the case of an electromagnetic Q lens, the on-axis astigmatic field distribution D
2 [Z] multiplied by s × μ 0 × {2q / (φ [Z] m)} 1/2. In the case of an electrostatic Q lens, the axial astigmatic field distribution F2
The value obtained by dividing [Z] by φ [Z] is the astigmatism field P2 of the Q lens.
And [Z], the object plane Z o, the image plane to city Z i, the equation of paraxial trajectory, X "[Z] + φ '[Z] · X' [Z] / (2φ [Z]) + φ "[Z] ・ X [Z] / (4φ [Z])-P2 [Z] ・ X [Z] = 0… (15) Y" [Z] + φ '[Z] ・ Y' [Z ] / (2φ [Z]) + φ ″ [Z] · Y [Z] / (4φ [Z]) + P2 [Z] · Y [Z] = 0 (16)

【0013】X方向の2つの近軸軌道を物面Zoで Xa[Zo]=0、Xa’[Zo]=1 (Wa軌道) Xb[Zo]=1、Xb’[Zo]=0 (Wb軌道) Y方向の2つの近軸軌道を物面で Ya[Zo]=0、Ya’[Zo]=1 (Wa軌道) Yb[Zo]=1、Yb’[Zo]=0 (Wb軌道) となるように選び、j番目の4極子場が多少変化した時
の軌道の変化を計算する。すなわち、P2[Z]→ P2[Z] +
P2j[Z] となったとき、軌道が X[Z] → X[Z] + δXj[Z] Y[Z] → Y[Z] + δYj[Z] と変化するとして近軸方程式を書き換えると(このと
き、近軸方程式を使い、式を簡略化する) δXj"[Z]+φ'[Z]・δXj'[Z]/(2φ[Z])+φ"[Z]・δXj[Z]/(4φ[Z])-P2[Z]・δXj[Z]= +P2j[Z]・X[Z] …(17) δYj"[Z]+φ'[Z]・δYj'[Z]/(2φ[Z])+φ"[Z]・δYj[Z]/(4φ[Z])+P2[Z]・δYj[Z]= -P2j[Z]・Y[Z] …(18) が得られる。
[0013] The two paraxial trajectory of the X-direction in the object plane Z o Xa [Z o] = 0, Xa '[Z o] = 1 (Wa trajectory) Xb [Z o] = 1 , Xb' [Z o ] = 0 (Wb trajectory) Two paraxial trajectories in the Y direction are represented by an object plane, Ya [ Zo ] = 0, Ya '[ Zo ] = 1 (Wa trajectory) Yb [ Zo ] = 1, Yb' [ Z o] = 0 (Wb trajectory) and a way to select, j-th quadrupole fields to calculate the change in the trajectory when the somewhat changed. That is, P2 [Z] → P2 [Z] +
When P2 j [Z], the paraxial equation is defined as the trajectory changes as X [Z] → X [Z] + δX j [Z] Y [Z] → Y [Z] + δY j [Z]. To rewrite (in this case, use the paraxial equation to simplify the equation) δX j "[Z] + φ '[Z] ・ δX j ' [Z] / (2φ [Z]) + φ" [Z]・ ΔX j [Z] / (4φ [Z])-P2 [Z] ・ δX j [Z] = + P2 j [Z] ・ X [Z]… (17) δY j "[Z] + φ '[ Z] ・ δY j '[Z] / (2φ [Z]) + φ "[Z] ・ δY j [Z] / (4φ [Z]) + P2 [Z] ・ δY j [Z] = -P2 j [Z] · Y [Z] (18) is obtained.

【0014】近軸軌道を使って、微少変化した4極子レ
ンズによる軌道の変化を計算する。 δXj[Z] = aX[Z]・Xa[Z]+bX[Z]・Xb[Z] …(19) δYj[Z] = aY[Z]・Ya[Z]+bY[Z]・Yb[Z] …(20) となるaX[Z]、bX[Z]、aY[Z]、bY[Z]を求めるただし、 aX'[Z]・Xa[Z] + bX'[Z]・Xb[Z] = 0 …(21) aY'[Z]・Ya[Z] + bY'[Z]・Yb[Z] = 0 …(22) を解の条件とする。
Using the paraxial trajectory, the change of the trajectory due to the slightly changed quadrupole lens is calculated. δX j [Z] = aX [Z] ・ Xa [Z] + bX [Z] ・ Xb [Z]… (19) δYj [Z] = aY [Z] ・ Ya [Z] + bY [Z] ・ Yb [Z]… (20) Find aX [Z], bX [Z], aY [Z], bY [Z], where aX '[Z] · Xa [Z] + bX' [Z] · Xb [Z] = 0 ... (21) Let aY '[Z] · Ya [Z] + bY' [Z] · Yb [Z] = 0 (22) be the solution condition.

【0015】近軸方程式(17)、(18)を書き換えるとX方
向は、 aX'[Z]・Xa'[Z]+bX'[Z]・Xb'[Z]+aX[Z]{Xa"[Z]+φ'[Z]・Xa'[Z]/(2φ[Z])+φ"[Z]・X a[Z]/(4φ[Z])-P2[Z]・Xa[Z]}+bX[Z]{Xb"[Z]+φ'[Z]・Xb'[Z]/(2φ[Z])+φ"[Z]・Xb [Z]/(4φ[Z])-P2[Z]・Xb[Z]} = +P2j[Z]・X[Z] …(23) Y方向は、 aY'[Z]・Ya'[Z]+bY'[Z]・Yb'[Z]+aY[Z]{Ya"[Z]+φ'[Z]・Ya'[Z]/(2φ[Z])+φ"[Z]・Y a[Z]/(4φ[Z])+P2[Z]・Ya[Z]}+bY[Z]{Yb"[Z]+φ'[Z]・Yb'[Z]/(2φ[Z])+φ"[Z]・Yb [Z]/(4φ[Z])+P2[Z]・Yb[Z]} = -P2j[Z]・Y[Z] …(24) となり、中括弧の中は近軸方程式と同じになるので、結
局、 aX'[Z]・Xa'[Z] + bX'[Z]・Xb'[Z] = + P2j[Z]・X[Z] …(25) aY'[Z]・Ya'[Z] + bY'[Z]・Yb'[Z] = - P2j[Z]・Y[Z] …(26) が得られる。
When the paraxial equations (17) and (18) are rewritten, the X direction becomes aX '[Z] .Xa' [Z] + bX '[Z] .Xb' [Z] + aX [Z] {Xa "[Z] + φ '[Z] ・ Xa' [Z] / (2φ [Z]) + φ" [Z] ・ Xa [Z] / (4φ [Z])-P2 [Z] ・ Xa [ Z]} + bX [Z] {Xb "[Z] + φ '[Z] ・ Xb' [Z] / (2φ [Z]) + φ" [Z] ・ Xb [Z] / (4φ [Z] ) -P2 [Z] ・ Xb [Z]} = + P2 j [Z] ・ X [Z]… (23) The Y direction is aY '[Z] ・ Ya' [Z] + bY '[Z] ・Yb '[Z] + aY [Z] {Ya "[Z] + φ' [Z] ・ Ya '[Z] / (2φ [Z]) + φ" [Z] ・ Ya [Z] / (4φ [Z]) + P2 [Z] ・ Ya [Z]} + bY [Z] {Yb "[Z] + φ '[Z] ・ Yb' [Z] / (2φ [Z]) + φ" [Z ] ・ Yb [Z] / (4φ [Z]) + P2 [Z] ・ Yb [Z]} = -P2 j [Z] ・ Y [Z]… (24) After all, aX '[Z] · Xa' [Z] + bX '[Z] · Xb' [Z] = + P2 j [Z] · X [Z]… (25) aY '[ Z] · Ya [Z] + bY ′ [Z] · Yb ′ [Z] = − P2 j [Z] · Y [Z] (26) is obtained.

【0016】(25)、(26)式を、先の解の条件 aX'[Z] Xa[Z] + bX'[Z] Xb[Z] = 0 …(21) aY'[Z] Ya[Z] + bY'[Z] Yb[Z] = 0 …(22) 式と共に、aX'[Z]、bX'[Z]、aY'[Z]、bY'[Z] について
解くと、 aX'[Z] = P2j[Z]・X[Z]・Xb[Z]/(Xa'[Z]・Xb[Z]-Xa[Z]・Xb'[Z])…(27) bX'[Z] = -P2j[Z]・X[Z]・Xa[Z]/(Xa'[Z]・Xb[Z]-Xa[Z]・Xb'[Z])…(28) aY'[Z] = -P2j[Z]・Y[Z]・Yb[Z]/(Ya'[Z]・Yb[Z]-Ya[Z]・Yb'[Z])…(29) bY'[Z] = P2j[Z]・Y[Z]・Ya[Z]/(Ya'[Z]・Yb[Z]-Ya[Z]・Yb'[Z])…(30)
Equations (25) and (26) are calculated using the conditions of the previous solution aX '[Z] Xa [Z] + bX' [Z] Xb [Z] = 0 (21) aY '[Z] Ya [ Z] + bY '[Z] Yb [Z] = 0… (22) and solving for aX' [Z], bX '[Z], aY' [Z], bY '[Z], aX' [Z] = P2 j [Z] · X [Z] · Xb [Z] / (Xa '[Z] · Xb [Z] -Xa [Z] · Xb' [Z])… (27) bX '[ Z] = -P2 j [Z] ・ X [Z] ・ Xa [Z] / (Xa '[Z] ・ Xb [Z] -Xa [Z] ・ Xb' [Z])… (28) aY '[ Z] = -P2 j [Z] / Y [Z] / Yb [Z] / (Ya '[Z] / Yb [Z] -Ya [Z] / Yb' [Z])… (29) bY '[ Z] = P2 j [Z] ・ Y [Z] ・ Ya [Z] / (Ya '[Z] ・ Yb [Z] -Ya [Z] ・ Yb' [Z])… (30)

【0017】ここで、近軸不変量は (Xb[Z]・Xa'[Z]-Xa[Z]・Xb'[Z])φ[Z]1/2= const =φ[Z0]1/2 = Xb[Zi]・Xa'[Zi]・ φ[Zi]1/2 …(31) (Yb[Z]・Ya'[Z]-Ya[Z]・Yb'[Z])φ[Z]1/2= const =φ[Z0]1/2 = Yb[Zi]・Ya'[Zi]・ φ[Zi]1/2 …(32) であるから、これらを使うと分母は簡略化され aX'[Z] = P2j[Z]・X[Z]・Xb[Z]・φ[Z]1/2/φ[Z0]1/2 …(33) bX'[Z] = -P2j[Z]・X[Z]・Xa[Z]・φ[Z]1/2/φ[Z0]1/2 …(34) aY'[Z] = -P2j[Z]・Y[Z]・Yb[Z]・φ[Z]1/2/φ[Z0]1/2 …(35) bY'[Z] = P2j[Z]・Y[Z]・Ya[Z]・φ[Z]1/2/φ[Z0]1/2 …(36) が得られる。よって、軌道のずれは、(33)〜(36)式を物
面から像面までZについて積分した値(aX[z]、bX[Z]、
aY[Z]、bY[Z])と(19)、(20)式から、
Here, the paraxial invariant is (Xb [Z] .Xa '[Z] -Xa [Z] .Xb' [Z]) φ [Z] 1/2 = const = φ [Z 0 ] 1 / 2 = Xb [Zi] ・ Xa '[Zi] ・ φ [Zi] 1/2 … (31) (Yb [Z] ・ Ya' [Z] -Ya [Z] ・ Yb '[Z]) φ [ Z] 1/2 = const = φ [Z 0 ] 1/2 = Yb [Zi] ・ Ya '[Zi] ・ φ [Zi] 1/2 … (32) AX '[Z] = P2 j [Z] ・ X [Z] ・ Xb [Z] ・ φ [Z] 1/2 / φ [Z 0 ] 1 / 2 … (33) bX' [Z] = -P2 j [Z] / X [Z] / Xa [Z] / φ [Z] 1/2 / φ [Z 0 ] 1 / 2 … (34) aY '[Z] = -P2 j [Z] ・Y [Z] ・ Yb [Z] ・ φ [Z] 1/2 / φ [Z 0 ] 1 / 2 … (35) bY '[Z] = P2 j [Z] ・ Y [Z] ・ Ya [Z ] · Φ [Z] 1/2 / φ [Z 0 ] 1/2 (36) Therefore, the deviation of the trajectory is obtained by integrating the expressions (33) to (36) with respect to Z from the object plane to the image plane (aX [z], bX [Z],
aY [Z], bY [Z]) and (19), (20),

【0018】[0018]

【数12】 (Equation 12)

【0019】となり、像面ではXa[Zi] = Ya[Zi] = 0な
ので
Xa [Z i ] = Ya [Z i ] = 0 at the image plane,

【0020】[0020]

【数13】 (Equation 13)

【0021】となる。## EQU1 ##

【0022】(39)式のX[Z]にXa[Z]、Xb[Z]、(40)式のY
[Z]にYa[Z]、Yb[Z]をそれぞれ代入して、
Xa [Z], Xb [Z] in equation [39] and Y in equation (40)
Substituting Ya [Z] and Yb [Z] for [Z],

【0023】[0023]

【数14】 [Equation 14]

【0024】を得る。Is obtained.

【0025】(41)、(43)式は、それぞれWa軌道の、像
面における光軸からX軸方向、Y軸方向へのずれ量を示
し、(42)、(44)式は、X軸方向の倍率(像の大きさ/物
の大きさ)をMx、Y軸方向の倍率をMyとすると、そ
れぞれWb軌道の、像面における点(Mx,0)、(0,
My)からX軸方向、Y軸方向へのずれを示す。単位電
流又は単位電圧当たりの焦点ずれを、ΔZxj、ΔZyj
とすると、 δXaj[zi]=-Xa'[zi]ΔZxj …(45) δYaj[zi]=-Ya'[zi]ΔZyj …(46) であるから、(41)、(43)式より、
Equations (41) and (43) show the amounts of displacement of the Wa trajectory from the optical axis on the image plane in the X-axis direction and the Y-axis direction, respectively, and equations (42) and (44) show the X-axis If the magnification in the direction (image size / object size) is Mx and the magnification in the Y-axis direction is My, points (Mx, 0), (0,
My) in the X-axis direction and the Y-axis direction. The defocus per unit current or unit voltage is represented by ΔZx j , ΔZy j
Then, δXaj [z i ] = − Xa ′ [z i ] ΔZx j (45) δYaj [z i ] = − Ya ′ [z i ] ΔZy j (46) From equation (43),

【0026】[0026]

【数15】 (Equation 15)

【0027】となる。## EQU1 ##

【0028】レンズが2個以上あり、X、Y方向の焦点
さえ合っていればよい場合を考える。これを実現するに
は、像面位置がΔZ変化したとき、j番目とk番目のQ
レンズの励磁電流または電圧をIj、Ikとすると Ij・ΔZxj+Ik・ΔZxk=ΔZ …(49) Ij・ΔZyj+Ik・ΔZyk=ΔZ …(50) になるように、設定すればよい。ここに、ΔZxj、Δ
Zxk等は、それぞれ単位電流、単位電圧当たりの焦点
ずれであり、(47)式、(48)式で表されるものである(以
下、添え字が代わっても、それぞれのQレンズにおける
焦点ずれ量を示す)。
Consider a case in which there are two or more lenses and only the X and Y directions need to be focused. To realize this, when the image plane position changes by ΔZ, the j-th and k-th Q
Assuming that the excitation current or voltage of the lens is I j , I k , I j · ΔZ x j + I k · ΔZ x k = ΔZ (49) I j · ΔZy j + I k · ΔZy k = ΔZ ... (50) , Can be set. Where ΔZx j , Δ
Zx k and the like are defocuses per unit current and unit voltage, respectively, and are expressed by Expressions (47) and (48) (hereinafter, even if the suffixes are changed, the focus of each Q lens is changed). The amount of deviation is shown).

【0029】これらの関係式から、(3)、(4)式が得ら
れ、任意の2つのQレンズの励磁電流又は印加電圧を、
(3)、(4)式に従って調整すれば、X方向焦点とY方向
焦点を同時に新しい像面に合わせることができる。
From these relational expressions, the expressions (3) and (4) are obtained, and the exciting current or applied voltage of any two Q lenses is calculated as follows.
If the adjustment is performed according to the equations (3) and (4), the X-direction focus and the Y-direction focus can be simultaneously adjusted to a new image plane.

【0030】前記課題を解決するための第2の手段は、
物面から放出される荷電粒子線を2段以上のQレンズを
用いて像面に結像させる荷電粒子線装置において、光軸
をZ軸とするX−Y−Z直交座標系をとり、真空の透磁
率をμ0、荷電粒子の電荷の絶対値をq、その符号を
s、荷電粒子の質量をm、軸上電位をφ[Z]とし、物
面をZo、像面をZiとし、X方向の2つの近軸軌道を物
面Zoで Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面で Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、j番目のQレンズについて、電磁Q
レンズの場合は単位電流当たりの軸上非点場分布D2j
[Z]にs×μ0×{2q/(φ[Z]m)}1/2をかけた
もの、静電Qレンズの場合は単位電圧当たりの軸上非点
場分布F2j[Z]をφ[Z]で割ったものをj番目の
Qレンズの非点場P2j[Z]とし、
[0030] A second means for solving the above-mentioned problem is as follows.
In a charged particle beam apparatus that forms an image of a charged particle beam emitted from an object surface on an image plane using two or more steps of a Q lens, an XYZ orthogonal coordinate system having an optical axis as a Z axis is taken, and a vacuum is taken. 0 permeability mu, the absolute value of the charge of the charged particle q, its sign s, the mass of the charged particles m, the on-axis potential and φ [Z], the object plane Z o, the image plane Z i and then, Xa two paraxial trajectory of the X-direction in the object plane Z o [Z o] = 0 , Xa '[Z o] = 1 Xb [Z o] = 1, Xb' [Z o] = 0 Y -direction Are selected such that Ya [ Zo ] = 0, Ya '[ Zo ] = 1, Yb [ Zo ] = 1, Yb' [ Zo ] = 0 on the object plane, and the j-th About Q lens of
In the case of a lens, on-axis astigmatic field distribution D2 j per unit current
[Z] multiplied by s × μ 0 × {2q / (φ [Z] m)} 1/2. In the case of an electrostatic Q lens, axial astigmatic field distribution F2 j [Z] per unit voltage Is divided by φ [Z] to obtain the astigmatism field P2 j [Z] of the j -th Q lens,

【0031】[0031]

【数16】 (Equation 16)

【0032】としたとき、ある焦点の合った状態から焦
点が微少に変化した場合に、Qレンズのうちj番目とk
番目の2つの励磁電流または電圧の変化分Ij,Ikの比
When the focus slightly changes from a certain in-focus state, the j-th and the k-th
The ratio of the two exciting current or voltage changes I j and I k

【0033】[0033]

【数17】 [Equation 17]

【0034】に保って調整することを特徴とする荷電粒
子線装置の焦点調整方法(請求項2)である。ただ
し、’は、各変数のZによる微分値を示す。
A focus adjusting method for a charged particle beam apparatus, characterized in that the adjustment is performed while maintaining the above (claim 2). Here, 'indicates a differential value of each variable by Z.

【0035】本手段は、X方向とY方向の焦点位置を同
じ位置に保ちながら、像面位置の変化に対応するもので
ある。
This means copes with a change in the image plane position while keeping the focal positions in the X direction and the Y direction at the same position.

【0036】前記(49)、(50)式から分かるように、X軸
方向とY軸方向の焦点位置ずれを一致させるためには、
任意の2つのQレンズの励磁電流又は印加電圧を、 Ij・ΔZxj+Ik・ΔZxk=Ij・ΔZyj+Ik・ΔZyk …(51) に従って変化させればよい。これから、前記(5)式が得
られ、(5)式を満足するように任意の2つのQレンズを
調整することにより、X軸方向の焦点とY軸方向の焦点
位置を一致させながら、焦点位置を変化させることがで
きる。
As can be seen from the above equations (49) and (50), in order to make the focal position shifts in the X-axis direction and the Y-axis direction coincide,
The exciting current or applied voltage between any two Q lenses may be changed according to I j · ΔZx j + I k · ΔZx k = I j · ΔZy j + I k · ΔZy k ... (51). From this, the above equation (5) is obtained, and by adjusting any two Q lenses so as to satisfy the equation (5), the focal point in the X-axis direction and the focal point in the Y-axis direction are matched, The position can be changed.

【0037】前記課題を解決するための第3の手段は、
物面から放出される荷電粒子線をn(n≧3)段のQレ
ンズを用いて像面に結像させる荷電粒子線装置におい
て、光軸をZ軸とするX−Y−Z直交座標系をとり、真
空の透磁率をμ0、荷電粒子の電荷の絶対値をq、その
符号をs、荷電粒子の質量をm、軸上電位をφ[Z]と
し、物面をZo、像面をZiとし、X方向の2つの近軸軌
道を物面Zoで Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面Zoで Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、焦点調整に用いるレンズの個数をr
(n≧r≧3)とし、電磁Qレンズの場合は単位電流当
たりの軸上非点場分布D2r[Z]にs×μ0×{2q/
(φ[Z]m)}1/2をかけたもの、静電Qレンズの場合
は単位電圧当たりの軸上非点場分布F2r[Z]をφ
[Z]で割ったものを各レンズの非点場P2r[Z]と
し、像面の高さずれΔZを検出し、焦点調整に用いるQ
レンズのうち1〜r番目のr個の励磁電流または電圧の
変化分をI1、I2、…Irとしたとき、
A third means for solving the above-mentioned problem is:
In a charged particle beam apparatus that forms a charged particle beam emitted from an object surface on an image plane using n (n ≧ 3) stages of Q lenses, an XYZ orthogonal coordinate system having an optical axis as a Z axis taken, the magnetic permeability of vacuum mu 0, q the absolute value of the charge of the charged particles, and the code s, the mass of the charged particles m, and the on-axis potential phi [Z], the object plane Z o, the image plane and Z i, Xa two paraxial trajectory of the X-direction in the object plane Z o [Z o] = 0 , Xa '[Z o] = 1 Xb [Z o] = 1, Xb' [Z o] the Ya [Z o] = 0, Ya '[Z o] = 1 Yb [Z o] = 1, Yb' [Z o] = 0 at = 0 Y directions of two paraxial trajectory object plane Z o And the number of lenses used for focus adjustment is r
(N ≧ r ≧ 3), and in the case of the electromagnetic Q lens, the axial astigmatic field distribution D2 r [Z] per unit current is represented by s × μ 0 × {2q /
(Φ [Z] m)} 1/2. In the case of an electrostatic Q lens, the axial astigmatic field distribution F2 r [Z] per unit voltage is φ
The value obtained by dividing by [Z] is defined as the astigmatism field P2 r [Z] of each lens, and the height deviation ΔZ of the image plane is detected and Q used for focus adjustment is obtained.
I 1 the change in 1~r th r pieces of the excitation current or voltage of the lenses, I 2, ... when the I r,

【0038】[0038]

【数18】 (Equation 18)

【0039】を満足するようにI1、I2、…、Irを設
定することを特徴とする荷電粒子線装置の焦点調整方法
(請求項3)である。ただし、’は、各変数のZによる
微分値を示し、 F[Z]=I1・P21[Z]+I2・P22[Z]+…+Ir・P2r[Z] …(9) である。
[0039] I 1 so as to satisfy, I 2, ..., a focus adjusting method of the charged particle beam apparatus characterized by setting the I r (Claim 3). Here, 'indicates the differential value of each variable by Z, and F [Z] = I 1 · P 2 1 [Z] + I 2 · P 2 2 [Z] +… + I r · P 2 r [Z]… ( 9).

【0040】調整可能なQレンズがn個以上ある場合
は、そのうちの任意のr個を調整することにより、X軸
方向、Y軸方向の焦点を共に新しい像面に合わせること
ができると共に、X軸方向、Y軸方向の像の倍率変化を
Mx/Myに保ちながら焦点位置調整を行うことができ
る。すなわち、焦点がΔZ変化したとき、1番目からr
番目までのQレンズの励磁電流または電圧を、それぞれ
1、I2、…、Irとすると I1・ΔZx1+I2・ΔZx2+…+Ir・ΔZxr=ΔZ …(52) I1・ΔZy1+I2・ΔZy2+…+Ir・ΔZyr=ΔZ …(53) (δXb1[Z1]・I1+δXb2[Z2]・I2+…+δXbr[Zr]・Ir)/Mx =(δYb1[Z1]・I1+δYb2[Z2]・I2+…+δYbr[Zr]・Ir)/My …(54) を満足するように、I1、I2、…、Irを設定すればよ
い。
When there are n or more adjustable Q lenses, by adjusting any r of them, both the X-axis and Y-axis directions can be focused on a new image plane. The focal position can be adjusted while keeping the magnification change of the image in the axial direction and the Y-axis direction at Mx / My. That is, when the focus changes by ΔZ, r
The excitation current or voltage Q lens to th, respectively I 1, I 2, ..., When I r I 1 · ΔZx 1 + I 2 · ΔZx 2 + ... + I r · ΔZx r = ΔZ ... (52) I 1 · ΔZy 1 + I 2 · ΔZy 2 + ... + I r · ΔZy r = ΔZ ... (53) (δXb 1 [Z 1] · I 1 + δXb 2 [Z 2] · I 2 + ... + δXb r [Z r] · I r) / Mx = (δYb 1 [Z 1] · I 1 + δYb 2 [Z 2] · I 2 + ... + δYb r [Z r] · I r) / My ... (54) so as to satisfy, I 1, I 2, ... , may be set I r.

【0041】ここで、(52)、(53)式は、前記(49)、(50)
式に対応するものである。また、(54)式の括弧の中の値
は、各QレンズにおけるX軸方向、Y軸方向のWb軌道
の像面位置の変化の和を示すものであるので、これらを
それぞれMx、Myで割ったものを等しくすることによ
り、X軸方向、Y軸方向の像の位置の倍率変化をMx/
Myに保ちながら焦点位置調整を行うことができる。こ
れらの式と、(47)、(48)式、及び(42)、(44)式より、
(6)〜(8)式が得られる。
Here, the formulas (52) and (53) are obtained by the above formulas (49) and (50).
It corresponds to an expression. The values in parentheses in equation (54) indicate the sum of changes in the image plane position of the Wb trajectory in the X-axis direction and the Y-axis direction in each Q lens, and these are represented by Mx and My, respectively. By making the divided values equal, the change in the magnification of the image position in the X-axis direction and the Y-axis direction can be expressed by Mx /
The focal position can be adjusted while maintaining My. From these equations, (47), (48), and (42), (44),
Equations (6) to (8) are obtained.

【0042】前記課題を解決するための第4の手段は、
物面から放出される荷電粒子線をn(n≧3)段以上の
Qレンズを用いて像面に結像させる荷電粒子線装置にお
いて、光軸をZ軸とするX−Y−Z直交座標系をとり、
真空の透磁率をμ0、荷電粒子の電荷の絶対値をq、そ
の符号をs、荷電粒子の質量をm、軸上電位をφ[Z]
とし、物面をZo、像面をZiとし、X方向の2つの近軸
軌道を物面Zoで Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面Zoで Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、焦点調整に用いるレンズの個数をr
(n≧r≧3)とし、電磁Qレンズの場合は単位電流当
たりの軸上非点場分布D2r[Z]にs×μ0×{2q/
(φ[Z]m)}1/2をかけたもの、静電Qレンズの場合
は単位電圧当たりの軸上非点場分布F2r[Z]をφ
[Z]で割ったものを各Qレンズの非点場P2r[Z]
とし、焦点調整に用いるQレンズのうち1〜r番目の励
磁電流または電圧の変化分をI1、I2、…、Irとし、
ある焦点の合った状態から微少に焦点がずれたとき
A fourth means for solving the above-mentioned problem is as follows.
In a charged particle beam apparatus that forms an image of a charged particle beam emitted from an object surface on an image plane using n (n ≧ 3) or more Q lenses, XYZ orthogonal coordinates with the optical axis as the Z axis Take the system,
The magnetic permeability of vacuum is μ 0 , the absolute value of the charge of the charged particles is q, the sign is s, the mass of the charged particles is m, and the on-axis potential is φ [Z].
And then, the object plane Z o, the image plane and Z i, Xa two paraxial trajectory of the X-direction in the object plane Z o [Z o] = 0 , Xa '[Z o] = 1 Xb [Z o] = 1, Xb '[Z o ] = 0 Y direction Ya two paraxial trajectories object plane Z o [Z o] = 0 , Ya' [Z o] = 1 Yb [Z o] = 1, Yb 'Select so that [Z o ] = 0, and set the number of lenses used for focus adjustment to r
(N ≧ r ≧ 3), and in the case of the electromagnetic Q lens, the axial astigmatic field distribution D2 r [Z] per unit current is represented by s × μ 0 × {2q /
(Φ [Z] m)} 1/2. In the case of an electrostatic Q lens, the axial astigmatic field distribution F2 r [Z] per unit voltage is φ
The value obtained by dividing by [Z] is the astigmatism field P2 r [Z] of each Q lens.
And then, I 1, I 2 a variation of 1~r th excitation current or voltage of the Q lens used for focus adjustment, ..., and I r,
When the focus is slightly out of focus

【0043】[0043]

【数19】 [Equation 19]

【0044】を満足するようにI1、I2、…、Irの比
を保って調整することを特徴とする荷電粒子線装置の焦
点調整方法(請求項4)である。ただし、’は、各変数
のZによる微分値を示し、 F[Z]=I1・P21[Z]+I2・P22[Z]+…+Ir・P2r[Z] …(9) である。
[0044] I 1 so as to satisfy, I 2, ..., a focus adjusting method of the charged particle beam apparatus characterized by adjusting keeping the ratio of I r (Claim 4). Here, 'indicates the differential value of each variable by Z, and F [Z] = I 1 · P 2 1 [Z] + I 2 · P 2 2 [Z] +… + I r · P 2 r [Z]… ( 9).

【0045】本手段は、X軸方向、Y軸方向の倍率Mx
/Myを所定値に保ち、かつX軸方向、Y軸方向の焦点
位置を一致させながら、像面位置の変化に対応するもの
である。
[0045] This means is used to determine the magnification Mx in the X-axis direction and the Y-axis direction.
/ My is kept at a predetermined value, and the focal positions in the X-axis direction and the Y-axis direction are made to coincide with each other to cope with a change in the image plane position.

【0046】前記(52)、(53)式から分かるように、X軸
方向とY軸方向の焦点位置ずれを一致させるためには、
任意のr個のQレンズの励磁電流又は印加電圧を、 I1・ΔZx1+I2・ΔZx2+…+Ir・ΔZxr=I1・ΔZy1+I2・ΔZy2+…+Ir・ΔZyr…(55) に従って変化させればよい。これから、前記(10)式が得
られ、(10)式を満足するように任意のr個のQレンズを
調整することにより、非点収差の発生を防止しながら、
焦点位置を変化させることができる。また、このとき、
X軸方向、Y軸方向の倍率比Mx/Myを所定値に保ち
ながら焦点位置調整を行うためには、前記(58)式に従う
必要があり、これから(8)式が得られる。
As can be seen from the above equations (52) and (53), in order to make the focal position shifts in the X-axis direction and the Y-axis direction coincide,
The excitation currents or applied voltages of arbitrary r Q lenses are expressed as I 1 · ΔZx 1 + I 2 · ΔZx 2 + ... + I r · ΔZx r = I 1 · ΔZy 1 + I 2 · ΔZy 2 + ... + I r · ΔZy r ... (55) From this, the above equation (10) is obtained, and by adjusting any r number of Q lenses so as to satisfy the equation (10), while preventing the occurrence of astigmatism,
The focal position can be changed. At this time,
In order to adjust the focal position while maintaining the magnification ratio Mx / My in the X-axis direction and the Y-axis direction at a predetermined value, it is necessary to follow the above equation (58), and from this, equation (8) is obtained.

【0047】前記課題を解決するための第5の手段は、
前記第3の手段又は第4の手段における(8)式に代え
て、次式を満足するようにI1〜Irの比を保って調整す
ることを特徴とする荷電粒子線装置の焦点調整方法(請
求項5)である。
A fifth means for solving the above-mentioned problem is:
Instead of (8) in the third means or the fourth means, focusing of the charged particle beam apparatus characterized by adjusting keeping the ratio of I 1 ~I r so as to satisfy the following equation A method (claim 5).

【0048】[0048]

【数20】 (Equation 20)

【0049】前記第3の手段及び第4の手段において
は、X軸方向、Y軸方向の倍率比Mx/Myを所定値に
保ちながら焦点位置調整を行っていた。本手段において
は、X軸方向とY軸方向の焦点を一致させながら焦点位
置を調整する点では、これらの手段と同じであるが、X
軸方向の倍率Mxの変化を無くするような条件で焦点調
整を行う点がこれらの手段と異なっている。(54)式から
分かるように、この条件が成立するためには、 (δXb1[Z1]・I1+δXb2[Z2]・I2+…+δXbr[Zr]・Ir)= 0 …(56) が成立すればよい。これと(42)式より、(11)式が得られ
る。
In the third means and the fourth means, the focal position is adjusted while maintaining the magnification ratio Mx / My in the X-axis direction and the Y-axis direction at a predetermined value. This means is the same as these means in that the focal point position is adjusted while making the focal points in the X-axis direction and the Y-axis direction coincide with each other.
The difference from these means is that focus adjustment is performed under conditions that eliminate the change in the magnification Mx in the axial direction. As can be seen from equation (54), in order for this condition to be satisfied, (δXb 1 [Z 1 ] · I 1 + δXb 2 [Z 2 ] · I 2 + ... + δXb r [Z r ] · I r ) = 0 It is sufficient that the following holds. From this and equation (42), equation (11) is obtained.

【0050】前記課題を解決するための第6の手段は、
前記第3の手段又は第4の手段における(8)式に代え
て、次式を満足するようにI1〜Irの比を保って調整す
ることを特徴とする荷電粒子線装置の焦点調整方法(請
求項6)である。
A sixth means for solving the above-mentioned problem is:
Instead of (8) in the third means or the fourth means, focusing of the charged particle beam apparatus characterized by adjusting keeping the ratio of I 1 ~I r so as to satisfy the following equation A method (claim 6).

【0051】[0051]

【数21】 (Equation 21)

【0052】前記第3の手段及び第4の手段において
は、X軸方向、Y軸方向の倍率比Mx/Myを所定値に
保ちながら焦点位置調整を行っていた。本手段において
は、X軸方向とY軸方向の焦点を一致させながら焦点位
置を調整する点では、これらの手段と同じであるが、Y
軸方向の倍率比Myの変化を無くするような条件で焦点
調整を行う点がこれらの手段と異なっている。(54)式か
ら分かるように、この条件が成立するためには、 (δYb1[Z1]・I1+δYb2[Z2]・I2+…+δYbr[Zr]・Ir)= 0 …(57) が成立すればよい。これと(44)式より、(12)式が得られ
る。
In the third means and the fourth means, the focal position is adjusted while maintaining the magnification ratio Mx / My in the X-axis direction and the Y-axis direction at a predetermined value. This means is the same as these means in that the focal point position is adjusted while making the focal points in the X-axis direction and the Y-axis direction coincide with each other.
The difference from these means is that focus adjustment is performed under conditions that eliminate the change in the magnification ratio My in the axial direction. As can be seen from equation (54), for this condition to be satisfied, it is necessary to satisfy (δYb 1 [Z 1 ] · I 1 + δYb 2 [Z 2 ] · I 2 + ... + δYb r [Z r ] · I r ) = 0 It is sufficient that the following holds. From this and equation (44), equation (12) is obtained.

【0053】前記課題を解決するための第7の手段は、
物面から放出される荷電粒子線をn段のQレンズを用い
て像面に結像させる荷電粒子線装置において、光軸をZ
軸とするX−Y−Z直交座標系をとり、真空の透磁率を
μ0、荷電粒子の電荷の絶対値をq、その符号をs、荷
電粒子の質量をm、軸上電位をφ[Z]とし、物面をZ
o、像面をZiとし、X方向の2つの近軸軌道を物面Zo
で Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面Zoで Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、焦点調整に用いるレンズの個数をr
(n≧r)とし、電磁Qレンズの場合は単位電流当たり
の軸上非点場分布D2r[Z]にs×μ0×{2q/(φ
[Z]m)}1/2をかけたもの、静電Qレンズの場合は単
位電圧当たりの軸上非点場分布F2r[Z]をφ[Z]
で割ったものを各Qレンズの非点場P2r[Z]とし、
焦点調整に用いるQレンズのうち1〜r番目の励磁電流
または電圧の変化分をI1、I2、…、Irとしたとき
A seventh means for solving the above-mentioned problem is:
In a charged particle beam apparatus that forms an image of a charged particle beam emitted from an object surface on an image surface using an n-stage Q lens, the optical axis is set to Z.
Taking an XYZ orthogonal coordinate system with the axis as the axis, the magnetic permeability of vacuum is μ 0 , the absolute value of the charge of the charged particle is q, the sign is s, the mass of the charged particle is m, and the on-axis potential is φ [ Z], and the object surface is Z
o , the image plane is Z i, and the two paraxial orbits in the X direction are the object plane Z o
In Xa [Z o] = 0, Xa '[Z o] = 1 Xb [Z o] = 1, Xb' [Z o] = 0 the two paraxial trajectory in the Y-direction in the object plane Z o Ya [Z o ] = 0, Ya '[ Zo ] = 1 Yb [ Zo ] = 1, Yb' [ Zo ] = 0, and the number of lenses used for focus adjustment is r
(N ≧ r), and in the case of the electromagnetic Q lens, the axial astigmatic field distribution D2 r [Z] per unit current is s × μ 0 × {2q / (φ
[Z] m)} 1/2. In the case of an electrostatic Q lens, the axial astigmatic field distribution F2 r [Z] per unit voltage is φ [Z].
Is divided into the astigmatic field P2 r [Z] of each Q lens,
I 1, I 2 a variation of 1~r th excitation current or voltage of the Q lens used for focus adjustment, ..., when the I r

【0054】[0054]

【数22】 (Equation 22)

【0055】を満足するようにI1、I2、…、Irの比
を保って調整することを特徴とする荷電粒子線装置の焦
点調整方法(請求項7)である。ただし、’は、各変数
のZによる微分値を示し、 F[Z]=I1・P21[Z]+I2・P22[Z]+…+Ir・P2r[Z] …(9) である。
[0055] I 1 so as to satisfy, I 2, ..., a focus adjusting method of the charged particle beam apparatus characterized by adjusting keeping the ratio of I r (Claim 7). Here, 'indicates the differential value of each variable by Z, and F [Z] = I 1 · P 2 1 [Z] + I 2 · P 2 2 [Z] +… + I r · P 2 r [Z]… ( 9).

【0056】本手段においては、n段のQレンズのうち
任意のr個を調整することにより、X軸方向、Y軸方向
の焦点を共に像面に合わせることができると共に、X軸
方向、Y軸方向の倍率変化を任意に調整可能となる。X
軸方向、Y軸方向の焦点位置を一致させるためには、前
記(6)式、(7)式に従って焦点調整に用いるr個のQレン
ズの各々の励磁電流又は印加電圧を変化させればよい。
X軸方向、Y軸方向の倍率変化は、それぞれ(13)式、(1
4)式に従って変化させればよい。なお、(13)式、(14)式
は、前記(42)式、(44)式より得られる。
In this means, by adjusting an arbitrary r number of n-stage Q lenses, the focal points in the X-axis direction and the Y-axis direction can both be focused on the image plane, and the X-axis direction and the Y-axis can be adjusted. The change in the magnification in the axial direction can be adjusted arbitrarily. X
In order to match the focal position in the axial direction and the focal position in the Y-axis direction, the excitation current or the applied voltage of each of the r Q lenses used for the focus adjustment may be changed according to the above equations (6) and (7). .
The change in magnification in the X-axis direction and the Y-axis direction are expressed by equation (13) and (1
It can be changed according to equation 4). The expressions (13) and (14) are obtained from the expressions (42) and (44).

【0057】前記課題を解決するための第8の手段は、
前記第1の手段から第7の手段を可能とする電源又は電
源制御系を備えることを特徴とする荷電粒子線装置(請
求項8)である。
Eighth means for solving the above-mentioned problem is:
A charged particle beam apparatus (Claim 8) is provided with a power supply or a power supply control system enabling the first to seventh means.

【0058】電源装置又は電源制御系にこのような機能
を持たせることにより、それぞれ、前記第1の手段から
第7の手段のうち、いずれかの作用効果を達成すること
ができる。
By providing the power supply device or the power supply control system with such a function, any one of the first to seventh means can be achieved.

【0059】前記課題を解決するための第9の手段は、
電磁Qレンズを有する荷電粒子線装置であって、所定の
Qレンズの焦点調整コイルが、当該コイルに流す電流を
同一量変化させたとき、前記第1の手段から第7の手段
のうちいずれかの焦点調整方法が実現されるような巻き
数とされていることを特徴とする荷電粒子線装置(請求
項9)である。
A ninth means for solving the above-mentioned problem is:
A charged particle beam device having an electromagnetic Q lens, wherein when a focus adjustment coil of a predetermined Q lens changes an amount of current flowing through the coil by the same amount, any one of the first to seventh means is used. The charged particle beam apparatus according to claim 9, wherein the number of turns is such that the focus adjustment method described above is realized.

【0060】この手段によれば、各Qレンズの焦点調整
コイル流す電流を同一量変化させることにより、前記第
1の手段から第7の手段のうちいずれかの焦点調整方法
が実現されるので、焦点調整のための電源装置が1個で
済み、構造が簡単で安価なものとすることができる。
According to this means, by changing the current flowing through the focus adjustment coil of each Q lens by the same amount, any one of the first to seventh means can be realized. Only one power supply device for focus adjustment is required, and the structure can be simple and inexpensive.

【0061】[0061]

【発明の実施の形態】以下、本発明の実施の形態の例を
図を用いて説明する。図1は本発明の実施の形態の第1
の例を説明するための荷電粒子線装置の概略図である。
図1において、1は光軸、2は物面、3は像面、3’は
新しい像面、4aは第1Qレンズ、4bは第2Qレン
ズ、5aは第1Qレンズ用電源、5bは第2Qレンズ用
電源、6は計算機、7XはX軸方向の電子線の軌道、7
YはY軸方向の電子線の軌道、7X’はX軸方向の電子
線の新しい軌道、7Y’はY軸方向の電子線の新しい軌
道である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention.
It is a schematic diagram of a charged particle beam device for explaining the example of.
In FIG. 1, 1 is an optical axis, 2 is an object plane, 3 is an image plane, 3 'is a new image plane, 4a is a first Q lens, 4b is a second Q lens, 5a is a power supply for the first Q lens, and 5b is a second Q lens. Lens power supply, 6 is a computer, 7X is the trajectory of the electron beam in the X-axis direction, 7
Y is the trajectory of the electron beam in the Y-axis direction, 7X 'is the new trajectory of the electron beam in the X-axis direction, and 7Y' is the new trajectory of the electron beam in the Y-axis direction.

【0062】図1において、従来の荷電粒子線装置と同
じように、不図示の荷電粒子源を出た荷電粒子は、不図
示の照明光学系を介して、Qレンズ系4a、4bの物面
2を照明する。物面2を出た荷電粒子線は、軌道7X、
7Yを通り、第1Qレンズ4a、第2Qレンズ4bによ
って像面3に結像する。ここで、像面の位置が変化し、
3’に変わったとする。計算機6には不図示の像面の高
さ測定器からの焦点ずれのデータΔZ(像面3と3’と
のZ軸方向の距離)が入力される。
In FIG. 1, similarly to the conventional charged particle beam apparatus, charged particles emitted from a charged particle source (not shown) are passed through an illumination optical system (not shown) to the object surfaces of the Q lens systems 4a and 4b. Illuminate 2. The charged particle beam that has exited the object surface 2 has a trajectory of 7X,
After passing through 7Y, an image is formed on the image plane 3 by the first Q lens 4a and the second Q lens 4b. Here, the position of the image plane changes,
Suppose it has changed to 3 '. The computer 6 receives data ΔZ (distance in the Z-axis direction between the image planes 3 and 3 ′) of defocus from an image plane height measuring device (not shown).

【0063】計算機6は、Qレンズ4aをj番目のQレ
ンズ、Qレンズ4bをk番目のQレンズとして、(3)、
(4)式により、焦点調整のための励磁電流又は印加電圧
の変化分を計算し、その値をQレンズ用電源5a、5b
に与える。Qレンズ電源5a、5bは、各Qレンズ4
a、4bの励磁電流又は印加電圧の変化分を、与えられ
た値になるように調整する。これにより、荷電粒子線の
軌道は、7X’、7Y’のようになり、共に新しい像面
3’上で結像し、非点収差は発生しない。
The computer 6 sets the Q lens 4a as the j-th Q lens and the Q lens 4b as the k-th Q lens (3),
The change amount of the excitation current or the applied voltage for the focus adjustment is calculated by the equation (4), and the calculated value is used as the Q lens power supply 5a, 5b.
Give to. The Q lens power supplies 5a and 5b
A change in the excitation current or the applied voltage of a and 4b is adjusted to a given value. As a result, the trajectories of the charged particle beam become like 7X ′ and 7Y ′, and both are imaged on the new image plane 3 ′, and no astigmatism occurs.

【0064】図2は本発明の実施の形態の第2の例を説
明するための荷電粒子線装置の概略図である。図2にお
いて、5は焦点補正用コイルの電源装置である。この実
施の形態においては、Qレンズ4a、4bとして電磁Q
レンズが用いられている。そして、各Qレンズは焦点補
正用コイルを有し、その巻き数比は、Qレンズ4aをj
番目のQレンズ、Qレンズ4bをk番目のQレンズとし
た場合、(5)式で与えられる比に一致するようにされて
いる。
FIG. 2 is a schematic view of a charged particle beam apparatus for explaining a second embodiment of the present invention. In FIG. 2, reference numeral 5 denotes a power supply for a focus correction coil. In this embodiment, the Q lenses 4a and 4b
A lens is used. Each Q lens has a focus correction coil.
When the Q-th lens and the Q lens 4b are the k-th Q lens, the ratio is set to match the ratio given by the equation (5).

【0065】このような条件の下で、計算機6には不図
示の像面の高さ測定器からの焦点ずれのデータΔZ(像
面3と3’とのZ軸方向の距離)が入力される。計算機
6は、Qレンズ4aの励磁電流を(3)式により計算し、
電源装置5に与える。電源装置5からは、この励磁電流
がQレンズ4aに与えられるが、Qレンズ4aとQレン
ズ4bの焦点補正用コイルは直列に接続されているの
で、この電流はQレンズ4bの焦点補正用コイルにも流
れる。そして、焦点補正用コイルの巻き数比は、(5)式
で与えられる比に一致するようにされているので、Qレ
ンズ4bにおいては、(4)式が自然に満たされる。これ
により、荷電粒子線の軌道は、7X’、7Y’のように
なり、共に新しい像面3’上で結像し、非点収差は発生
しない。よって、この実施の形態においては、焦点補正
用コイルの電源は1個で済ますことができる。
Under such conditions, the computer 6 receives data ΔZ (distance in the Z-axis direction between the image planes 3 and 3 ′) of defocus from an image plane height measuring device (not shown). You. Calculator 6 calculates the exciting current of Q lens 4a by equation (3),
The power is supplied to the power supply 5. The excitation current is supplied from the power supply device 5 to the Q lens 4a. Since the focus correction coils of the Q lens 4a and the Q lens 4b are connected in series, the current is supplied to the focus correction coil of the Q lens 4b. Also flows. The turn ratio of the focus correction coil is set to match the ratio given by the expression (5), so that the expression (4) is naturally satisfied in the Q lens 4b. As a result, the trajectories of the charged particle beam become like 7X ′ and 7Y ′, and both are imaged on the new image plane 3 ′, and no astigmatism occurs. Therefore, in this embodiment, only one power supply is required for the focus correction coil.

【0066】図3は本発明の実施の形態の第3の例を説
明するための荷電粒子線装置の概略図である。図3にお
いて、8は分流用の可変抵抗器である。この実施の形態
においては、Qレンズ4a、4bとして電磁Qレンズが
用いられている。そして、各Qレンズは焦点補正用コイ
ルを有し、その巻き数は同じとされている。分流用の可
変抵抗8の値は、Qレンズ4aをj番目のQレンズ、Q
レンズ4bをk番目のQレンズとした場合、電源装置5
からの電流が、(5)式で与えられる比に一致するように
調整されている。
FIG. 3 is a schematic view of a charged particle beam apparatus for explaining a third embodiment of the present invention. In FIG. 3, reference numeral 8 denotes a shunt variable resistor. In this embodiment, electromagnetic Q lenses are used as the Q lenses 4a and 4b. Each Q lens has a focus correction coil, and the number of turns is the same. The value of the variable resistor 8 for shunting is such that the Q lens 4a is
When the lens 4b is a k-th Q lens, the power supply 5
Are adjusted to match the ratio given by equation (5).

【0067】このような条件の下で、計算機6には不図
示の像面の高さ測定器からの焦点ずれのデータΔZ(像
面3と3’とのZ軸方向の距離)が入力される。計算機
6は、Qレンズ4aの励磁電流を(3)式により計算し、
電源装置5に与える。電源装置5からは、この励磁電流
がQレンズ4aに与えられるが、分流用の可変抵抗器8
によって分流された残りの電流がQレンズ4bの焦点補
正用コイルを流れ、Qレンズ4bにおいては、(4)式が
自然に満たされる。これにより、荷電粒子線の軌道は、
7X’、7Y’のようになり、共に新しい像面3’上で
結像し、非点収差は発生しない。よって、この実施の形
態においても、焦点補正用コイルの電源は1個で済ます
ことができる。
Under these conditions, the computer 6 receives data ΔZ (distance in the Z-axis direction between the image planes 3 and 3 ′) of defocus from an image plane height measuring device (not shown). You. Calculator 6 calculates the exciting current of Q lens 4a by equation (3),
The power is supplied to the power supply 5. This exciting current is supplied from the power supply device 5 to the Q lens 4a.
The remaining current shunted flows through the focus correction coil of the Q lens 4b, and the equation (4) is naturally satisfied in the Q lens 4b. As a result, the orbit of the charged particle beam is
7X 'and 7Y', and both form an image on a new image plane 3 ', and no astigmatism occurs. Therefore, in this embodiment as well, only one power supply is required for the focus correction coil.

【0068】以上の実施の形態においては、Qレンズの
数を2段としているが、Qレンズの数をn(n≧3)段
として、そのうちの任意のr個を、1番目、2番目、
…、r番目のQレンズとして、像面の高さ測定器からの
焦点ずれのデータΔZを基に、(6)、(7)式を満足する
ように、各Qレンズの励磁電流又は印加電圧を調整する
ことにより、X軸方向、Y軸方向とも、焦点を新しい像
面に合わせることができる。
In the above embodiment, the number of Q lenses is two, but the number of Q lenses is n (n ≧ 3), and arbitrary r of them are first, second,
.., As the r-th Q lens, the excitation current or the applied voltage of each Q lens based on the defocus data ΔZ from the image plane height measuring device so as to satisfy the expressions (6) and (7). Can be adjusted to focus on a new image plane in both the X-axis direction and the Y-axis direction.

【0069】これに加えて、(8)式をも満足するように
すれば、X軸方向、Y軸方向の像の倍率変化をMx/M
yに保ちながら焦点位置調整を行うことができる。ま
た、(8)式の代わりに、(11)式又は(12)式を満足するよ
うにすれば、それぞれ、X軸方向、Y軸方向の像の倍率
を変化させないで焦点調整を行うことができる。さら
に、(8)式の代わりに、(13)式及び(14)式を満足する
ようにすれば、X軸方向、Y軸方向の倍率変化を所定値
に保つことができる。
In addition, if the condition (8) is satisfied, the change in the magnification of the image in the X-axis direction and the Y-axis direction can be expressed by Mx / M.
The focus position can be adjusted while maintaining the value of y. By satisfying the expression (11) or the expression (12) instead of the expression (8), it is possible to perform the focus adjustment without changing the magnification of the image in the X-axis direction and the Y-axis direction, respectively. it can. Furthermore, if the expressions (13) and (14) are satisfied instead of the expression (8), the magnification change in the X-axis direction and the Y-axis direction can be kept at a predetermined value.

【0070】また、1番目、2番目、…、r番目のQレ
ンズの励磁電流又は印加電圧を、(10)式を満足させなが
ら調整することにより、X軸方向、Y軸方向の焦点位置
の移動量を同じとしながら焦点位置調整を行うことがで
きる。
By adjusting the excitation current or applied voltage of the first, second,..., R-th Q lenses while satisfying the expression (10), the focal positions in the X-axis direction and the Y-axis direction can be adjusted. The focal position can be adjusted while keeping the movement amount the same.

【0071】これに加えて、(8)式をも満足するように
すれば、X軸方向、Y軸方向の像の倍率変化をMx/M
yに保ちながら焦点位置調整を行うことができる。ま
た、(8)式の代わりに、(11)式又は(12)式を満足するよ
うにすれば、それぞれ、X軸方向、Y軸方向の像の倍率
を変化させないで焦点調整を行うことができる。さら
に、(8)式の代わりに、(13)式及び(14)式を満足する
ようにすれば、X軸方向、Y軸方向の倍率変化を所定値
に保つことができる。
In addition, if the condition (8) is satisfied, the change in magnification of the image in the X-axis direction and the Y-axis direction is represented by Mx / M.
The focus position can be adjusted while maintaining the value of y. By satisfying the expression (11) or the expression (12) instead of the expression (8), it is possible to perform the focus adjustment without changing the magnification of the image in the X-axis direction and the Y-axis direction, respectively. it can. Furthermore, if the expressions (13) and (14) are satisfied instead of the expression (8), the magnification change in the X-axis direction and the Y-axis direction can be kept at a predetermined value.

【0072】[0072]

【発明の効果】以上説明したように、本発明のうち請求
項1に係る発明においては、像面位置がΔZだけ変化し
た場合に、X軸方向とY軸方向の焦点位置を、共にΔZ
だけ変化させることができ、新しい像面に焦点を合わせ
ることができる。
As described above, according to the first aspect of the present invention, when the image plane position changes by ΔZ, the focal positions in the X-axis direction and the Y-axis direction are both changed by ΔZ.
And focus on the new image plane.

【0073】請求項2に係る発明においては、X軸方向
とY軸方向の焦点の移動量を同一に保ったまま、焦点調
整を行うことができる。
According to the second aspect of the present invention, it is possible to perform the focus adjustment while keeping the amount of movement of the focus in the X-axis direction and the Y-axis direction the same.

【0074】請求項3に係る発明においては、像面位置
がΔZだけ変化した場合に、X軸方向とY軸方向の焦点
位置を、共にΔZだけ変化させることができ、新しい像
面に焦点を合わせることができる。また、X軸方向とY
軸方向の像の倍率変化の比を、元の倍率比に保ちながら
焦点調整を行うことができる。
According to the third aspect of the present invention, when the image plane position changes by ΔZ, the focal positions in the X-axis direction and the Y-axis direction can both be changed by ΔZ, and the focus on the new image plane is changed. Can be matched. Also, the X-axis direction and Y
Focus adjustment can be performed while maintaining the ratio of the change in magnification of the image in the axial direction to the original magnification ratio.

【0075】請求項4に係る発明においては、X軸方向
とY軸方向の焦点の移動量を同一に保ったまま、焦点調
整を行うことができる。また、X軸方向とY軸方向の像
の倍率変化の比を、元の倍率比に保ちながら焦点調整を
行うことができる。
In the invention according to the fourth aspect, the focus can be adjusted while keeping the same amount of movement of the focus in the X-axis direction and the Y-axis direction. Further, the focus can be adjusted while maintaining the ratio of the change in the magnification of the image in the X-axis direction to the magnification in the Y-axis direction at the original magnification ratio.

【0076】請求項5に係る発明においては、X軸方向
の像の倍率変化が発生しないようにしながら焦点調整を
行うことができる。
In the invention according to claim 5, the focus can be adjusted while preventing a change in magnification of the image in the X-axis direction.

【0077】請求項6に係る発明においては、Y軸方向
の像の倍率変化が発生しないようにしながら焦点調整を
行うことができる。
In the invention according to claim 6, the focus can be adjusted while preventing a change in magnification of the image in the Y-axis direction.

【0078】請求項7に係る発明においては、X軸方
向、Y軸方向の焦点を共に像面に合わせることができる
と共に、X軸方向、Y軸方向の倍率変化を任意に調整可
能とすることができる。
According to the seventh aspect of the present invention, both the focal points in the X-axis direction and the Y-axis direction can be focused on the image plane, and the change in magnification in the X-axis direction and the Y-axis direction can be arbitrarily adjusted. Can be.

【0079】請求項8に係る発明においては、請求項1
から請求項7に記載の焦点調整方法を実現できる。
In the invention according to claim 8, claim 1 is
Accordingly, the focus adjustment method according to the seventh aspect can be realized.

【0080】請求項9に係る発明においては、焦点調整
のための電源装置が1個で済み、構造が簡単で安価なも
のとすることができる。
According to the ninth aspect of the present invention, only one power supply device for focus adjustment is required, and the structure can be made simple and inexpensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を説明するための荷
電粒子線装置の概要図である。
FIG. 1 is a schematic diagram of a charged particle beam device for describing a first embodiment of the present invention.

【図2】本発明の第2の実施の形態を説明するための荷
電粒子線装置の概要図である。
FIG. 2 is a schematic diagram of a charged particle beam device for explaining a second embodiment of the present invention.

【図3】本発明の第3の実施の形態を説明するための荷
電粒子線装置の概要図である。
FIG. 3 is a schematic diagram of a charged particle beam device for describing a third embodiment of the present invention.

【図4】従来の荷電粒子線装置の例を示す概略図であ
る。
FIG. 4 is a schematic view showing an example of a conventional charged particle beam device.

【図5】静電Qレンズの構成の例を示す概略図である。FIG. 5 is a schematic diagram illustrating an example of a configuration of an electrostatic Q lens.

【図6】電磁Qレンズの構成の例を示す概略図である。FIG. 6 is a schematic diagram illustrating an example of the configuration of an electromagnetic Q lens.

【図7】従来の荷電粒子線装置において、像面が変化し
たときの様子を示す図である。
FIG. 7 is a diagram showing a state when an image plane changes in a conventional charged particle beam device.

【符号の説明】[Explanation of symbols]

1…光軸 2…物面 3…像面 3’…新しい像面 4a…第1Qレンズ 4b…第2Qレンズ 5…焦点補正用コイルの電源装置 5a…第1Qレンズ用電源 5b…第2Qレンズ用電源 6…計算機 7X…X軸方向の電子線の軌道 7Y…Y軸方向の電子線の軌道 7X’…X軸方向の電子線の新しい軌道 7Y’…Y軸方向の電子線の新しい軌道 8…分流用の可変抵抗器 DESCRIPTION OF SYMBOLS 1 ... Optical axis 2 ... Object surface 3 ... Image surface 3 '... New image surface 4a ... 1st Q lens 4b ... 2Q lens 5 ... Power supply device of a focus correction coil 5a ... 1Q lens power supply 5b ... 2Q lens Power source 6 ... Computer 7X ... Orbit of electron beam in X-axis direction 7Y ... Orbit of electron beam in Y-axis direction 7X '... New orbit of electron beam in X-axis direction 7Y' ... New orbit of electron beam in Y-axis direction 8 ... Variable resistor for shunt

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/027 H01L 21/30 541F Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01L 21/027 H01L 21/30 541F

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 物面から放出される荷電粒子線を2段以
上のQレンズを用いて像面に結像させる荷電粒子線装置
において、光軸をZ軸とするX−Y−Z直交座標系をと
り、真空の透磁率をμ0、荷電粒子の電荷の絶対値を
q、その符号をs、荷電粒子の質量をm、軸上電位をφ
[Z]とし、物面をZo、像面をZiとし、X方向の2つ
の近軸軌道を物面Zoで Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面Zoで Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、j番目のQレンズについて、電磁Q
レンズの場合は単位電流当たりの軸上非点場分布D2j
[Z]にs×μ0×{2q/(φ[Z]m)}1/2をかけた
もの、静電Qレンズの場合は単位電圧当たりの軸上非点
場分布F2j[Z]をφ[Z]で割ったものをj番目の
Qレンズの非点場P2j[Z]とし、 【数1】 としたとき、像面の高さずれΔZを検出し、Qレンズの
うちj番目とk番目の2つの励磁電流または電圧の変化
分Ij、Ikを 【数2】 に設定することを特徴とする荷電粒子線装置の焦点調整
方法。ただし、’は、各変数のZによる微分値を示す。
1. A charged particle beam apparatus for imaging a charged particle beam emitted from an object surface on an image plane by using two or more Q lenses, XYZ orthogonal coordinates having an optical axis as a Z axis. Take the system, the vacuum permeability is μ 0 , the absolute value of the charge of the charged particles is q, the sign is s, the mass of the charged particles is m, and the on-axis potential is φ
And [Z], the object plane is Z o, the image plane and Z i, the object plane two paraxial trajectory of X-direction Z o at Xa [Z o] = 0, Xa '[Z o] = 1 Xb [ Z o] = 1, Xb ' [Z o] = 0 object surface two paraxial trajectory in the Y-direction Z o at Ya [Z o] = 0, Ya' [Z o] = 1 Yb [Z o] = 1, Yb ′ [Z o ] = 0, and the electromagnetic Q
In the case of a lens, on-axis astigmatic field distribution D2 j per unit current
[Z] multiplied by s × μ 0 × {2q / (φ [Z] m)} 1/2. In the case of an electrostatic Q lens, axial astigmatic field distribution F2 j [Z] per unit voltage Is divided by φ [Z] to obtain the astigmatism field P2 j [Z] of the j-th Q lens. Then, the height shift ΔZ of the image plane is detected, and the j-th and k-th two exciting currents or voltage changes I j and I k of the Q lens are calculated as follows: A focus adjustment method for a charged particle beam apparatus, characterized in that: Here, 'indicates a differential value of each variable by Z.
【請求項2】 物面から放出される荷電粒子線を2段以
上のQレンズを用いて像面に結像させる荷電粒子線装置
において、光軸をZ軸とするX−Y−Z直交座標系をと
り、真空の透磁率をμ0、荷電粒子の電荷の絶対値を
q、その符号をs、荷電粒子の質量をm、軸上電位をφ
[Z]とし、物面をZo、像面をZiとし、X方向の2つ
の近軸軌道を物面Zoで Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面で Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、j番目のQレンズについて、電磁Q
レンズの場合は単位電流当たりの軸上非点場分布D2j
[Z]にs×μ0×{2q/(φ[Z]m)}1/2をかけた
もの、静電Qレンズの場合は単位電圧当たりの軸上非点
場分布F2j[Z]をφ[Z]で割ったものをj番目の
Qレンズの非点場P2j[Z]とし、 【数3】 (s=a、b)としたとき、ある焦点の合った状態から
焦点が微少に変化した場合に、Qレンズのうちj番目と
k番目の2つの励磁電流または電圧の変化分Ij,Ik
比を 【数4】 に保って調整することを特徴とする荷電粒子線装置の焦
点調整方法。ただし、’は、各変数のZによる微分値を
示す。
2. A charged particle beam apparatus for imaging a charged particle beam emitted from an object surface on an image plane using two or more Q lenses, wherein XYZ orthogonal coordinates having an optical axis as a Z axis. Take the system, the vacuum permeability is μ 0 , the absolute value of the charge of the charged particles is q, the sign is s, the mass of the charged particles is m, and the on-axis potential is φ
And [Z], the object plane is Z o, the image plane and Z i, the object plane two paraxial trajectory of X-direction Z o at Xa [Z o] = 0, Xa '[Z o] = 1 Xb [ Zo ] = 1, Xb '[ Zo ] = 0 Two paraxial trajectories in the Y direction are represented by Ya [ Zo ] = 0, Ya' [ Zo ] = 1, Yb [ Zo ] = 1 in the object plane. Yb ′ [Z o ] = 0, and the electromagnetic Q
In the case of a lens, on-axis astigmatic field distribution D2 j per unit current
[Z] multiplied by s × μ 0 × {2q / (φ [Z] m)} 1/2. In the case of an electrostatic Q lens, axial astigmatic field distribution F2 j [Z] per unit voltage Is divided by φ [Z] to obtain an astigmatism field P2 j [Z] of the j-th Q lens. When (s = a, b), when the focus slightly changes from a certain in-focus state, the change amounts I j and I of the two excitation currents or voltages of the j-th and k-th of the Q lens are changed. The ratio of k is given by And adjusting the focus of the charged particle beam apparatus. Here, 'indicates a differential value of each variable by Z.
【請求項3】 物面から放出される荷電粒子線をn(n
≧3)段のQレンズを用いて像面に結像させる荷電粒子
線装置において、光軸をZ軸とするX−Y−Z直交座標
系をとり、真空の透磁率をμ0、荷電粒子の電荷の絶対
値をq、その符号をs、荷電粒子の質量をm、軸上電位
をφ[Z]とし、物面をZo、像面をZiとし、X方向の
2つの近軸軌道を物面Zoで Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面Zoで Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、焦点調整に用いるレンズの個数をr
(n≧r≧3)とし、電磁Qレンズの場合は単位電流当
たりの軸上非点場分布D2r[Z]にs×μ0×{2q/
(φ[Z]m)}1/2をかけたもの、静電Qレンズの場合
は単位電圧当たりの軸上非点場分布F2r[Z]をφ
[Z]で割ったものを各レンズの非点場P2r[Z]と
し、像面の高さずれΔZを検出し、焦点調整に用いるQ
レンズのうち1〜r番目のr個の励磁電流または電圧の
変化分をI1、I2、…Irとしたとき、 【数5】 を満足するようにI1、I2、…、Irを設定することを
特徴とする荷電粒子線装置の焦点調整方法。ただし、’
は、各変数のZによる微分値を示し、 F[Z]=I1・P21[Z]+I2・P22[Z]+…+Ir・P2r[Z] …(9) である。
3. A charged particle beam emitted from an object surface is represented by n (n
≧ 3) In a charged particle beam apparatus that forms an image on an image plane using a Q lens of a stage, an XYZ orthogonal coordinate system with the optical axis as the Z axis is used, the vacuum permeability is μ 0 , the charged particles are The absolute value of the electric charge of q, the sign thereof is s, the mass of the charged particle is m, the on-axis potential is φ [Z], the object plane is Z o , the image plane is Z i, and two paraxial axes in the X direction Xa orbit in the object plane Z o [Z o] = 0 , Xa '[Z o] = 1 Xb [Z o] = 1, Xb' object plane to [Z o] = 0 2 two paraxial trajectory in the Y-direction In Zo , Ya [ Zo ] = 0, Ya '[ Zo ] = 1, Yb [ Zo ] = 1, Yb' [ Zo ] = 0, and the number of lenses used for focus adjustment is r.
(N ≧ r ≧ 3), and in the case of an electromagnetic Q lens, the axial astigmatic field distribution D2 r [Z] per unit current is s × μ 0 × {2q /
(Φ [Z] m)} 1/2. In the case of an electrostatic Q lens, the axial astigmatic field distribution F2 r [Z] per unit voltage is φ
The value obtained by dividing by [Z] is defined as the astigmatism field P2 r [Z] of each lens.
I 1 the change in 1~r th r pieces of the excitation current or voltage of the lenses, I 2, ... when the I r, Equation 5] I 1, I 2 so as to satisfy, ..., the focus adjusting method of the charged particle beam apparatus characterized by setting the I r. Where '
Indicates the differential value of each variable by Z, and F [Z] = I 1 · P 2 1 [Z] + I 2 · P 2 2 [Z] + ... + I r · P 2 r [Z] is there.
【請求項4】 物面から放出される荷電粒子線をn(n
≧3)段のQレンズを用いて像面に結像させる荷電粒子
線装置において、光軸をZ軸とするX−Y−Z直交座標
系をとり、真空の透磁率をμ0、荷電粒子の電荷の絶対
値をq、その符号をs、荷電粒子の質量をm、軸上電位
をφ[Z]とし、物面をZo、像面をZiとし、X方向の
2つの近軸軌道を物面Zoで Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面Zoで Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、焦点調整に用いるレンズの個数をr
(n≧r≧3)とし、電磁Qレンズの場合は単位電流当
たりの軸上非点場分布D2r[Z]にs×μ0×{2q/
(φ[Z]m)}1/2をかけたもの、静電Qレンズの場合
は単位電圧当たりの軸上非点場分布F2r[Z]をφ
[Z]で割ったものを各Qレンズの非点場P2r[Z]
とし、焦点調整に用いるQレンズのうち1〜r番目の励
磁電流または電圧の変化分をI1、I2、…、Irとし、
ある焦点の合った状態から微少に焦点がずれたとき 【数6】 を満足するようにI1、I2、…、Irの比を保って調整
することを特徴とする荷電粒子線装置の焦点調整方法。
ただし、’は、各変数のZによる微分値を示し、 F[Z]=I1・P21[Z]+I2・P22[Z]+…+Ir・P2r[Z] …(9) である。
4. A charged particle beam emitted from an object surface is represented by n (n
≧ 3) In a charged particle beam apparatus that forms an image on an image plane using a Q lens of a stage, an XYZ orthogonal coordinate system with the optical axis as the Z axis is used, the vacuum permeability is μ 0 , the charged particles are The absolute value of the electric charge of q, the sign thereof is s, the mass of the charged particle is m, the on-axis potential is φ [Z], the object plane is Z o , the image plane is Z i, and two paraxial axes in the X direction Xa orbit in the object plane Z o [Z o] = 0 , Xa '[Z o] = 1 Xb [Z o] = 1, Xb' object plane to [Z o] = 0 2 two paraxial trajectory in the Y-direction In Zo , Ya [ Zo ] = 0, Ya '[ Zo ] = 1, Yb [ Zo ] = 1, Yb' [ Zo ] = 0, and the number of lenses used for focus adjustment is r.
(N ≧ r ≧ 3), and in the case of the electromagnetic Q lens, the axial astigmatic field distribution D2 r [Z] per unit current is represented by s × μ 0 × {2q /
(Φ [Z] m)} 1/2. In the case of an electrostatic Q lens, the axial astigmatic field distribution F2 r [Z] per unit voltage is φ
The value obtained by dividing by [Z] is the astigmatism field P2 r [Z] of each Q lens.
And then, I 1, I 2 a variation of 1~r th excitation current or voltage of the Q lens used for focus adjustment, ..., and I r,
When the focus is slightly deviated from a certain in-focus state I 1, I 2, ..., the focus adjusting method of the charged particle beam apparatus characterized by adjusting keeping the ratio of I r to satisfy.
Here, 'indicates the differential value of each variable by Z, and F [Z] = I 1 · P 2 1 [Z] + I 2 · P 2 2 [Z] +… + I r · P 2 r [Z]… ( 9).
【請求項5】 請求項3又は請求項4における(8)式に
代えて、次式を満足するようにI1〜Irの比を保って調
整することを特徴とする荷電粒子線装置の焦点調整方
法。 【数7】
5. Instead of (8) in claim 3 or claim 4, the following equation charged particle beam apparatus characterized by adjusting keeping the ratio of I 1 ~I r so as to satisfy Focus adjustment method. (Equation 7)
【請求項6】 請求項3又は請求項4における(8)式に
代えて、次式を満足するようにI1〜Irの比を保って調
整することを特徴とする荷電粒子線装置の焦点調整方
法。 【数8】
6. Instead of (8) in claim 3 or claim 4, the following equation charged particle beam apparatus characterized by adjusting keeping the ratio of I 1 ~I r so as to satisfy Focus adjustment method. (Equation 8)
【請求項7】 物面から放出される荷電粒子線をn段の
Qレンズを用いて像面に結像させる荷電粒子線装置にお
いて、光軸をZ軸とするX−Y−Z直交座標系をとり、
真空の透磁率をμ0、荷電粒子の電荷の絶対値をq、そ
の符号をs、荷電粒子の質量をm、軸上電位をφ[Z]
とし、物面をZo、像面をZiとし、X方向の2つの近軸
軌道を物面Zoで Xa[Zo]=0、Xa’[Zo]=1 Xb[Zo]=1、Xb’[Zo]=0 Y方向の2つの近軸軌道を物面Zoで Ya[Zo]=0、Ya’[Zo]=1 Yb[Zo]=1、Yb’[Zo]=0 となるように選び、焦点調整に用いるレンズの個数をr
(n≧r)とし、電磁Qレンズの場合は単位電流当たり
の軸上非点場分布D2r[Z]にs×μ0×{2q/(φ
[Z]m)}1/2をかけたもの、静電Qレンズの場合は単
位電圧当たりの軸上非点場分布F2r[Z]をφ[Z]
で割ったものを各Qレンズの非点場P2r[Z]とし、
焦点調整に用いるQレンズのうち1〜r番目の励磁電流
または電圧の変化分をI1、I2、…、Irとしたとき 【数9】 を満足するようにI1、I2、…、Irの比を保って調整
することを特徴とする荷電粒子線装置の焦点調整方法。
ただし、’は、各変数のZによる微分値を示し、 F[Z]=I1・P21[Z]+I2・P22[Z]+…+Ir・P2r[Z] …(9) である。
7. An XYZ orthogonal coordinate system having an optical axis as a Z axis in a charged particle beam apparatus for imaging a charged particle beam emitted from an object surface on an image plane using an n-stage Q lens. Take
The magnetic permeability of vacuum is μ 0 , the absolute value of the charge of the charged particles is q, the sign is s, the mass of the charged particles is m, and the on-axis potential is φ [Z].
And then, the object plane Z o, the image plane and Z i, Xa two paraxial trajectory of the X-direction in the object plane Z o [Z o] = 0 , Xa '[Z o] = 1 Xb [Z o] = 1, Xb '[Z o ] = 0 Y direction Ya two paraxial trajectories object plane Z o [Z o] = 0 , Ya' [Z o] = 1 Yb [Z o] = 1, Yb 'Select so that [Z o ] = 0, and set the number of lenses used for focus adjustment to r
(N ≧ r), and in the case of the electromagnetic Q lens, the axial astigmatic field distribution D2 r [Z] per unit current is s × μ 0 × {2q / (φ
[Z] m)} 1/2. In the case of an electrostatic Q lens, the axial astigmatic field distribution F2 r [Z] per unit voltage is φ [Z].
Is divided into the astigmatic field P2 r [Z] of each Q lens,
I 1, I 2 a variation of 1~r th excitation current or voltage of the Q lens used for focus adjustment, ..., [Expression 9] when the I r I 1, I 2, ..., the focus adjusting method of the charged particle beam apparatus characterized by adjusting keeping the ratio of I r to satisfy.
However, 'denotes a differential value by Z for each variable, F [Z] = I 1 · P2 1 [Z] + I 2 · P2 2 [Z] + ... + I r · P2 r [Z] ... ( 9).
【請求項8】 請求項1から請求項7のうちいずれか1
項に記載の焦点調整方法を可能とする電源又は電源制御
系を備えることを特徴とする荷電粒子線装置。
8. One of claims 1 to 7
A charged particle beam device comprising a power supply or a power supply control system that enables the focus adjustment method described in the section.
【請求項9】 電磁Qレンズを有する荷電粒子線装置で
あって、所定のQレンズの焦点調整コイルが、当該コイ
ルに流す電流を同一量変化させたとき、請求項1から請
求項7のうちいずれか1項に記載の焦点調整方法が実現
されるような巻き数とされていることを特徴とする荷電
粒子線装置。
9. A charged particle beam apparatus having an electromagnetic Q lens, wherein the focus adjustment coil of a predetermined Q lens changes the current flowing through the coil by the same amount. A charged particle beam device, wherein the number of turns is such that the focus adjustment method according to any one of the claims is realized.
JP11052720A 1999-03-01 1999-03-01 Focus adjusting method of charged particle beam apparatus, and the charged particle beam apparatus Pending JP2000251821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052720A JP2000251821A (en) 1999-03-01 1999-03-01 Focus adjusting method of charged particle beam apparatus, and the charged particle beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052720A JP2000251821A (en) 1999-03-01 1999-03-01 Focus adjusting method of charged particle beam apparatus, and the charged particle beam apparatus

Publications (1)

Publication Number Publication Date
JP2000251821A true JP2000251821A (en) 2000-09-14

Family

ID=12922765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052720A Pending JP2000251821A (en) 1999-03-01 1999-03-01 Focus adjusting method of charged particle beam apparatus, and the charged particle beam apparatus

Country Status (1)

Country Link
JP (1) JP2000251821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924198B1 (en) 2007-03-07 2009-10-29 가부시키가이샤 뉴플레어 테크놀로지 Focusing method of charged particle beam and positional deviation adjustment method of charged particle beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924198B1 (en) 2007-03-07 2009-10-29 가부시키가이샤 뉴플레어 테크놀로지 Focusing method of charged particle beam and positional deviation adjustment method of charged particle beam

Similar Documents

Publication Publication Date Title
US7102732B2 (en) Method of manufacturing a device by employing a lithographic apparatus including a sliding electron-optical element
JP4176149B2 (en) Correction device for correcting chromatic aberration of particle optical equipment
JP2003187731A (en) Correction device for correcting first-floor primary chromatic aberration
JP2009054581A (en) Corrector for charged particle beam aberration, and charged particle beam device
CN108807119A (en) Compact deflecting magnet
GB2061609A (en) Compensation for spherical aberration using a sextupale
JP3210613B2 (en) Curve axis correction device
US5757010A (en) Curvilinear variable axis lens correction with centered dipoles
US5708274A (en) Curvilinear variable axis lens correction with crossed coils
JP2001510624A (en) Operation method of particle optical device
US6720558B2 (en) Transmission electron microscope equipped with energy filter
JP2017028284A (en) Charged particle beam lithography apparatus, control method therefor and corrected drawing data creation method
JP2000251821A (en) Focus adjusting method of charged particle beam apparatus, and the charged particle beam apparatus
US6452193B1 (en) Electron beam exposure apparatus, electron lens, and device manufacturing method
JPH10106471A (en) Charged corpuscular beam device and method for using the same
EP3690921A1 (en) Deflector and charged particle beam system
NL1029066C2 (en) Aberration corrector for e.g. transmission electron microscope or scanning electron microscope, has first and second octupoles not imaged upon one another, and second and third octupoles imaged upon one another, in first axial plane
EP1182684A2 (en) Lithographic apparatus
JP2002025489A (en) Doublet having optimum curve axis used for charged particle beam projection system
JP3529997B2 (en) Charged particle beam optical element, charged particle beam exposure apparatus and adjustment method thereof
JP2008135336A (en) Wien filter
JPH10106467A (en) Electron lens and nonrotating lens system
US4980615A (en) Electron beam control circuit in electron beam evaporators with alternating acceleration voltages
US6627899B2 (en) Magnetic lenses, charged-particle-beam optical systems, and charged-particle-beam pattern-transfer apparatus
JP2005302468A (en) Method and apparatus for displaying simulation image of charged particle beam device