JP2000251226A - Spin valve magneto-resistance sensor and thin-film magnetic head - Google Patents

Spin valve magneto-resistance sensor and thin-film magnetic head

Info

Publication number
JP2000251226A
JP2000251226A JP11055773A JP5577399A JP2000251226A JP 2000251226 A JP2000251226 A JP 2000251226A JP 11055773 A JP11055773 A JP 11055773A JP 5577399 A JP5577399 A JP 5577399A JP 2000251226 A JP2000251226 A JP 2000251226A
Authority
JP
Japan
Prior art keywords
layer
magnetic field
magnetic
spin valve
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11055773A
Other languages
Japanese (ja)
Inventor
Shuji Tanogami
修二 田ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Read Rite SMI Corp
Original Assignee
Read Rite SMI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Read Rite SMI Corp filed Critical Read Rite SMI Corp
Priority to JP11055773A priority Critical patent/JP2000251226A/en
Publication of JP2000251226A publication Critical patent/JP2000251226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the magneto-resistance sensor in spin valve structure having an antiferromagnetic layer which produces an exchange coupling magnetic field between a ferromagnetic material and a pin magnetic layer even after a heat treatment, effectively suppresses the rotation of the magnetism of the spin magnetic layer due to the bias magnetic field of a magnetic head, and can obtain a high MR output. SOLUTION: The spin valve magneto-resistance sensor has a magneto- resistance effect film 3 formed by stacking on a substrate a ferromagnetic layer 4 and a pin magnetic layer 6 arranged across a nonmagnetic conductive layer 5 and an antiferromagnetic layer 7 adjacent to the pin magnetic layer. In this case, 2 to 10 at% added to PtMn alloy, and 45 to 55 at% Mn and Pt for the rest are added; and the antiferromagnetic layer is formed of the PtMcCr and thermally treated at 250 to 300 deg.C. In this case, the antiferromagnetic layer is formed of PdPtMnCr alloy obtained by adding 2 to 10 at% Cr, 45 to 55 at% Mn, 20 to 35 at% Pd, and Pt for the rest to PdPtMn alloy and thermally treated at 250 to 300 deg.C in a vacuum magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録装置に使
用される磁気抵抗型センサに関し、特にスピンバルブ磁
気抵抗効果を利用した磁気センサ及び薄膜磁気ヘッドに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive sensor used in a magnetic recording apparatus, and more particularly to a magnetic sensor and a thin film magnetic head utilizing a spin valve magnetoresistance effect.

【0002】[0002]

【従来の技術】最近、再生用磁気ヘッドにおいて飽和磁
界を小さくして磁界感度を高めるために、基板上に非磁
性層を挟んで1対の磁性層を積層したサンドイッチ構造
のスピンバルブ膜からなる磁気抵抗(MR)センサが開
発されている。スピンバルブ膜は、一方の磁性層(ピン
磁性層)の磁化が、それに隣接する反強磁性層との交換
結合磁界により素子高さ方向に固定されるのに対し、他
方の磁性層(フリー磁性層)の磁化は、一般に永久磁石
の磁界を利用したハードバイアス法により、素子のトラ
ック幅方向に単磁区化され、外部磁界により自由に回転
する。
2. Description of the Related Art Recently, in order to reduce the saturation magnetic field and enhance the magnetic field sensitivity in a reproducing magnetic head, the reproducing magnetic head comprises a sandwich-structured spin-valve film in which a pair of magnetic layers are laminated with a non-magnetic layer interposed therebetween. Magnetoresistive (MR) sensors have been developed. In a spin valve film, the magnetization of one magnetic layer (pinned magnetic layer) is fixed in the element height direction by an exchange coupling magnetic field with an adjacent antiferromagnetic layer, whereas the other magnetic layer (free magnetic layer) is fixed. The magnetization of the layer) is generally converted into a single magnetic domain in the track width direction of the element by a hard bias method using a magnetic field of a permanent magnet, and is freely rotated by an external magnetic field.

【0003】反強磁性層による一方向異方性磁場が大き
いほど、ピン磁性層を良好に単磁区化することができ、
またその磁化が十分に固定されるほど、外部磁場に対す
る磁気応答の線形性が確保され、磁気センサの磁気特性
が向上する。反強磁性材料としては、例えば特開平9−
35212号公報に記載されるように、大きな交換結合
磁場が得られ、ブロッキング温度を高くでき、耐食性に
優れ、熱処理(アニール)温度が低いこと、及び膜厚を
薄くできることなどの特性が要求され、従来から様々な
材料が提案されている。
[0003] The larger the unidirectional anisotropic magnetic field due to the antiferromagnetic layer, the better the pinned magnetic layer can be made into a single magnetic domain.
Also, as the magnetization is sufficiently fixed, the linearity of the magnetic response to an external magnetic field is secured, and the magnetic characteristics of the magnetic sensor are improved. Examples of antiferromagnetic materials include, for example,
As described in Japanese Patent No. 35212, characteristics such as a large exchange coupling magnetic field, a high blocking temperature, excellent corrosion resistance, a low heat treatment (annealing) temperature, and a small film thickness are required. Conventionally, various materials have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来か
ら反強磁性材料として一般に使用されているFeMn合
金は腐食しやすいという問題がある。また、IrMn合
金、RhMn合金、FeMn合金などは下地層の影響を
受け易いので、特に基板側に反強磁性層を配置しかつそ
の上にピン磁性層を積層する所謂ボトムタイプのスピン
バルブ構造では、(111)結晶配向性の高い下地膜を
設けたり、膜厚を厚くする必要がある。また、NiMn
合金では、ピン磁性層との交換結合を十分に確保するた
めに、250℃以上の高温で熱処理(アニール)する必
要がある。しかし、NiMn合金は、後述するPtMn
合金、PdMn合金に比してMnが拡散し易いために、
ピン層/非磁性層/フリー層間に金属元素の拡散が生じ
てMR比を低下させる虞がある。
However, there is a problem that the FeMn alloy conventionally used generally as an antiferromagnetic material is easily corroded. In addition, IrMn alloys, RhMn alloys, FeMn alloys, and the like are easily affected by the underlayer. Therefore, a so-called bottom type spin valve structure in which an antiferromagnetic layer is disposed on the substrate side and a pinned magnetic layer is laminated thereon is particularly used. , (111) It is necessary to provide a base film having high crystal orientation or to increase the film thickness. Also, NiMn
In the case of an alloy, it is necessary to perform heat treatment (annealing) at a high temperature of 250 ° C. or higher in order to sufficiently secure exchange coupling with the pinned magnetic layer. However, the NiMn alloy is a PtMn to be described later.
Alloy and PdMn alloy, Mn is easy to diffuse,
There is a possibility that the diffusion of the metal element occurs between the pin layer / non-magnetic layer / free layer, thereby lowering the MR ratio.

【0005】かかる問題を解消するために、例えば特開
平9−147325号公報では、Ptが5〜54at%、
Mnが46〜95at%のPtMn合金を用いて反強磁性
層を形成し、かつ200℃〜350℃の温度で熱処理し
た磁気抵抗効果型読取りヘッドが提案されている。更
に、特開平10‐91921号公報には、好ましくはP
tが44〜51at%、Mnが49〜56at%のPtMn
合金、又はこれと同等の性質のPt−Mn‐X合金(X
=Ni,Pd,Rh,Ru,Ir,Cr,Fe,C
o)、PdMn合金を用いて反強磁性層を形成したデュ
アルスピンバルブ型薄膜磁気ヘッドが開示されている。
両公報によれば、PtMn合金は耐食性が良好で、交換
異方性磁界が大きくかつ熱的に安定し、ピン磁性層の上
下いずれに積層しても有効な交換異方性磁界を発揮する
ことができ、ブロッキング温度が高く、磁気抵抗効果の
線形応答性及び熱的安定性に優れた良好な薄膜磁気ヘッ
ドが得られる。
In order to solve such a problem, for example, in Japanese Patent Application Laid-Open No. Hei 9-147325, Pt is 5 to 54 at%,
There has been proposed a magnetoresistive read head in which an antiferromagnetic layer is formed using a PtMn alloy having Mn of 46 to 95 at% and heat-treated at a temperature of 200 ° C. to 350 ° C. Further, JP-A-10-91921 preferably discloses P
PtMn with t of 44 to 51 at% and Mn of 49 to 56 at%
Alloy or a Pt-Mn-X alloy (X
= Ni, Pd, Rh, Ru, Ir, Cr, Fe, C
o) A dual spin-valve thin film magnetic head in which an antiferromagnetic layer is formed using a PdMn alloy is disclosed.
According to both publications, a PtMn alloy has good corrosion resistance, a large exchange anisotropic magnetic field, is thermally stable, and exhibits an effective exchange anisotropic magnetic field regardless of whether it is laminated above or below a pinned magnetic layer. And a good thin-film magnetic head having a high blocking temperature, excellent linear response of the magnetoresistance effect, and excellent thermal stability can be obtained.

【0006】また、特開平9−16923号公報には、
スピンバルブセンサ層の両端部に隣接接合して形成した
磁区制御層を、Ta膜、強磁性NiFe膜及び反強磁性
CrMnPt膜の積層構造により構成したスピンバルブ
センサが記載されている。同公報によれば、この反強磁
性膜は、その組成がCr30〜70at%、Mn30〜7
0at%、Pt3.0〜30.0at%であって、Cr含有
量が多いことにより、耐食性が著しく向上すると共に、
Ptの添加により、その下層に形成されるNiFe強磁
性膜との良好な交換結合特性を示し、かつブロッキング
温度が高い。
Further, Japanese Patent Application Laid-Open No. 9-16923 discloses that
A spin valve sensor is described in which a magnetic domain control layer formed adjacent to both ends of a spin valve sensor layer is formed by a laminated structure of a Ta film, a ferromagnetic NiFe film, and an antiferromagnetic CrMnPt film. According to the publication, the antiferromagnetic film has a composition of 30 to 70 at% Cr and 30 to 7 Mn.
0 at%, Pt 3.0 to 30.0 at%, and the high Cr content significantly improves the corrosion resistance.
By the addition of Pt, good exchange coupling characteristics with the NiFe ferromagnetic film formed thereunder are exhibited, and the blocking temperature is high.

【0007】特開平9−81915号公報には、PtM
n合金より更に耐食性の高いPdPtMn合金を用いて
反強磁性層を形成し、かつ約230℃の比較的低い温度
で熱処理することにより、磁気抵抗特性を劣化させるこ
となく反強磁性を付与することができ、それにより信頼
性を向上させたスピンバルブ構造の磁気抵抗素子が記載
されている。同公報によれば、PdPtMn合金は、M
nの原子分率が48〜54at%のときに特に高いバイア
ス磁界量が得られる。
[0007] Japanese Patent Application Laid-Open No. 9-81915 discloses a PtM
An antiferromagnetic layer is formed by using a PdPtMn alloy having higher corrosion resistance than an n alloy, and is subjected to a heat treatment at a relatively low temperature of about 230 ° C. so as to impart antiferromagnetism without deteriorating magnetoresistance characteristics. And a spin-valve magnetoresistive element with improved reliability. According to the same publication, the PdPtMn alloy contains M
A particularly high bias magnetic field amount is obtained when the atomic fraction of n is 48 to 54 at%.

【0008】また、青島賢一らの論文「PdPtMnス
ピンバルブ膜の下地の検討」(日本応用磁気学会誌Vol.
22,No.4-2,1998,第501〜504頁)には、PdPtMn
合金の反強磁性層を基板側に配置したスピンバルブ膜に
おいて、その下地材料にNiFeではなくNiFeCr
を用いた場合に、PdPtMn反強磁性層の(111)
結晶配向性が向上することにより、交換結合磁界が増加
し、MR比が向上したことが報告されている。
In addition, a paper by Kenichi Aoshima et al., “Study on Underlayer of PdPtMn Spin Valve Film” (Journal of the Japan Society of Applied Magnetics, Vol.
22, No. 4-2, 1998, pp. 501-504) include PdPtMn.
In a spin valve film in which an antiferromagnetic layer of an alloy is disposed on the substrate side, the base material is not NiFe but NiFeCr.
Is used, the (111) of the PdPtMn antiferromagnetic layer
It is reported that the exchange coupling magnetic field is increased and the MR ratio is improved by improving the crystal orientation.

【0009】しかしながら、上述したPdPtMn系合
金では、耐食牲は改善されるが、規則化のための熱処理
後の一方向異方性磁場が十分に大きくないために、磁気
ヘッド内部のバイアス磁場などの作用で異方性の方向が
回転する慮がある。そのために、スピンバルブセンサの
MR出力が徐々に低下し、高い再生出力を維持できなく
なり、磁気ヘッドの信頼性を損なうという問題があっ
た。
However, in the above-mentioned PdPtMn-based alloy, the corrosion resistance is improved, but the unidirectional anisotropic magnetic field after the heat treatment for ordering is not sufficiently large, so that the bias magnetic field inside the magnetic head or the like is reduced. There is a possibility that the anisotropic direction rotates by the action. For this reason, there has been a problem that the MR output of the spin valve sensor gradually decreases, so that a high reproduction output cannot be maintained and the reliability of the magnetic head is impaired.

【0010】そこで、本発明の目的は、上述した従来の
問題点に鑑み、熱処理後も強磁性材料のピン磁性層との
間で高い交換結合磁場を発揮し、磁気へッドのバイアス
磁場によるピン磁性層の磁化の回転を有効に抑制し、高
いMR出力が得られる反強磁性層を備えたスピンバルブ
構造の磁気抵抗センサを提供することにある。
Accordingly, an object of the present invention is to provide a high exchange coupling magnetic field with a pinned magnetic layer made of a ferromagnetic material even after heat treatment in view of the above-mentioned conventional problems, and to provide a magnetic head with a bias magnetic field. An object of the present invention is to provide a magnetoresistive sensor having a spin valve structure provided with an antiferromagnetic layer capable of effectively suppressing rotation of magnetization of a pinned magnetic layer and obtaining a high MR output.

【0011】また、本発明の別の目的は、かかるスピン
バルブ磁気抵抗センサを備えることにより、優れた磁気
特性及び高い信頼性を有し、より高記録密度化を達成可
能な高性能の薄膜磁気ヘッドを提供することにある。
Another object of the present invention is to provide such a spin-valve magnetoresistive sensor, which has excellent magnetic characteristics and high reliability, and is capable of achieving higher recording density. The purpose is to provide a head.

【0012】[0012]

【課題を解決するための手段】本発明は、上述した目的
を達成するためのものであり、基板上に非磁性導電層を
挟んで配置された1対の磁性層と、一方の前記磁性層に
隣接する反強磁性層とを積層した磁気抵抗膜を備えるス
ピンバルブ磁気抵抗センサであって、前記反強磁性層が
Pd−Pt−Mn−Cr合金からなり、かつその規則化
のために熱処理されていることを特徴とするスピンバル
ブ磁気抵抗センサが提供される。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above-mentioned object, and comprises a pair of magnetic layers disposed on a substrate with a non-magnetic conductive layer interposed therebetween, and one of the magnetic layers A spin valve magnetoresistive sensor comprising a magnetoresistive film laminated with an antiferromagnetic layer adjacent to the antiferromagnetic layer, wherein the antiferromagnetic layer is made of a Pd-Pt-Mn-Cr alloy, and heat-treated for ordering the same. A spin valve magnetoresistive sensor is provided.

【0013】本願発明者は、このようにPdPtMn合
金にCrを適量添加しかつ熱処理して結晶構造を規則化
することにより、交換結合磁場Hexを増大させることが
可能であり、それにより高温の磁場中でもピン磁性層の
磁化の回転が小さく、従ってMR出力が低下しないこと
を見い出して、本発明に至ったものである。PdPtM
n合金に添加する金属XとしてCrを選定するに当た
り、Zr、Nb、Ti、Cr、Ta、Mo、W、V、A
lを候補として、ガラス基板のTa100Å/CoFe
100Åからなる下地膜上にPdPtMnXを成膜し、
これらを真空磁場中で熱処理した後、磁気特性を評価し
た。その結果、Cr以外の元素を添加したものは交換結
合磁場Hexが低下したのに対し、Crを添加した場合に
のみ交換結合磁場Hexが増加することが分かった。
The inventor of the present application can increase the exchange coupling magnetic field Hex by adding an appropriate amount of Cr to the PdPtMn alloy and heat-treating the crystal structure to thereby increase the exchange coupling magnetic field Hex. In particular, the inventors have found that the rotation of the magnetization of the pinned magnetic layer is small and therefore the MR output does not decrease, and the present invention has been achieved. PdPtM
In selecting Cr as the metal X to be added to the n alloy, Zr, Nb, Ti, Cr, Ta, Mo, W, V, A
l as a candidate, the glass substrate Ta100Fe / CoFe
PdPtMnX is formed on a base film made of 100 °,
After heat-treating them in a vacuum magnetic field, their magnetic properties were evaluated. As a result, it was found that the exchange coupling magnetic field Hex decreased when an element other than Cr was added, whereas the exchange coupling magnetic field Hex increased only when Cr was added.

【0014】次に、反強磁性層としてPdPtMnCr
合金のCr添加量を決定するに当たり、まず、ガラス基
板上にTa30Å/NiFe100Åを成膜し、その上
にPdPtMnCrを、Pd30Pt20Mn50ターゲット
上にCrチップを載せてスパッタリングにより膜厚35
0Åに成膜し、更にその上に保護膜としてTaを30Å
成膜した。これを真空度1×10-6Torr以下の加熱
炉で、lkOeの磁場中で280℃×10時間の熱処理
を行い、交換結合磁場Hexを評価した。Cr含有量は、
同様にスパッタリングの際にターゲット上に載せるCr
チップの数により調整し、実際のCr含有量はICP分
析により求めた。Cr含有量に関する格子定数(a,
c)及び交換結合磁場Hexの変化を表1に示す。
Next, PdPtMnCr is used as an antiferromagnetic layer.
In determining the amount of Cr added in the alloy, first, the film thickness was deposited Ta30Å / NiFe100Å on a glass substrate, a PdPtMnCr thereon by sputtering by placing a Cr chip on Pd 30 Pt 20 Mn 50 on the target 35
0 °, and a Ta film is further formed thereon as a protective film by 30 °.
A film was formed. This was heat-treated at 280 ° C. for 10 hours in a magnetic field of 1 kOe in a heating furnace having a degree of vacuum of 1 × 10 −6 Torr or less, and the exchange coupling magnetic field Hex was evaluated. The Cr content is
Similarly, Cr placed on the target during sputtering
It was adjusted according to the number of chips, and the actual Cr content was determined by ICP analysis. The lattice constant (a,
Table 1 shows changes in c) and the exchange coupling magnetic field Hex.

【0015】[0015]

【表1】 [Table 1]

【0016】この表から、Cr含有量が2at%以上で交
換結合磁場Hexが増大し、10at%を超えると低下して
いることが分かる。この理由として、Crの添加により
PdPtMn合金中のPt及びPd原子がより小さい原
子半径のCrと置き換わり、格子定数が小さくなってM
n原子間の距離が短くなり、反強磁性結合が強まったた
めと考えられる。また、Cr含有量が10at%を超える
と、PdPtMn合金中のMnのサイトにもCr原子が
入るため、交換結合磁場Hexが低下したと考えられる。
この結果、反強磁性層としてのPdPtMnCr合金の
Cr含有量は、2〜10at%の範囲が最適である。更に
PdPtMn系合金では、Pd含有量は20〜35at%
の範囲で交換結合磁場Hexが大きくなるので、この範囲
が望ましい。
From the table, it can be seen that the exchange coupling magnetic field Hex increases when the Cr content is 2 at% or more, and decreases when the Cr content exceeds 10 at%. The reason for this is that the addition of Cr replaces the Pt and Pd atoms in the PdPtMn alloy with Cr having a smaller atomic radius, the lattice constant becomes smaller, and M
It is considered that the distance between n atoms became shorter, and antiferromagnetic coupling was strengthened. If the Cr content exceeds 10 at%, it is considered that the exchange coupling magnetic field Hex is lowered because Cr atoms also enter Mn sites in the PdPtMn alloy.
As a result, the Cr content of the PdPtMnCr alloy as the antiferromagnetic layer is optimally in the range of 2 to 10 at%. Further, in a PdPtMn-based alloy, the Pd content is 20 to 35 at%.
This range is desirable because the exchange coupling magnetic field Hex becomes large in the range.

【0017】また、熱処理温度は250℃乃至300℃
の範囲が望ましい。十分な規則化のためには、少なくと
も250℃の温度で熱処理する必要があるが、300℃
を越えると、反強磁性層と隣接する強磁性層との間及び
/又は非磁性導電層を挟んだ強磁性層間での拡散が大き
くなり、MR特性の劣化やピン磁性層/フリー磁性層間
の相互作用が大きくなるので、好ましくない。
Further, the heat treatment temperature is 250 ° C. to 300 ° C.
Is desirable. For sufficient ordering, it is necessary to heat-treat at a temperature of at least 250 ° C.
Is exceeded, the diffusion between the antiferromagnetic layer and the adjacent ferromagnetic layer and / or between the ferromagnetic layers sandwiching the nonmagnetic conductive layer becomes large, resulting in deterioration of MR characteristics and the pin magnetic layer / free magnetic layer. It is not preferable because the interaction becomes large.

【0018】更に本発明の別の側面によれば、上述した
スピンバルブ磁気抵抗センサを備えることにより、磁気
抵抗変化率及びその線形応答性が優れ、高記録密度化可
能な薄膜磁気ヘッドが提供される。
According to still another aspect of the present invention, there is provided a thin-film magnetic head having the above-described spin-valve magnetoresistive sensor, excellent in magnetoresistance change rate and linear response thereof, and capable of increasing recording density. You.

【0019】[0019]

【発明の実施の形態】以下に、本発明の好適な実施の形
態について添付の図面を参照して詳細に説明する。図1
は、本発明を適用したスピンバルブ構造の磁気抵抗セン
サをABS(空気ベアリング面)側から見た断面図を示
している。このスピンバルブ磁気抵抗センサは、ガラス
やシリコン、Al23・TiCなどのセラミック材料か
らなる基板上に設けたアルミナ(Al23)絶縁層1の
上に厚さ30ÅのTaからなる下地層2が形成され、そ
の上に基板とは反対側に反強磁性層を配置した所謂トッ
プスピンバルブ構造の磁気抵抗(MR)膜3が積層され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG.
1 shows a sectional view of a magnetoresistive sensor having a spin valve structure to which the present invention is applied, as viewed from an ABS (air bearing surface) side. The spin-valve magnetoresistive sensor, bottom made of glass or silicon, Al 2 O 3 · Alumina provided on a substrate made of a ceramic material such as TiC (Al 2 O 3) Ta having a thickness of 30Å on the insulating layer 1 A ground layer 2 is formed, and a magnetoresistive (MR) film 3 having a so-called top spin valve structure in which an antiferromagnetic layer is disposed on the side opposite to the substrate is laminated thereon.

【0020】MR膜3は、下地層2の上に積層したNi
Fe膜41及びCo膜42からなるフリー磁性層4と、
Cu膜からなる非磁性導電層5と、Co膜からなるピン
磁性層6と、PdPtMnCr膜からなる反強磁性層7
とを有する。MR膜3は、成膜後に真空中で250℃〜
300℃の温度で一方向磁場中熱処理を行うことによ
り、反強磁性層7の結晶構造を規則化させ、かつピン磁
性層6に一方向異方性を与えて、その磁化配向を固定す
る。MR膜3の上には、Taからなる保護膜8が成膜さ
れている。前記各膜層は、例えばDCスパッタリングに
より連続的に成膜される。
The MR film 3 is made of Ni laminated on the underlayer 2.
A free magnetic layer 4 composed of an Fe film 41 and a Co film 42;
Nonmagnetic conductive layer 5 made of Cu film, pinned magnetic layer 6 made of Co film, and antiferromagnetic layer 7 made of PdPtMnCr film
And The MR film 3 is formed at 250 ° C.
By performing heat treatment in a unidirectional magnetic field at a temperature of 300 ° C., the crystal structure of the antiferromagnetic layer 7 is regularized, and the pinned magnetic layer 6 is given unidirectional anisotropy to fix its magnetization orientation. A protective film 8 made of Ta is formed on the MR film 3. Each of the film layers is continuously formed by, for example, DC sputtering.

【0021】MR膜3の両側は、所定のトラック幅に合
わせてエッチングにより除去され、ハードバイアス層及
びセンス電流を流すための電極としての導電リード(共
に図示せず)等が形成される。更に、この積層構造全体
をアルミナ絶縁層で被覆して、本発明のスピンバルブM
Rセンサが完成する。
Both sides of the MR film 3 are removed by etching in accordance with a predetermined track width to form a hard bias layer and conductive leads (both not shown) as electrodes for flowing a sense current. Further, the entire laminated structure is covered with an alumina insulating layer, and the spin valve M of the present invention is provided.
The R sensor is completed.

【0022】反強磁性層7の組成は、Pdが20at%〜
35at%、Mnが45at%〜55at%、Crが2at%〜
10at%の範囲であり、残部がPtである。この膜組成
により、前記反強磁性層は熱処理後にピン磁性層との間
で高い交換結合磁場が得られる。
The composition of the antiferromagnetic layer 7 is such that Pd is 20 at% or less.
35 at%, Mn is 45 at% -55 at%, Cr is 2 at%-
The range is 10 at%, and the balance is Pt. With this film composition, a high exchange coupling magnetic field can be obtained between the antiferromagnetic layer and the pinned magnetic layer after the heat treatment.

【0023】本発明は、図1に関連して上述したトップ
スピンバルブ構造だけでなく、反強磁性層を基板側に配
置した所謂ボトムスピンバルブ構造、2組のピン磁性層
と反強磁性層とをフリー磁性層を挟んで対称に配置する
デュアルスピンバルブ構造、ピン磁性層が非磁性膜を挟
んで反強磁性的に結合する1対の強磁性膜から構成さ
れ、印加磁界の存在下で反強磁性層とそれに隣接する一
方の強磁性膜とが交換結合するシンセティック(synthe
tic)タイプのスピンバルブ構造など、公知の様々な構
造のスピンバルブMRセンサに同様に適用することがで
きる。
The present invention provides a so-called bottom spin valve structure in which an antiferromagnetic layer is arranged on the substrate side, as well as the top spin valve structure described above with reference to FIG. A dual spin valve structure in which the pinned magnetic layer is symmetrically arranged with the free magnetic layer interposed therebetween. An antiferromagnetic layer and one of its adjacent ferromagnetic films are exchange-coupled (synthetic).
The present invention can be similarly applied to spin valve MR sensors having various known structures such as a tic) type spin valve structure.

【0024】[0024]

【実施例】(実施例1)図1のMRセンサにおいて、ガ
ラス基板の上にTa30Å/NiFe50Å/Co10
Å/Cu25Å/Co30Å/PdPtMnCr300
Å/Ta30Åのスピンバルブ膜をDCスパッタリング
により連続して成膜し、3000Oeの真空磁場中で2
50℃×10時間熱処理を施した。PdPtMnCr反
強磁性層7の組成を変化させ、その各々についてMR曲
線を測定した。その結果を表2に示す。
(Embodiment 1) In the MR sensor of FIG. 1, Ta30Å / NiFe50Å / Co10 was formed on a glass substrate.
{/ Cu25} / Co30} / PdPtMnCr300
A {/ Ta30} spin valve film is continuously formed by DC sputtering, and the spin valve film is formed in a vacuum magnetic field of 3000 Oe.
Heat treatment was performed at 50 ° C. × 10 hours. The composition of the PdPtMnCr antiferromagnetic layer 7 was changed, and the MR curve was measured for each of them. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】この表から、Pdが20at%〜35at%、
Mnが45at%〜55at%、Crが2at%〜10at%の
範囲において交換結合磁場Hexが顕著に大きく、かつM
R比が著しく高くなっていることが分かる。
From the table, it is found that Pd is 20 at% to 35 at%,
When Mn is in the range of 45 at% to 55 at% and Cr is in the range of 2 at% to 10 at%, the exchange coupling magnetic field Hex is remarkably large and M
It can be seen that the R ratio is significantly higher.

【0027】(実施例2)同じく図1のMRセンサにお
いて、熱酸化Si基板の上にTa30Å/NiFe60
Å/Co10Å/Cu25Å/Co30Å/PdPtM
nCr250Å/Ta30Åのスピンバルブ膜をDCス
パッタリングにより連続して成膜した。PdPtMnC
r反強磁性層7の組成をPd23Pt22Mn50Cr5及び
Pd24Pt2 2.5Mn52Cr1.5の2種類とし、かつ30
00Oeの真空磁場中で5時間熱処理した。熱処理温度
は230℃から250℃、270℃、300℃、320
℃までの5段階に変化させた。その各々について熱処理
後にMR曲線を測定し、交換結合磁場Hex及びMR比の
変化を調べた。その結果を表3に示す。
Example 2 In the MR sensor of FIG. 1, Ta30Å / NiFe60 was formed on a thermally oxidized Si substrate.
Å / Co10Å / Cu25Å / Co30Å / PdPtM
A spin valve film of nCr250 / Ta30 was continuously formed by DC sputtering. PdPtMnC
The composition of r antiferromagnetic layer 7 and the two types of Pd 23 Pt 22 Mn 50 Cr 5 and Pd 24 Pt 2 2.5 Mn 52 Cr 1.5, and 30
Heat treatment was performed in a vacuum magnetic field of 00 Oe for 5 hours. Heat treatment temperature from 230 ° C to 250 ° C, 270 ° C, 300 ° C, 320
The temperature was varied in five steps up to ° C. For each of them, the MR curve was measured after the heat treatment, and changes in the exchange coupling magnetic field Hex and the MR ratio were examined. Table 3 shows the results.

【0028】[0028]

【表3】 [Table 3]

【0029】この表から、Cr含有量が本発明の範囲内
にある5at%では、Cr含有量が1.5at%のものに比
較して、熱処理温度によらず交換結合磁場Hexが顕著に
大きく、かつMR比が著しく高いことが分かる。また、
熱処理温度を本発明の範囲(250℃、270℃、30
0℃)とした場合には、交換結合磁場Hex及びMR比が
高い。これに比較して熱処理温度を230℃としたもの
は、交換結合磁場Hex及びMR比共に小さい。また、3
20℃の熱処理温度では、交換結合磁場Hexは大きいが
MR比が低い。このように、熱処理温度は250℃〜3
00℃の範囲が適正である。
From this table, it can be seen that when the Cr content is within the range of the present invention at 5 at%, the exchange coupling magnetic field Hex is remarkably large regardless of the heat treatment temperature, as compared with the case where the Cr content is 1.5 at%. And the MR ratio is remarkably high. Also,
The heat treatment temperature is set within the range of the present invention (250 ° C., 270 ° C., 30 ° C.).
0 ° C.), the exchange coupling magnetic field Hex and the MR ratio are high. On the other hand, when the heat treatment temperature is 230 ° C., both the exchange coupling magnetic field Hex and the MR ratio are small. Also, 3
At a heat treatment temperature of 20 ° C., the exchange coupling magnetic field Hex is large, but the MR ratio is low. Thus, the heat treatment temperature is from 250 ° C. to 3 ° C.
The range of 00 ° C is appropriate.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
のスピンバルブ磁気抵抗センサによれば、PdPtMn
合金にCrを2at%〜10at%の範囲で添加し、Pdを
20at%〜35at%、Mnを45at%〜55at%の範
囲、残部をPtとしたPdPtMnCr合金で反強磁性
層を形成しかつ熱処理を行うことにより、熱処理後に従
来より大きい交換結合磁場Hexが得られ、それにより磁
気へッドのバイアス磁場によってもピン磁性層の磁化が
回転せず、MR出力の低下が抑制されて、再生出力の向
上、その熱的・磁気的安定性が達成される。更に、本発
明によれば、高い磁気抵抗変化率及び線形応答性など、
磁気変換特性を向上させたスピンバルブ磁気抵抗センサ
が得られることにより、高記録密度化可能で高性能かつ
高信頼性の磁気ヘッドを実現することができる。
As is apparent from the above description, according to the spin valve magnetoresistive sensor of the present invention, PdPtMn
Cr is added to the alloy in the range of 2 at% to 10 at%, Pd is in the range of 20 to 35 at%, Mn is in the range of 45 to 55 at%, and the balance is Pt. After the heat treatment, a larger exchange coupling magnetic field Hex is obtained after the heat treatment, whereby the magnetization of the pinned magnetic layer is not rotated even by the bias magnetic field of the magnetic head, the decrease in the MR output is suppressed, and the reproduction output is reduced. And its thermal and magnetic stability are achieved. Further, according to the present invention, such as high magnetoresistance change rate and linear response,
By obtaining a spin-valve magnetoresistive sensor having improved magnetic conversion characteristics, it is possible to realize a high-performance, high-reliability magnetic head capable of increasing the recording density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したスピンバルブ磁気抵抗センサ
の要部をABS側から見た模式的断面図。
FIG. 1 is a schematic cross-sectional view of a main part of a spin-valve magnetoresistive sensor to which the present invention is applied, as viewed from an ABS side.

【符号の説明】[Explanation of symbols]

1 絶縁層 2 下地層 3 MR膜 4 フリー磁性層 41 NiFe膜 42 Co膜 5 非磁性導電層 6 ピン磁性層 7 反強磁性層 8 保護層 DESCRIPTION OF SYMBOLS 1 Insulating layer 2 Underlayer 3 MR film 4 Free magnetic layer 41 NiFe film 42 Co film 5 Nonmagnetic conductive layer 6 Pinned magnetic layer 7 Antiferromagnetic layer 8 Protective layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に非磁性導電層を挟んで配置され
た1対の磁性層と、一方の前記磁性層に隣接する反強磁
性層とを積層した磁気抵抗膜を備えるスピンバルブ磁気
抵抗センサであって、 前記反強磁性層がPd−Pt−Mn−Cr合金からな
り、かつその規則化のために熱処理されていることを特
徴とするスピンバルブ磁気抵抗センサ。
1. A spin valve magnetoresistance comprising a magnetoresistive film in which a pair of magnetic layers disposed on a substrate with a nonmagnetic conductive layer interposed therebetween and an antiferromagnetic layer adjacent to one of the magnetic layers is stacked. A spin valve magnetoresistive sensor, wherein the antiferromagnetic layer is made of a Pd-Pt-Mn-Cr alloy, and is heat-treated for ordering the antiferromagnetic layer.
【請求項2】 前記反強磁性層の膜組成が、Mnを45
〜55at%、Crを2〜10at%、Pdを20〜35at
%、残部をPtとすることを特徴とする請求項1に記載
のスピンバルブ磁気抵抗センサ。
2. The film composition of the antiferromagnetic layer is such that Mn is 45
~ 55at%, Cr 2 ~ 10at%, Pd 20 ~ 35at
The spin valve magnetoresistive sensor according to claim 1, wherein the balance is Pt.
【請求項3】 前記熱処理の温度が250℃乃至300
℃の範囲であることを特徴とする請求項1又は2に記載
のスピンバルブ磁気抵抗センサ。
3. The temperature of the heat treatment is 250 ° C. to 300 ° C.
The spin valve magnetoresistive sensor according to claim 1 or 2, wherein the temperature is in the range of ° C.
【請求項4】 請求項1乃至請求項3のいずれかに記載
のスピンバルブ磁気抵抗センサを備えることを特徴とす
る薄膜磁気ヘッド。
4. A thin-film magnetic head comprising the spin-valve magnetoresistive sensor according to claim 1.
JP11055773A 1999-03-03 1999-03-03 Spin valve magneto-resistance sensor and thin-film magnetic head Pending JP2000251226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11055773A JP2000251226A (en) 1999-03-03 1999-03-03 Spin valve magneto-resistance sensor and thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11055773A JP2000251226A (en) 1999-03-03 1999-03-03 Spin valve magneto-resistance sensor and thin-film magnetic head

Publications (1)

Publication Number Publication Date
JP2000251226A true JP2000251226A (en) 2000-09-14

Family

ID=13008208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11055773A Pending JP2000251226A (en) 1999-03-03 1999-03-03 Spin valve magneto-resistance sensor and thin-film magnetic head

Country Status (1)

Country Link
JP (1) JP2000251226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819532B2 (en) 2001-10-12 2004-11-16 Nec Corporation Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer
US7339769B2 (en) * 2004-03-02 2008-03-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with antiferromagnetic exchange-coupled structure having underlayer for enhancing chemical-ordering in the antiferromagnetic layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819532B2 (en) 2001-10-12 2004-11-16 Nec Corporation Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer
US7339769B2 (en) * 2004-03-02 2008-03-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with antiferromagnetic exchange-coupled structure having underlayer for enhancing chemical-ordering in the antiferromagnetic layer

Similar Documents

Publication Publication Date Title
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
US6322911B1 (en) Spin-valve magnetic resistance sensor and thin-film magnetic head
US6636394B1 (en) Spin-valve magnetic resistance sensor and thin-film magnetic head
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
US7046490B1 (en) Spin valve magnetoresistance sensor and thin film magnetic head
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
US7830641B2 (en) Tunneling magnetoresistive (TMR) sensor with a Co-Fe-B free layer having a negative saturation magnetostriction
JP3219713B2 (en) Method of manufacturing magnetoresistive element
US6833981B2 (en) Spin valve magnetic head with three underlayers
US20020036876A1 (en) Magnetoresistive element, method for manufacturing the same, and magnetic device using the same
KR20060101139A (en) Magnetoresistive element, magnetic head, and magnetic memory apparatus
Childress et al. IrMn spin-valves for high density recording
JP3706793B2 (en) Spin valve thin film magnetic element, method of manufacturing the same, and thin film magnetic head including the spin valve thin film magnetic element
JP3585807B2 (en) Magnetoresistive element, magnetic head, magnetic head assembly, and magnetic recording device
JPH1065232A (en) Magnetoresistive effect device
US6215631B1 (en) Magnetoresistive effect film and manufacturing method therefor
JPH09205234A (en) Magnetoresistance effect element and magnetoresistance effect sensor
JP2001358381A (en) Magnetic resistance effect film, magnetic resistance effect type head, and information-reproducing device
US7206173B2 (en) Magnetoresistive-effect element having a prominent magnetoresistive effect, and method of manufacturing same
JP3585028B2 (en) Magnetoresistive film and method of manufacturing the same
JP2000251226A (en) Spin valve magneto-resistance sensor and thin-film magnetic head
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
JP2000068569A (en) Exchange coupled film and magneto resistive effect element using the same
JP2000251225A (en) Spin valve magneto-resistance sensor and thin-film magnetic head