JP2000249834A - Polarizer and its production - Google Patents

Polarizer and its production

Info

Publication number
JP2000249834A
JP2000249834A JP11053114A JP5311499A JP2000249834A JP 2000249834 A JP2000249834 A JP 2000249834A JP 11053114 A JP11053114 A JP 11053114A JP 5311499 A JP5311499 A JP 5311499A JP 2000249834 A JP2000249834 A JP 2000249834A
Authority
JP
Japan
Prior art keywords
polarizer
glass
columns
substrate
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11053114A
Other languages
Japanese (ja)
Inventor
Mineo Isokami
峯男 磯上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11053114A priority Critical patent/JP2000249834A/en
Publication of JP2000249834A publication Critical patent/JP2000249834A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters

Landscapes

  • Polarising Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polarizer having excellent homogeneity and stable performance without dispersing metal particles by arranging a large number of columns produced by depositing an electrically conductive layer on the surface of a semiconductor or dielectric material in a transparent base body. SOLUTION: This polarizer 1 has a polarizing portion formed in a planer transparent base body 2 comprising one or more kinds of glass, crystals and plastics. The polarizing portion consists of columns 3 arranged at an equal distance of several 10 to several 100 nm from one another in the transparent base body 2. The column 3 consist of a surface layer of a metal thin film which is an electrically conductive layer of about 10 to 1,000 Å thickness, and an inner layer consisting of a semiconductor such as a Si single crystal or a dielectric material. The minor axis and major axis of the columns 3 are specified to 5 to 50 nm and 500 to 50,000 nm, respectively, and the aspect ratio is specified to >=10. The distance between adjacent columns is preferably controlled to 50 to 200 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光通信機器,光記
録機器,光センサー等に使用される偏光子及びその製造
方法に関するものであり、特に光通信用機器に用いられ
る光アイソレータに好適に使用される偏光子及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizer used for an optical communication device, an optical recording device, an optical sensor, and the like, and a method for manufacturing the same, and is particularly suitable for an optical isolator used for an optical communication device. The present invention relates to a polarizer used and a method for producing the polarizer.

【0002】[0002]

【従来の技術】従来の偏光子は、ある種の溶液をセル内
に入れたもの、プラスチックに着色剤を入れたもののご
とく着色イオンを利用した素子、基板上に誘電体薄膜を
多数積層し、多層薄膜の干渉を利用した素子、複屈折の
大きな結晶で構成されたグラントムソンプリズムに代表
される偏光プリズム、ブリュースター条件を利用して偏
光成分を分離するPBS(偏光ビームスプリッター)、
あるいは高分子材料を一定方向に配向させ、一方向の偏
光成分を吸収する偏光フィルムなどが主流を占めてい
た。
2. Description of the Related Art A conventional polarizer is an element utilizing colored ions, such as a cell in which a certain kind of solution is put in a cell, a cell in which a colorant is put in a plastic, and a large number of dielectric thin films laminated on a substrate. An element utilizing interference of a multilayer thin film, a polarizing prism typified by a Glan-Thompson prism composed of a crystal having a large birefringence, a PBS (polarizing beam splitter) for separating polarization components using Brewster conditions,
Alternatively, a polarizing film that orients a polymer material in a certain direction and absorbs a polarized component in one direction has been dominant.

【0003】ところが、従来の偏光子では着色イオンを
利用したものは波長依存性が大きく、波長毎に最適な波
長特性を有するものを選択しなければならなかった。ま
た、屈折率の大きな結晶で構成されたものは波長依存性
は小さいが、加工が困難で素子寸法に制限があり、小型
化し難いなど、これまで小型で波長特性に優れた偏光子
はなかった。
However, a conventional polarizer using colored ions has a large wavelength dependence, and it is necessary to select a polarizer having an optimum wavelength characteristic for each wavelength. In addition, although a polarizer composed of a crystal having a large refractive index has a small wavelength dependency, there is no polarizer having a small size and excellent wavelength characteristics so far, such as difficulty in processing and a limitation in element size, making it difficult to miniaturize. .

【0004】上述した偏光子に対して、最近、光通信用
デバイスとして偏光ガラスが使用されている。この偏光
子は、例えば透明なガラスを透明固体媒体とし、この媒
体中に楕円状の銀粒子を一定方向に揃えて分散させ異方
性を持たせた構造になっている(例えば、特公平2−4
0619号公報等を参照)。
In recent years, a polarizing glass has been used as an optical communication device for the above-mentioned polarizer. This polarizer has a structure in which, for example, transparent glass is used as a transparent solid medium, and elliptical silver particles are aligned in a certain direction and dispersed in the medium to give anisotropy (for example, Japanese Patent Publication No. -4
No. 0619).

【0005】この偏光ガラスの製造方法は、まず銀及び
塩化物、臭化物及びヨウ化物よりなる群から選択された
少なくとも一つのハロゲン化物よりなるガラス用バッチ
を溶融し、必要とされる形状のガラス素地に成型する。
次に、前記ガラス素地を定められた条件にて熱処理を行
い、ガラス中にハロゲン化銀粒子を析出させる。
[0005] In this method for producing a polarizing glass, first, a glass batch comprising at least one halide selected from the group consisting of silver and chloride, bromide and iodide is melted, and a glass substrate having a required shape is melted. Mold into
Next, the glass substrate is subjected to a heat treatment under predetermined conditions to precipitate silver halide grains in the glass.

【0006】さらに、前記ガラス素地を定められた温度
範囲において張力を加えて延伸し、前記ハロゲン化銀粒
子を伸長させ、張力方向へ整列させる。最後に、上記伸
長されたガラス素地を定められた温度範囲において還元
雰囲気中に暴露し、ハロゲン化銀の一部を金属銀粒子に
還元することによって偏光子を得ることができる。
Further, the glass base is stretched by applying a tension in a predetermined temperature range, so that the silver halide grains are elongated and aligned in the tension direction. Finally, a polarizer can be obtained by exposing the stretched glass substrate to a reducing atmosphere in a defined temperature range and reducing a part of the silver halide to metal silver particles.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の製造方法は、前者はハロゲン化銀から金属銀を析出す
るために、還元雰囲気中にて熱処理を行っている。これ
により、ガラス素地内に析出する金属銀の量を制御する
ことは困難であり、安定した光学特性を得ることが出来
なかった。そのため、このガラス素地を加熱延伸して
も、安定して再現性良く偏光特性を得ることが困難とな
る。
However, in these production methods, in the former, heat treatment is performed in a reducing atmosphere in order to precipitate metallic silver from silver halide. As a result, it is difficult to control the amount of metallic silver precipitated in the glass substrate, and stable optical characteristics cannot be obtained. Therefore, even if the glass substrate is heated and stretched, it is difficult to stably obtain reproducible polarization characteristics.

【0008】また、ガラス素地内の厚さ方向に温度分布
が存在することにより、中心部に金属銀に還元されなか
ったハロゲン化銀が残留し、これが透過率に悪影響を及
ぼすという問題もあった。
In addition, there is a problem that the presence of a temperature distribution in the thickness direction in the glass substrate causes silver halide not reduced to metallic silver to remain in the center, which adversely affects the transmittance. .

【0009】さらに、ハロゲン化銀粒子は金属銀に還元
される際、1/3程の体積収縮を伴うため、還元が行わ
れているガラス素地の表面部分はポーラスとなり、長期
信頼性においても問題があった。
Furthermore, when the silver halide grains are reduced to metallic silver, the volume shrinks by about 1/3, so that the surface portion of the glass substrate being reduced becomes porous, and there is a problem in long-term reliability. was there.

【0010】そこで、ガラス等の誘電体基板上に真空蒸
着等の薄膜製造プロセスを利用して不連続な島状粒子層
と、ガラス等の誘電体層を交互に形成し、加熱延伸によ
って異方性を持たせるようにしたものが提案されてい
る。(1990年電子情報通信学会秋季全国大会予稿集
C−212等を参照)。この偏光子は、上記島状の金属
粒子層における各島が金属粒子の役割を果たし、金属粒
子を分散させたものと同じ構造になる。
Therefore, a discontinuous island-like particle layer and a dielectric layer such as glass are alternately formed on a dielectric substrate such as glass by using a thin film manufacturing process such as vacuum deposition, and then anisotropically formed by heating and stretching. Some have been proposed to have the property. (Refer to the Proceedings of the IEICE Autumn National Convention 1990, C-212, etc.). In this polarizer, each island in the island-shaped metal particle layer serves as a metal particle, and has the same structure as that in which the metal particles are dispersed.

【0011】しかしながら、この方法では、積層中に金
属粒子がガラス膜中へ拡散してしまい、安定した偏光特
性を得ることが難しく、特に、所望の波長において、消
光比を得ることが難しかった。以上の様に、これまでの
金属粒子分散によるガラス偏光子はガラス中への金属粒
子の分散の不均質、分散金属粒子の力学的な伸長の不均
質、金属粒子のガラス中への拡散と固溶による局所的な
不均質など均質性に問題があり、また積層タイプでは工
程が多くなり、歩留りに問題があった。
However, according to this method, the metal particles diffuse into the glass film during the lamination, and it is difficult to obtain a stable polarization characteristic. In particular, it is difficult to obtain an extinction ratio at a desired wavelength. As described above, conventional glass polarizers based on metal particle dispersion have inhomogeneous dispersion of metal particles in glass, inhomogeneous mechanical elongation of dispersed metal particles, diffusion of metal particles into glass and solidification. There was a problem in homogeneity, such as local inhomogeneity due to melting, and the lamination type had many steps, resulting in a problem in yield.

【0012】そこで、本発明は金属粒子を分散させるこ
となしに、均質性に優れ、安定した性能を有する偏光子
及びその製造方法を提供することを目的とする。
Accordingly, an object of the present invention is to provide a polarizer having excellent homogeneity and stable performance without dispersing metal particles, and a method for producing the same.

【0013】[0013]

【課題を解決するための手段】上記課題を達成するため
に、本発明の偏光子は、透明基体中に、半導体または誘
電体の表面に導電層を被着させた柱状体の多数を配列さ
せて成る。
In order to achieve the above object, a polarizer according to the present invention comprises a transparent substrate in which a large number of columnar bodies each having a conductive layer adhered to a semiconductor or dielectric surface are arranged. Consisting of

【0014】また、柱状体の短軸長さが5〜50nm、
長軸長さが500〜50000nmであり、且つ互いに
隣接する柱状体の間隔が50〜200nmであることを
特徴とする。
Further, the short axis length of the columnar body is 5 to 50 nm,
It is characterized in that the major axis length is 500 to 50,000 nm, and the interval between adjacent columnar bodies is 50 to 200 nm.

【0015】また、柱状体はSiから成る誘電体の表面
に10〜1000Åの導電層を形成させたものであるこ
とを特徴とする。
The columnar body is characterized in that a conductive layer of 10 to 1000 ° is formed on the surface of a dielectric made of Si.

【0016】また、透明基体中に光吸収異方性を有する
多数の柱状体を配列させて成る偏光子の製造方法であっ
て、支持基板に誘電体から成る板状体を接合する工程
と、前記板状体から不要部分を除去して多数の柱状体を
形成する工程と、前記柱状体の表面に導電層を形成する
工程と、前記支持体基板の一部もしくは全てを除去する
とともに前記柱状体を透明基体で包囲する工程とを含む
ことを特徴とする。
Also, a method of manufacturing a polarizer, comprising arranging a large number of columns having light absorption anisotropy in a transparent substrate, comprising: bonding a plate made of a dielectric to a support substrate; Removing unnecessary portions from the plate-like body to form a large number of pillars, forming a conductive layer on the surface of the pillar-like body, removing a part or all of the support substrate, and removing the columnar body. Surrounding the body with a transparent substrate.

【0017】ここで、半導体又は誘電体とは、誘電率が
1以上のものをいうものとする。また、導電層は銅の導
電率を1とした場合の比導電率が0.1以上好ましくは
0.5以上の金属(Cu,Al,Cr,Au,Ag等)
とし、さらに好適には、1以上(Cu,Ag等)とする
とよい。
Here, a semiconductor or a dielectric refers to one having a dielectric constant of 1 or more. Further, the conductive layer is a metal (Cu, Al, Cr, Au, Ag, etc.) having a specific conductivity of 0.1 or more, preferably 0.5 or more when the conductivity of copper is set to 1.
More preferably, it is good to be 1 or more (Cu, Ag, etc.).

【0018】上記柱状体の形状及び間隔を限定する数値
範囲は、消光比を40dB以上得ることができ、かつ光
の散乱が生じにくい好適範囲である。
The numerical range for limiting the shape and the interval of the columnar body is a preferable range in which an extinction ratio of 40 dB or more can be obtained and light scattering does not easily occur.

【0019】なお、柱状体は端部において先細状になっ
ていてもよく、またその切断面において少なくとも2層
構造となっており、表層は約10〜1000Å厚みの特
に金属薄膜、内層はSi単結晶から成るものとするとよ
い。
The columnar body may be tapered at the end, and has at least a two-layer structure at the cut surface. The surface layer is a metal thin film having a thickness of about 10 to 1000 mm, and the inner layer is a single layer of Si. It is good to consist of a crystal.

【0020】また、本発明の偏光子の具体的な製造方法
は、透明基体中に光吸収異方性を有する多数の棒状金属
体を配列させてなる偏光子の製造方法であって、Si加
工の工程と、前記Siに金属薄膜を被覆し棒状金属体を
形成する工程、そして前記棒状金属体を透明基体で包囲
する工程とを含むことを特徴とする。
Further, a specific method for producing a polarizer of the present invention is a method for producing a polarizer comprising arranging a large number of rod-shaped metal bodies having light absorption anisotropy in a transparent substrate. And a step of forming a rod-shaped metal body by coating the Si with a metal thin film, and surrounding the rod-shaped metal body with a transparent substrate.

【0021】ここで、透明基体としては、各種無機材料
及び有機材料が使用可能である。また、光吸収異方性を
有する金属薄膜は、例えばCu,Ni,Al,Co,F
e,Sn,Ag等の金属元素から1種以上が適宜選択さ
れ、柱状体のアスペクト比は特に10以上である。
Here, as the transparent substrate, various inorganic materials and organic materials can be used. Further, a metal thin film having light absorption anisotropy is, for example, Cu, Ni, Al, Co, F
One or more metal elements such as e, Sn, and Ag are appropriately selected, and the columnar body has an aspect ratio of 10 or more.

【0022】これらの構成により、当該基板は偏光子と
して機能し、良好な偏光特性を得ることが可能となる。
With these configurations, the substrate functions as a polarizer, and good polarization characteristics can be obtained.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づき詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0024】図1に示すように、偏光子1は、ガラス,
結晶,プラスチックのうち一種以上から成る板状の透明
基体2に偏光部を設けたものである。この偏光部は透明
基体2中に、数10〜数100nmのほぼ等間隔に配列
された柱状体3から構成され、かつ柱状体3は図2に示
すように約10〜1000Å厚みの導電層である金属薄
膜から成る表層3bと例えばSi単結晶等の半導体また
は誘電体からなる内層3aからなっている。また、柱状
体3の長軸方向は透明基体2の両主面2a、2b側に向
いている。
As shown in FIG. 1, a polarizer 1 is made of glass,
A polarizing section is provided on a plate-shaped transparent substrate 2 made of at least one of a crystal and a plastic. This polarizing section is composed of columnar bodies 3 arranged at approximately equal intervals of several tens to several hundreds of nm in a transparent substrate 2, and the columnar bodies 3 are formed of a conductive layer having a thickness of about 10 to 1000 mm as shown in FIG. It comprises a surface layer 3b made of a certain metal thin film and an inner layer 3a made of a semiconductor or dielectric such as, for example, Si single crystal. In addition, the major axis direction of the columnar body 3 faces the two main surfaces 2a and 2b of the transparent substrate 2.

【0025】ここで、消光比を40dB以上得ることが
でき、かつ光の散乱が生じにくい偏光子とするには、柱
状体の短軸長さを5〜50nm、長軸長さを500〜5
0000nmとし、そのアスペクト比を10以上とし、
さらに、互いに隣接する柱状体の間隔を50〜200n
mとするとよい。なお、上記透明基体2の透明とは偏光
子1の使用波長の光に対して透明という意味であり、透
明基体2には、ホウ珪酸ガラスやシリカガラス等のガラ
ス材料、Ta2 5 等の薄膜誘電体、ポリメチルメタク
リレート(PMMA)等の有機材料から1種以上が適宜
選択される。また、光吸収異方性を有する柱状体3の表
層3bはCu,Ni,Al,Co,Mn,Fe,Sn,
Ag等の金属元素から一種以上が適宜選択される層とす
ると好適である。
Here, in order to obtain a polarizer capable of obtaining an extinction ratio of 40 dB or more and hardly causing light scattering, the short axis length of the columnar body is 5 to 50 nm and the long axis length is 500 to 5 nm.
0000 nm, the aspect ratio is 10 or more,
Further, the interval between adjacent columnar bodies is set to 50 to 200 n.
m. The transparency of the transparent substrate 2 means that the transparent substrate 2 is transparent to the light having the wavelength used by the polarizer 1, and the transparent substrate 2 is made of a glass material such as borosilicate glass or silica glass, or a material such as Ta 2 O 5 . One or more kinds are appropriately selected from organic materials such as a thin film dielectric and polymethyl methacrylate (PMMA). The surface layer 3b of the columnar body 3 having light absorption anisotropy is formed of Cu, Ni, Al, Co, Mn, Fe, Sn,
It is preferable that the layer is formed by appropriately selecting one or more of metal elements such as Ag.

【0026】このように構成された偏光子1は、基板2
の側面2b側から入射された光L1が、柱状体3の長軸
方向で光が吸収されるため、この長軸方向成分が除去さ
れた偏光光L2となって出射される。このような偏光特
性を有する偏光子1は、特に光アイソレータとして好適
に使用可能である。
The polarizer 1 configured as described above is provided on the substrate 2
The light L1 incident from the side surface 2b of the column 3 is absorbed in the major axis direction of the columnar body 3, and is emitted as polarized light L2 from which the major axis component is removed. The polarizer 1 having such polarization characteristics can be suitably used particularly as an optical isolator.

【0027】以下、この偏光子1の製造方法の一例を図
3(a)〜(f)に基づき説明する。
Hereinafter, an example of a method for manufacturing the polarizer 1 will be described with reference to FIGS.

【0028】まず、図3(a)に示すように、例えばガ
ラス基板11にSiウエハー12を接合する。次に、図
3(b)に示すように、Siウエハー12を1μm以下
に極薄層化した後、Si表面にSiO2 やSi3 4
から成るマスク材13を被覆し、エッチング部13aを
形成する。マスク材13はSiのエッチング溶液に耐性
のある物質から適宜選択される。マスクしたSiをエッ
チングすることにより、図3(c)に示すような柱状体
(内層)3aが形成される。このようにして得られた柱
状体3aに例えば電子ビーム蒸着法等の種々の薄膜形成
方法により、金属等の導電層である表層3bをコートす
ることで、図3(d)に示すような柱状体3を得ること
ができる。次いで、図3(e)に示すように、透明基体
材料のオーバーコートを行い、柱状体3を透明基体2で
包囲する。このようなオーバーコートは薄膜形成法を主
とするが、ゾル−ゲル法等の比較的低温なプロセスを行
うと良い。最後に、CMP法等により不要部分の除去と
表面処理加工を行うことで、図3(f)に示すような所
望の偏光子1を得ることができる。
First, as shown in FIG. 3A, a Si wafer 12 is bonded to a glass substrate 11, for example. Next, as shown in FIG. 3B, after the Si wafer 12 is made extremely thin to 1 μm or less, the Si surface is covered with a mask material 13 made of SiO 2 , Si 3 N 4, etc. To form The mask material 13 is appropriately selected from substances having resistance to the etching solution of Si. By etching the masked Si, a columnar body (inner layer) 3a as shown in FIG. 3C is formed. The columnar body 3a thus obtained is coated with a surface layer 3b, which is a conductive layer of a metal or the like, by various thin film forming methods such as an electron beam evaporation method, thereby forming a columnar body as shown in FIG. Body 3 can be obtained. Next, as shown in FIG. 3E, the transparent base material is overcoated, and the columnar body 3 is surrounded by the transparent base 2. Such an overcoat is mainly formed by a thin film forming method, but a relatively low-temperature process such as a sol-gel method is preferably performed. Finally, a desired polarizer 1 as shown in FIG. 3F can be obtained by removing unnecessary portions and performing a surface treatment by a CMP method or the like.

【0029】[0029]

【実施例】以下、本発明の具体的な実施例について説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0030】〔例1〕厚み400μmの(100)面ま
たは(110)面を主面とするSiウエハーと厚み1m
mのアルミノ珪酸塩ガラス(SiO2 :55.3重量%、A
2 3 :22.9重量%、B2 3 :7.4 重量%、Mg
O:8.5 重量%、CaO:4.7 重量%、Na2 O:0.6
重量%、K2 O:0.4 重量%)を400℃、−1200
Vの条件で電界熱接合を行った。
Example 1 A Si wafer having a thickness of 400 μm and having a (100) or (110) plane as a main surface and a thickness of 1 m
m aluminosilicate glass (SiO 2 : 55.3% by weight, A
l 2 O 3 : 22.9% by weight, B 2 O 3 : 7.4% by weight, Mg
O: 8.5 wt%, CaO: 4.7 wt%, Na 2 O: 0.6
% By weight, K 2 O: 0.4% by weight) at 400 ° C. and -1200.
The electric field bonding was performed under the condition of V.

【0031】次に、CMP法(Chemical and Mechanica
l Polishing)により、Siの厚みを約1.0 μmの厚みま
で平坦加工研磨を行った。このようにして得られた極薄
膜単結晶Si上にSi3 4 をマスク材としてフォトリ
ソグラフィーにより、幅約50nm間隔、約300nm
のグリッドを形成した。これをKOH溶液を用いて異方
性エッチングを行ったところ、径が約50nmの台形状
Si単結晶が間隔約400nmで多数形成された。つい
でスパッター装置を用いて、台形状Si単結晶の表面に
金属Cuを厚さ約20nmオーバーコートした。このよ
うにして直径がほぼ80nm程度の棒状Cu金属体が形
成された。この棒状Cu金属体が直立したガラス基板に
ホウケイ酸ガラス(コーニング7740)を1μm厚み
にスパッタ成膜して、棒状のCu金属体をホウケイ酸ガ
ラスでもって完全にコートした。最後に、このようにし
て得られたサンプル基板から不要部分を削除し、成形加
工を行い3×3mmサイズの偏光子を作製し、その偏光
特性を測定したところ、消光比45dB、挿入損失0.
08dBと優れた特性値を示した。
Next, the CMP method (Chemical and Mechanica)
l Polishing), flattening and polishing were performed to a thickness of about 1.0 μm of Si. On the ultra-thin single-crystal Si obtained in this manner, by photolithography using Si 3 N 4 as a mask material, an interval of about 50 nm, an interval of about 300 nm
Grid was formed. When this was subjected to anisotropic etching using a KOH solution, a large number of trapezoidal Si single crystals having a diameter of about 50 nm were formed at intervals of about 400 nm. Then, using a sputtering apparatus, metal Cu was overcoated on the surface of the trapezoidal Si single crystal by about 20 nm in thickness. Thus, a rod-shaped Cu metal body having a diameter of about 80 nm was formed. Boron silicate glass (Corning 7740) was sputter-deposited to a thickness of 1 μm on the glass substrate on which the rod-shaped Cu metal body was erected, and the rod-shaped Cu metal body was completely coated with borosilicate glass. Finally, unnecessary portions were removed from the sample substrate thus obtained, and a molding process was performed to produce a polarizer having a size of 3 × 3 mm. When the polarization characteristics were measured, the extinction ratio was 45 dB and the insertion loss was 0.
It exhibited an excellent characteristic value of 08 dB.

【0032】〔例2〕厚み300μmの(110)面を
主面とするSIMOX (Separation by implanted oxygen)
ウエハーと0.5mm厚さのBK7ガラスを上記例1と
同様に陽極接合し、Si基板と埋め込み酸化膜を除去し
た。この結果、ガラス基板上に厚さ0.2μmの薄膜S
i単結晶が形成された。この単結晶Si上に走査型トン
ネル顕微鏡(STM)で幅約10nm、間隔約50nm
の陽極酸化膜パターンを描画した。次に、この陽極酸化
膜をマスクにしてSiをヒドラジン溶液でエッチング
し、径約8nmの柱状Si単結晶を間隔約70nmで多
数形成した。次いでスパッター装置を用い、金属Niを
厚さ約20nm単結晶Si表面にオーバーコートした。
このようにして径が約30nm程度の棒状Ni金属体が
形成された。この棒状Ni金属体が直立したガラス基板
に基板と同組成のガラスを0.3μmスパッターして、
棒状Ni金属体を完全にガラス中に埋設した。最後にサ
ンプル基板から不要部分を除去し、成形加工して3×3
mmサイズの偏光子を作製した。その結果、消光比49
dB、挿入損失0.05dBの優れた偏光特性が得られ
た。
Example 2 SIMOX (Separation by implanted oxygen) having a (110) plane having a thickness of 300 μm as a main surface
The wafer and BK7 glass having a thickness of 0.5 mm were anodically bonded in the same manner as in Example 1 to remove the Si substrate and the buried oxide film. As a result, a thin film S having a thickness of 0.2 μm was formed on a glass substrate.
An i single crystal was formed. A width of about 10 nm and an interval of about 50 nm are formed on this single crystal Si by a scanning tunneling microscope (STM).
Was drawn. Next, using this anodic oxide film as a mask, Si was etched with a hydrazine solution to form a large number of columnar Si single crystals having a diameter of about 8 nm at intervals of about 70 nm. Next, using a sputtering apparatus, metal Ni was overcoated on the surface of the single crystal Si having a thickness of about 20 nm.
Thus, a rod-shaped Ni metal body having a diameter of about 30 nm was formed. A glass of the same composition as the substrate was sputtered on the glass substrate on which the rod-shaped Ni metal body was erected, by 0.3 μm,
The rod-shaped Ni metal body was completely embedded in the glass. Finally, remove unnecessary parts from the sample substrate, and mold to 3 × 3
A polarizer having a size of mm was produced. As a result, the extinction ratio of 49
Excellent polarization characteristics of dB and insertion loss of 0.05 dB were obtained.

【0033】〔例3〕厚さ350μmの(110)貼り
合わせSOI(Silicon on Insulator)基板とシリカガ
ラスを例1と同様な方法で接合し、上記例2のようにS
i基板と酸化膜を除去した。
Example 3 A 350 μm thick (110) bonded SOI (Silicon on Insulator) substrate and silica glass were joined in the same manner as in Example 1, and S
The i-substrate and the oxide film were removed.

【0034】この結果、シリカガラス基板上には厚み
0.4μmの薄膜Si単結晶が形成された。
As a result, a thin film Si single crystal having a thickness of 0.4 μm was formed on the silica glass substrate.

【0035】この単結晶Si上に例2と同様にSTMを
用いてナノパターンの描画を行い、シリコンのエッチン
グを行うことで、径約15nmの柱状Si単結晶を間隔
約200nmで多数形成した。次いでスパッター装置を
用いて金属Alを厚さ約30nm単結晶Si表面上にオ
ーバーコートした。このようにして径が約50nm前後
の棒状Al金属体が形成された。これを基板として、マ
グネトロンスパッター装置を用い、Taをターゲットと
し、Ar+O2 の雰囲気下でスパッタ−を行い、厚み約
0.8μmのTa2 5 の薄膜でコートした。このよう
にして作製した同サイズの偏光子の偏光特性を評価した
ところ、消光比45dB、挿入損失0.09dBと実用
レベルの特性を示した。
A nanopattern was drawn on this single-crystal Si using STM in the same manner as in Example 2, and silicon was etched to form a large number of columnar Si single crystals having a diameter of about 15 nm at intervals of about 200 nm. Next, using a sputtering apparatus, metal Al was overcoated on the surface of the single crystal Si having a thickness of about 30 nm. Thus, a rod-shaped Al metal body having a diameter of about 50 nm was formed. Using this as a substrate, sputtering was carried out using a magnetron sputtering apparatus with Ta as a target in an atmosphere of Ar + O 2 , and coated with a thin film of Ta 2 O 5 having a thickness of about 0.8 μm. When the polarization characteristics of the polarizer of the same size manufactured in this way were evaluated, the extinction ratio was 45 dB, the insertion loss was 0.09 dB, and the characteristics were at a practical level.

【0036】〔例4〕上記例2と同様なウエハーとガラ
ス基板、金属としてはCoを用い、同様な作製法で厚さ
0.2μmの偏光素子を10枚作製した後、これらを接
合して厚み約2μmの偏光子を製作した。このようにし
て作製した偏光子の偏光特性を評価したところ、消光比
42dB、挿入損失0.1dBと実用レベルの特性を示
した。
Example 4 The same wafer and glass substrate as in Example 2 and Co as the metal were used. Ten polarizing elements having a thickness of 0.2 μm were manufactured by the same manufacturing method, and these were joined. A polarizer having a thickness of about 2 μm was manufactured. When the polarization characteristics of the polarizer thus manufactured were evaluated, the extinction ratio was 42 dB and the insertion loss was 0.1 dB.

【0037】[0037]

【発明の効果】以上詳述したように、本発明による偏光
子及び製造方法によれば、透明基体中に配列された柱状
体により、従来方法では得難い、バラツキのほとんどな
い高い均質性を有する偏光子を提供できる。
As described in detail above, according to the polarizer and the manufacturing method of the present invention, the columnar body arranged in the transparent substrate makes it possible to obtain a polarized light having high uniformity which is hardly obtained by the conventional method and has almost no variation. Can provide children.

【0038】また、従来のような延伸工程や積層工程な
ど後工程での偏光特性に大きな影響を与える工程がない
ことから、安定した品質と高い歩留まりが得られる。
In addition, since there is no conventional process such as a stretching process or a laminating process that greatly affects polarization characteristics in a subsequent process, stable quality and a high yield can be obtained.

【0039】さらに、素材としてSiウエハーを使用す
ることから、既に確立されているLSI半導体プロセス
がそのまま利用でき、且つシリコンのマイクロマシン加
工の適用によりナノメートルオーダーの加工が可能とな
ることから、量産性に富み、高精度且つ安価な偏光子を
提供できる。
Further, since a Si wafer is used as a raw material, an established LSI semiconductor process can be used as it is, and a nanometer-order processing can be performed by applying a silicon micromachining process. And a highly accurate and inexpensive polarizer can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる偏光子を模式的に示す一部破断
斜視図である。
FIG. 1 is a partially broken perspective view schematically showing a polarizer according to the present invention.

【図2】本発明に係わる偏光子の柱状体を模式的に示す
斜視図である。
FIG. 2 is a perspective view schematically illustrating a columnar body of a polarizer according to the present invention.

【図3】(a)〜 (f)は、それぞれ本発明に係わる
偏光子の製造工程を模式的に示す断面図である。
3 (a) to 3 (f) are cross-sectional views schematically showing steps of manufacturing a polarizer according to the present invention.

【符号の説明】[Explanation of symbols]

1:偏光子 2:透明基体 3:柱状体 3a:内層 3b:表層 1: polarizer 2: transparent substrate 3: columnar body 3a: inner layer 3b: surface layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明基体中に、半導体または誘電体の表
面に導電層を被着させた柱状体の多数を配列させて成る
偏光子。
1. A polarizer comprising a transparent substrate and a large number of columnar members each having a conductive layer applied to a surface of a semiconductor or a dielectric arranged on a transparent substrate.
【請求項2】 前記柱状体の短軸長さが5〜50nm、
長軸長さが500〜50000nmであり、且つ互いに
隣接する柱状体の間隔が50〜200nmであることを
特徴とする請求項1に記載の偏光子。
2. A column having a minor axis length of 5 to 50 nm,
2. The polarizer according to claim 1, wherein the major axis length is 500 to 50,000 nm, and an interval between adjacent columnar bodies is 50 to 200 nm. 3.
【請求項3】 前記柱状体はSiから成る誘電体の表面
に10〜1000Åの導電層を形成させたものであるこ
とを特徴とする請求項1に記載の偏光子。
3. The polarizer according to claim 1, wherein the columnar body is formed by forming a conductive layer of 10 to 1000 ° on a surface of a dielectric made of Si.
【請求項4】 透明基体中に光吸収異方性を有する多数
の柱状体を配列させて成る偏光子の製造方法であって、
支持基板に誘電体から成る板状体を接合する工程と、前
記板状体から不要部分を除去して多数の柱状体を形成す
る工程と、前記柱状体の表面に導電層を形成する工程
と、前記支持体基板の一部もしくは全てを除去するとと
もに前記柱状体を透明基体で包囲する工程とを含むこと
を特徴とする偏光子の製造方法。
4. A method for producing a polarizer, comprising arranging a large number of columns having light absorption anisotropy in a transparent substrate,
A step of joining a plate made of a dielectric to a support substrate, a step of forming unnecessary columns from the plate to form a large number of columns, and a step of forming a conductive layer on the surface of the column. Removing part or all of the support substrate and enclosing the columnar body with a transparent substrate.
JP11053114A 1999-03-01 1999-03-01 Polarizer and its production Pending JP2000249834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11053114A JP2000249834A (en) 1999-03-01 1999-03-01 Polarizer and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11053114A JP2000249834A (en) 1999-03-01 1999-03-01 Polarizer and its production

Publications (1)

Publication Number Publication Date
JP2000249834A true JP2000249834A (en) 2000-09-14

Family

ID=12933784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11053114A Pending JP2000249834A (en) 1999-03-01 1999-03-01 Polarizer and its production

Country Status (1)

Country Link
JP (1) JP2000249834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025325A1 (en) * 2000-09-20 2002-03-28 Namiki Seimitsu Houseki Kabushiki Kaisha Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
CN105182611A (en) * 2015-10-23 2015-12-23 京东方科技集团股份有限公司 Optical film, backlight module and display device
EP3508898A4 (en) * 2016-09-02 2020-04-22 Shin-Etsu Chemical Co., Ltd. Light guide body, optical module, and method for adjusting optical axis of optical path

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025325A1 (en) * 2000-09-20 2002-03-28 Namiki Seimitsu Houseki Kabushiki Kaisha Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
US7002742B2 (en) 2000-09-20 2006-02-21 Namiki Seimitsu Houseki Kabushiki Kaisha Polarizing function element, optical isolator, laser diode module and method of producing polarizing function element
CN105182611A (en) * 2015-10-23 2015-12-23 京东方科技集团股份有限公司 Optical film, backlight module and display device
EP3508898A4 (en) * 2016-09-02 2020-04-22 Shin-Etsu Chemical Co., Ltd. Light guide body, optical module, and method for adjusting optical axis of optical path
US20200183102A1 (en) * 2016-09-02 2020-06-11 Shin-Etsu Chemical Co., Ltd. Light guide body, optical module, and optical path and optical axis adjustment method
US11143829B2 (en) 2016-09-02 2021-10-12 Shin-Etsu Chemical Co., Ltd. Light guide body, optical module, and optical path and optical axis adjustment method

Similar Documents

Publication Publication Date Title
US6772608B1 (en) Method for producing UV polarizers
US20040239833A1 (en) Polarizing device, and method for manufacturing the same
JP2002521711A (en) Method for manufacturing an optical waveguide
TW200406618A (en) Display panel and multilayer plates for production of this display panel
US6847773B2 (en) Optical waveguide and method for manufacturing the same
JP2000249834A (en) Polarizer and its production
JPH0756018A (en) Production of polarizer
JP2000171631A (en) Polarizer and optical isolator using the same
JPH08248227A (en) Polarizing glass and its production
US4514041A (en) Polarizer with electrode thereon in a liquid crystal display
US6406584B1 (en) Process for making vertically integrated optical components
US8130447B2 (en) Polarization element
JPH06273621A (en) Polarizer and its production
JP2000131522A (en) Polarizer and its production and waveguide type optical device using the same
JP3784198B2 (en) Optical isolator
JPH11248935A (en) Polarizer and its manufacture
JP2010049271A (en) Method of manufacturing flat liquid crystal display
JPS61116332A (en) Polarizing film-bonded transparent conductive film
JP3722603B2 (en) Manufacturing method of polarizer
JPH07301710A (en) Production of polarizer and apparatus for production
JPH11344617A (en) Polarizer
JPH05142604A (en) Nonlinear optical material and its production
JP2000193823A (en) Polarizer, and optical isolator using it
JPH09274169A (en) Waveguide type optical control method using liquid crystal particulate dispersion medium and liquid crystal optical element for waveguide type optical control
JPH08248368A (en) Production of liquid crystal optical element, thin film type liquid crystal optical element for optical waveguide and waveguide type optical device