JP2000248874A - Method and system for gathering seabed resource and device for use in the same - Google Patents

Method and system for gathering seabed resource and device for use in the same

Info

Publication number
JP2000248874A
JP2000248874A JP11048436A JP4843699A JP2000248874A JP 2000248874 A JP2000248874 A JP 2000248874A JP 11048436 A JP11048436 A JP 11048436A JP 4843699 A JP4843699 A JP 4843699A JP 2000248874 A JP2000248874 A JP 2000248874A
Authority
JP
Japan
Prior art keywords
pipe
separation
suction pipe
resources
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11048436A
Other languages
Japanese (ja)
Other versions
JP4528987B2 (en
Inventor
Tamisuke Matsufuji
民輔 松藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZIPANGU KK
Original Assignee
ZIPANGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZIPANGU KK filed Critical ZIPANGU KK
Priority to JP04843699A priority Critical patent/JP4528987B2/en
Publication of JP2000248874A publication Critical patent/JP2000248874A/en
Application granted granted Critical
Publication of JP4528987B2 publication Critical patent/JP4528987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To separately collect useful metals and the like by a method wherein seabed resources are mixed into seawater and drawn up to a mother ship via a suction pipe, while useless seawater is returned into the sea. SOLUTION: In the method for collecting seabed resources, seabed resources are mixed into seawater to prepare a mixture, which is drawn up into a mother ship via a suction pipe, while solids in the mixture are separated into large particles and small particles. A mixture containing small particles is fed to a classification means, where the particles are separated into useful particles and useless particles, while a mixture containing useless particles is returned into the sea via a dumping pipe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は海底(深海と浅海
を問わず)に堆積し、埋蔵し、又は熱水として噴出して
いる金その他の有用金属等を母船まで持ち上げ、海水と
有用金属等を分別採取することを目的とした海底資源の
採取方法及び採取システム並びにこれらに使用する装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention lifts gold and other useful metals deposited or buried on the ocean floor (both deep and shallow) or spouted as hot water to a mother ship, and uses the seawater and useful metals etc. TECHNICAL FIELD The present invention relates to a method and a system for collecting seabed resources for separating and collecting marine resources, and an apparatus used for the same.

【0002】[0002]

【従来の技術】従来海底にあるマンガン団塊を母船に持
ち上げる採鉱装置の発明・考案が知られている(特公昭
57−52479号、特公平2−27517号、実公昭
60−19197号)。また海底鉱床の鉱石をスラリー
状にし、パイプラインと、ポンプユニットを介して母船
上に移送する海底鉱床採鉱装置の発明が知られている
(特開昭61−122393号)。
2. Description of the Related Art Conventionally, there have been known inventions and devices of mining equipment for lifting manganese nodules on the seabed to a mother ship (JP-B-57-52479, JP-B-2-27517, and JP-B-60-19197). Further, there is known an invention of a submarine ore mining apparatus in which ore of an undersea ore deposit is converted into a slurry and transferred onto a mother ship via a pipeline and a pump unit (Japanese Patent Application Laid-Open No. 61-122393).

【0003】[0003]

【発明により解決しようとする課題】前記従来の発明・
考案は、水底又は中間点におけるジェット噴流によりマ
ンガン団塊を吸引上昇させる方式を採用しているので、
深海においては著しく高圧ジェット流を必要とする。例
えば特公平2−27515号の発明は、4000m〜6
000mの深海の採鉱を目標としているが、この場合に
は、400kg/cm2 〜600kg/cm2 の高圧水をノズル
から吹出さなくいてはならないのみならず、このような
高圧水を多量に4000m〜6000m送流しなければ
ならないなどの問題点がある。
SUMMARY OF THE INVENTION
The idea is to adopt a method of sucking up manganese nodules by jet jet at the bottom or middle point,
In the deep sea, high pressure jets are required. For example, the invention of Japanese Patent Publication No.
The goal is to mine in the deep sea of 000 m. In this case, not only must 400 kg / cm 2 to 600 kg / cm 2 of high pressure water be blown out from the nozzle, but also a large amount of 4000 m There is a problem that it must be sent up to 6000 m.

【0004】前記のようにして母船上に上げたマンガン
塊などは比較的容易に分別できるけれども、鉱石を海底
で破砕し、スラリー状にした場合に、厖大な量の水と共
に母船上へ運ばれたスラリーから、有用金属を分別する
点については、何等分別手段が示されていない。例えば
1秒間に10トンのスラリーが運ばれた場合に、これを
連続処理するには厖大な装置が必要であり、かつ排水に
より海水汚染のおそれもある。然も陸上処理施設のよう
に排水を循環使用することはできないなどの問題点があ
る。特に採取金属が金などの場合には、従来知られてい
る分別方法はそのままでは全く使用できない問題点があ
った。
Although the manganese lump and the like raised on the mother ship as described above can be separated relatively easily, when the ore is crushed on the seabed to form a slurry, the ore is carried onto the mother ship together with an enormous amount of water. With respect to the separation of useful metals from the slurry obtained, no means for separation is shown. For example, when 10 tons of slurry is transported per second, enormous equipment is required for continuous processing, and seawater may be contaminated by drainage. However, there is a problem that the wastewater cannot be recycled like a land treatment facility. In particular, when the sampled metal is gold or the like, there has been a problem that the conventionally known separation method cannot be used at all.

【0005】[0005]

【課題を解決する為の手段】この発明は、海底の水圧を
利用して、鉱石、砂などを吸引上昇させると共に、磁気
分別することにより、連続多量処理を可能にし、かつ排
水を海中の相当な深さに戻すことにより、排水による海
洋汚染問題も解決したのである。
SUMMARY OF THE INVENTION The present invention utilizes a water pressure at the bottom of the sea to suction ore up ore and sand, and to perform magnetic separation to enable continuous large-volume treatment and to discharge wastewater to the sea. By returning to the proper depth, the problem of marine pollution caused by drainage was also resolved.

【0006】即ち方法の発明は、海底にある資源を海水
との混合水として吸入パイプを介して母船内に流動搬送
し、混合水の流動中に、前記混合水の固形物を大粒と小
粒に分別して、小粒入り混合水は分別手段を介して有用
粒子と無用粒子とに分別すると共に、無用粒子入り混合
水は投棄パイプを介して海中に戻すことを特徴とした海
底資源の採取方法である。また吸上げパイプの吸入口
と、投棄パイプの排出口とは、開放口なく連結されるも
のであり、分別手段は、磁気分離、スクリーン分離、比
重分離又は遠心分離を組合せて使用するものである。
In other words, the invention of the method is that the resources on the seabed are flowed and conveyed into the mother ship via a suction pipe as mixed water with seawater, and the solids of the mixed water are converted into large particles and small particles during the flow of the mixed water. This is a method of collecting seabed resources, wherein the mixed water containing small particles is separated into useful particles and useless particles through a separation means, and the mixed water containing useless particles is returned to the sea through a dump pipe. . Further, the suction port of the suction pipe and the discharge port of the dump pipe are connected without an open port, and the separation means uses a combination of magnetic separation, screen separation, specific gravity separation or centrifugal separation. .

【0007】次にシステムの発明は、海底における資源
の探鉱手段、と採鉱手段と、資源を海底から母船までの
運搬手段と、運搬した資源の分別手段と、不用物を海中
に戻す投棄手段とを連結し、連続処理ラインとしたこと
を特徴とする海底資源の採取システムであり、探鉱手段
及び採鉱手段は、海底移動ハウジングに照明手段と、撮
影手段と、資源と水との吸入手段を設置し、前記により
撮影した映像を母船内のモニターにより、ハウジング移
動手段を操作するものである。また分別手段は、固形物
を大粒と小粒に分別するスクリーン分別手段と、小粒を
磁性の強弱により分別する磁気分別手段とを連結したも
のであり、投棄手段は、上端を分別手段の排水口に接続
し、他端部を海中深く投棄パイプを挿入したものであ
る。
[0007] Next, the invention of the system comprises a means for exploring resources on the seabed, a means for mining, a means for transporting resources from the seabed to the mother ship, a means for separating the carried resources, and a dumping means for returning waste to the sea. Is a continuous processing line, which is a continuous processing line. The exploration means and mining means are provided with lighting means, photographing means, and means for sucking resources and water in the seabed moving housing. Then, the housing moving means is operated by the monitor in the mother ship on the image photographed as described above. Further, the separation means is a combination of a screen separation means for separating solids into large particles and small particles, and a magnetic separation means for separating small particles by magnetic strength, and the dumping means has an upper end at a drain port of the separation means. It is connected, and the other end is inserted deep into the sea with a dump pipe.

【0008】更に装置の発明は、ドーム状のハウジング
の中央部に、吸入パイプを貫通設置し、前記ハウジング
の外側壁上部に複数の照明手段と、撮影手段を設置し、
前記ハウジングの外側壁下部に、ハウジングを前後、左
右に移動させる移動手段を設置し、前記吸入パイプの下
端部は、吸入口を形成すると共に、該吸入口の外壁に、
掘削用のジェットノズルを設置したことを特徴とする海
底資源採取装置であり、吸入パイプの外壁に、電気ケー
ブル及び加圧水パイプを一体的に添設したものである。
[0008] Further, the invention of the apparatus is characterized in that a suction pipe is provided at the center of a dome-shaped housing, and a plurality of lighting means and photographing means are provided at an upper portion of an outer wall of the housing.
A moving means for moving the housing back and forth, left and right is installed at a lower portion of the outer wall of the housing, and a lower end portion of the suction pipe forms a suction port, and is formed on an outer wall of the suction port.
A submarine resource collecting apparatus provided with a jet nozzle for excavation, wherein an electric cable and a pressurized water pipe are integrally attached to an outer wall of a suction pipe.

【0009】また一端を吸入管に連結し、他端を排出管
に連結した強磁性の分離円筒の外側に、磁場形成用のソ
レノイドコイルを配置し、前記分離円筒内に、強磁性の
遊離固形片を収容すると共に、分別すべき混合水の送流
と、前記分離円筒内に磁着した固形物の排出の為の清掃
流体の送流に必要なパイプ装置を、前記吸入管と排出管
に夫々連結したことを特徴とする海底資源の流動搬送装
置であり、吸入パイプの上端部に、内部を減圧し、上昇
流を得る為の水のジェットノズル又は水と空気との混合
物のジェットノズルを設置したことを特徴とする海底資
源の吸上げ流動力付与装置である。
A solenoid coil for forming a magnetic field is disposed outside a ferromagnetic separation cylinder having one end connected to the suction pipe and the other end connected to the discharge pipe. A pipe device necessary for accommodating the pieces and for sending the mixed water to be separated and for sending the cleaning fluid for discharging the solid matter magnetized in the separation cylinder is provided in the suction pipe and the discharge pipe. It is a flow transport device for submarine resources characterized by being connected to each other, and a jet nozzle of water or a jet nozzle of a mixture of water and air for obtaining an ascending flow at the upper end of the suction pipe, to depressurize the inside and obtain a rising flow. It is an apparatus for providing fluidity for sucking seabed resources, which is installed.

【0010】前記発明においては、吸入パイプの上端部
におけるほぼ10m〜20mの間の水を除去すべく、ジ
ェット噴射により上部を減圧すれば、海底が1000m
でも2000mでも、一律に吸入パイプ内へ上昇流が発
生する。例えば吸入パイプの上端部の水を毎秒2mの速
度で吸い上げると、吸入パイプ内の水は毎秒2mの速度
で上昇する。この上昇速度は、吸上げ力と、流動抵抗力
が一致する速さまで上昇する。
In the above invention, if the upper part of the suction pipe is depressurized by jet injection in order to remove water of about 10 to 20 m at the upper end, the sea bottom becomes 1000 m.
However, even at 2000 m, an upward flow uniformly occurs in the suction pipe. For example, if water at the upper end of the suction pipe is sucked up at a speed of 2 m / s, the water in the suction pipe rises at a speed of 2 m / s. This rising speed rises to a speed at which the suction force and the flow resistance force match.

【0011】従って直径0.5mの吸入パイプの上端部
10m分の水を10秒間に吸い上げれば、毎秒1mの流
速を付与することができる。この場合に、1時間に0.
28万トン、1日に6.7万トンの水を持ち上げること
ができる。前記吸上げにおいて、水量を80%とすれ
ば、鉱石又は砂は1.3万トンとなる。そこで1トン2
0gの富金鉱の場合には、1日に271kgの金粒子を
母船上へ持ち上げることができる。
Therefore, if water of 10 m at the upper end of the suction pipe having a diameter of 0.5 m is sucked up in 10 seconds, a flow rate of 1 m per second can be provided. In this case, 0.
It can lift 270,000 tons of water a day, 67,000 tons of water. In the suction, if the water amount is set to 80%, the ore or sand becomes 13,000 tons. So 1 ton 2
In the case of 0 g of rich gold ore, 271 kg of gold particles can be lifted a day on the mother ship.

【0012】この発明によれば、吸入パイプの下端に
は、例えば水深1000mで100kg/cm2 の水圧が掛
っているので、吸入パイプの上端の水圧10kg/cm2
取り除けば、吸入パイプ内には、10kg/cm2 の差圧に
よる水流を生じるので、吸込み力を生じ、砂又は鉱石等
を吸い上げることができる。
According to the present invention, a water pressure of, for example, 100 kg / cm 2 is applied to the lower end of the suction pipe at a depth of 1,000 m, so that if the water pressure of 10 kg / cm 2 at the upper end of the suction pipe is removed, the suction pipe will be in the suction pipe. Generates a water flow due to a differential pressure of 10 kg / cm 2 , so that a suction force is generated and sand or ore can be sucked up.

【0013】この発明において、吸込むべき砂等又は鉱
石が海底に堆積固化していなければ比較的容易に吸込む
ことができるが、鉱石等の一部又は全部が泥土中に埋設
されていたり、一部固化している場合には、吸込み力だ
けでは破砕できない場合がある。このような場合にはジ
ェット噴水によって破砕してから吸い上げる。この場合
のジェット噴水の圧力は、破砕に必要な圧力である。ま
た堆積固化した泥土中に埋設されている場合には、泥土
を取除き、求める鉱石を破砕して吸い上げる。更に熱水
の噴出の場合には、単に吸込みのみで十分である。
According to the present invention, the sand or the like to be sucked or the ore can be sucked relatively easily if it is not solidified on the seabed, but part or all of the ore or the like is buried in the mud or partially buried in the mud. In the case of solidification, there are cases where crushing cannot be performed only by the suction force. In such a case, the water is crushed by a jet fountain and then sucked up. The pressure of the jet fountain in this case is the pressure required for crushing. If the soil is buried in the solidified mud, the mud is removed, and the desired ore is crushed and sucked up. Furthermore, in the case of hot water jetting, simply suctioning is sufficient.

【0014】この発明において、吸入パイプの吸入口の
位置を移動して、有用鉱石等を採取する必要があるが、
水底の様子が不明であるから、適宜の照明、カメラによ
る撮影と、吸入口の移動などが必要である。例えば熱水
が噴出していて、その中に含まれる貴金属その他の有効
物質を吸込み、母船で分別するような場合には、吸入パ
イプ端にドーム状の案内を連設して、定位置で、前記熱
水を吸込めばよいが、砂金鉱床などで掘削を要する場合
には、掘削できる装置及び吸入パイプ端の移動装置が必
要である。
In the present invention, it is necessary to move the position of the suction port of the suction pipe to collect useful ores and the like.
Since the state of the water bottom is unknown, appropriate lighting, shooting with a camera, and movement of the suction port are required. For example, when hot water is gushing out and the noble metals and other effective substances contained therein are sucked in and separated by the mother ship, a dome-shaped guide is connected to the end of the suction pipe, and at the fixed position, The hot water may be sucked in, but when excavation is required in a gold deposit or the like, a device capable of excavation and a device for moving the suction pipe end are required.

【0015】この発明におけるハウジングの形状はドー
ム状が好ましく、前後左右の移動ができると共に、バラ
ンスがとれ、安定した形状が好ましく、必要な器機以外
は開放しておけば、耐圧壁は最少に構成できる。
In the present invention, the shape of the housing is preferably a dome shape, and it is preferable that the housing can be moved back and forth, left and right, and that it is well-balanced and stable. it can.

【0016】この発明における吸入パイプの外側に、電
気のケーブル及び加圧水を送流する為の加圧パイプを添
設しておけば、前記ケーブル及び加圧パイプを耐海水材
の肉厚内へ埋設しておけば、吸入パイプが補強され、特
別の補強手段を付加する必要はない。
If an electric cable and a pressurized pipe for sending pressurized water are provided outside the suction pipe in the present invention, the cable and the pressurized pipe are embedded in the thickness of the seawater-resistant material. If so, the suction pipe is reinforced, and no special reinforcing means needs to be added.

【0017】前記における有用金属等とは、金、銀等の
貴金属、鉄、マンガンその他の金属のみならず、ダイヤ
モンドその他の鉱石等を含むものである。
The useful metals in the above include not only noble metals such as gold and silver, iron, manganese and other metals, but also diamonds and other ores.

【0018】[0018]

【発明の実施の形態】この発明は、海底に堆積し、又は
埋設し、或いは鉱脈として存在する金その他の有用金属
等を海水との混合水とし、吸込んで母船内に持ち上げ、
水と有用金属等とを分別した後、残余の混合水を再び水
底に戻すようにした海底資源の採取方法である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method in which gold or other useful metal or the like that is deposited or buried on the sea floor or existing as a vein is mixed with seawater, sucked and lifted into a mother ship.
This is a method for collecting seabed resources in which water and useful metals are separated and the remaining mixed water is returned to the bottom again.

【0019】また前記方法を実現する為に、資源探鉱手
段、採鉱手段、資源の運搬手段、分別手段及び不用混合
水の投棄手段とを連結する処理ラインとした海底資源の
採取システムである。
Further, in order to realize the above-mentioned method, the present invention provides a seabed resource extraction system as a processing line connecting resource exploration means, mining means, resource transport means, separation means and waste mixed water dumping means.

【0020】次に海底資源を効率よく吸込む為に、吸水
パイプ端にドーム状ハウジングを連設し、該ハウジング
内で生成した海底資源と水との混合物を、前記吸水パイ
プで吸い上げるようにする為に、海底堆積層又は鉱石等
の破砕装置(ジェット噴水)と、前記ドーム状ハウジン
グを移動させる為の動力装置と、海底の状況を母船上で
モニターして把握する為の照明と、写真撮影装置とを設
置したことを特徴とする海底資源採取装置である。
Next, a dome-shaped housing is connected to the end of the water-absorbing pipe in order to efficiently suck the seabed resources, and a mixture of the seabed resources and water generated in the housing is sucked up by the water-absorbing pipe. A crushing device (jet fountain) for a seabed sedimentary layer or ore, a power device for moving the dome-shaped housing, a lighting device for monitoring and understanding the condition of the seabed on a mother ship, and a photographing device. And a submarine resource collecting apparatus characterized by the following.

【0021】またこの発明の装置として吸入パイプ内に
混合水を吸入する為に、吸入パイプの上端部の10m〜
20mの水を流動させるジェット噴射装置がある。次に
他の装置として連続的に持ち上げられた混合水から、有
用金属(例えば金)を分別する分別装置がある。
Further, in order to suck the mixed water into the suction pipe as an apparatus of the present invention, the upper end of the suction pipe is set at 10 m or more.
There is a jet injection device for flowing 20 m of water. Next, as another apparatus, there is a separation apparatus for separating useful metals (for example, gold) from the mixed water continuously lifted.

【0022】更に他の装置として、混合水から大粒固形
物を分離すると共に、分離処理後の混合水から有用金属
等を分別採取し、残余の混合水を海中へ戻す混合水投棄
装置がある。
Still another device is a mixed water dumping device that separates large solids from the mixed water, separates and collects useful metals and the like from the mixed water after the separation treatment, and returns the remaining mixed water to the sea.

【0023】前記分別装置は、磁性分離であって、設置
した並列強磁場中に混合水を流送し、有用金属等を磁性
別に分別磁着させるものである。例えば鉄、マンガンの
ような強磁性粒子は千ガウス〜1万ガウスの磁場で磁着
し、金、銀、銅のような弱磁性粒子は5万ガウス〜20
万ガウスの磁場で磁着させるなどの手段によるものであ
る。
The separation apparatus is a magnetic separation apparatus in which mixed water is fed into an installed parallel strong magnetic field to separate and magnetize useful metals and the like according to magnetism. For example, ferromagnetic particles such as iron and manganese are magnetized in a magnetic field of 1,000 to 10,000 gauss, and weak magnetic particles such as gold, silver and copper are 50,000 to 20 gauss.
This is based on means such as magnetizing with a magnetic field of 10,000 gauss.

【0024】前記における投棄混合水は、ジェット噴射
動力によって海水中へ深く投棄する。この場合における
投棄深度は、海水汚染を生じない程度の深さとする必要
がある。
The discarded mixed water in the above is deeply discarded into seawater by jet injection power. The dumping depth in this case needs to be a depth that does not cause seawater pollution.

【0025】[0025]

【実施例1】この発明の実施例を図面に基づいて説明す
る。海底固形物が砂状の場合はそのまま、鉱石状の場合
には、加圧水などによって破砕し、海水による混合水と
して(例えば水分80%)吸入パイプに吸込む。この吸
込みは、吸入パイプの上端部の母船内において、加圧水
(例えば5kg/cm2 加圧空気を混入させる場合もある)
をジェット噴射し、上昇流を生成することにより生じ
る。
Embodiment 1 An embodiment of the present invention will be described with reference to the drawings. If the sea bottom solid is sandy, if it is ore-like, it is crushed by pressurized water or the like and sucked into a suction pipe as mixed water with seawater (for example, 80% moisture). This suction involves pressurized water (for example, 5 kg / cm 2 pressurized air may be mixed) in the mother ship at the upper end of the suction pipe.
Is generated by jet injection of a jet gas to generate an upward flow.

【0026】即ちジェット噴射により吸入パイプの上端
内側に負圧を発生させると、吸入パイプ内の圧力バラン
スが崩れ、これを補足する為に上昇流が生じる。これ
は、開放水面における水位は同一になるという簡単な理
由による。そこで吸入パイプの上端部内側の水を上昇さ
せると、上昇により負圧となるので、これを補う為に吸
入パイプ内に上昇流を生じる。前記負圧により、例えば
毎秒1mの上昇流を生成すれば、吸入パイプの下端から
毎秒1mの速度で混合水が吸込まれることになる。
That is, when a negative pressure is generated inside the upper end of the suction pipe by jet injection, the pressure balance in the suction pipe is lost, and an upward flow is generated to supplement the pressure balance. This is due to the simple reason that the water level at the open water surface is the same. Then, when the water inside the upper end of the suction pipe is raised, a negative pressure is generated due to the rise, so that an upward flow is generated in the suction pipe to compensate for this. If an upward flow of, for example, 1 m per second is generated by the negative pressure, the mixed water is sucked at a speed of 1 m per second from the lower end of the suction pipe.

【0027】前記のようにして吸込まれた混合水は、母
船上に持上げられて、大粒を除去した後磁気分別され
る。この磁気分別は、例えば千ガウスの磁場で砂鉄など
の強磁性粒子を磁着分離した後、5万ガウス〜20万ガ
ウスの磁場で、金銀を磁着分離し、残余の混合水は投棄
パイプを介して海中深く投棄する。
The mixed water sucked in as described above is lifted on the mother ship, and is subjected to magnetic separation after removing large grains. In this magnetic separation, for example, magnetic particles of iron sand or the like are magnetically separated by a magnetic field of 1,000 Gauss, and then gold and silver are magnetically separated by a magnetic field of 50,000 Gauss to 200,000 Gauss. Dump deep into the sea through.

【0028】前記投棄の水深は、海中汚染を発生しない
深さとするが、吸入パイプと、投棄パイプは連続してい
るので、投棄の為に高いエネルギーを加えることなく、
投棄パイプ端の水圧バランスを破る程度の圧力で容易に
投棄できる。
The water depth of the dumping is set to a depth that does not cause marine pollution. However, since the suction pipe and the dumping pipe are continuous, high energy is not added for dumping.
It can be easily dumped at a pressure that breaks the water pressure balance at the end of the dump pipe.

【0029】前記磁気分別は、複数の分離円筒を並列し
て用い、一方の分離円筒で磁着物を取出す時に、他の方
の分離円筒を稼働させることにより、吸入パイプ内の上
昇流と同一流速を保ち乍ら、分別作業を続行することが
できる。
In the magnetic separation, a plurality of separation cylinders are used in parallel, and when one of the separation cylinders takes out magnetically attached material, the other separation cylinder is operated so that the same flow velocity as the upward flow in the suction pipe is obtained. , The sorting operation can be continued.

【0030】前記における吸入パイプの吸い込み口は、
適宜移動させることにより広大な鉱区であっても、逐次
合理的かつ高能率で採鉱処理することができる。
In the above, the suction port of the suction pipe is
By appropriately moving, even in a very large mining area, it is possible to sequentially and rationally and efficiently mine.

【0031】[0031]

【実施例2】この発明の他の実施例を図2、3、4につ
いて説明する。海上に浮べた母船1から吸入パイプ2を
海底3に向けて挿入し、前記吸入パイプ2の下端部はド
ーム状のハウジング4の中央部を貫通して、前記吸入パ
イプ2の吸入口部5を海底3と対向させる。前記ハウジ
ング4は保形用の構造材6の少くとも上側部を覆材8で
覆われると共に器機の収容部8aとし、下部構造材6a
の前後左右に、移動用の噴射ノズル7a、7b、7c、
7d(全部をいう場合には符号7とする)を横向きに設
置し、前記吸入パイプ2の吸入口部5の周囲に少くとも
1個の加圧水の噴射ノズル9を下向きに設置して吸上げ
装置36が構成してある。前記構造材6の上部には照明
灯10、10と、カメラ11を設けてある。前記カメラ
11はハウジング4の四周近辺を撮影できるように少く
とも180度回転し、遠隔操作可能であって、母船1上
でモニター及び操作できるようになっている。前記カメ
ラ11は、カメラ台11aを回転することにより回転す
る。図中42はフレキシブルジョイントである。
Embodiment 2 Another embodiment of the present invention will be described with reference to FIGS. The suction pipe 2 is inserted from the mother ship 1 floating on the sea toward the seabed 3, and the lower end of the suction pipe 2 penetrates through the center of the dome-shaped housing 4 to form the suction port 5 of the suction pipe 2. Face the seabed 3. The housing 4 has at least an upper part of a shape retaining structural material 6 covered with a covering material 8 and a housing 8a for the equipment, and a lower structural material 6a.
In the front, back, left and right of the moving nozzles 7a, 7b, 7c,
7d (indicated by the reference numeral 7 in its entirety) is installed sideways, and at least one pressurized water injection nozzle 9 is installed downward around the suction port 5 of the suction pipe 2 so as to be a suction device. 36 are configured. Illumination lamps 10 and 10 and a camera 11 are provided above the structural member 6. The camera 11 is rotated at least 180 degrees so as to be able to take an image around four circumferences of the housing 4, can be remotely operated, and can be monitored and operated on the mother ship 1. The camera 11 rotates by rotating a camera base 11a. In the figure, reference numeral 42 denotes a flexible joint.

【0032】前記照明灯10、カメラ11には夫々電気
ケーブル13、13が接続され、ノズル7、9には母船
1からの加圧水パイプ14、14の切替バルブ12、1
2を介して分岐パイプ15、15が連結してある。
Electric cables 13 are connected to the illuminating lamp 10 and the camera 11, respectively, and switching valves 12, 1 for pressurized water pipes 14, 14 from the mother ship 1 are connected to the nozzles 7, 9.
The branch pipes 15 and 15 are connected to each other through the second pipe 2.

【0033】前記実施例において、吸入パイプ2の上端
湾曲部付近に設置した高圧ポンプ16を介して高圧ノズ
ル17から高圧水を矢示18のように噴射すると、吸入
パイプ2と連設した横設パイプ2aの内側の水が矢示1
9のように流動を開始し、該部が減圧されるので、吸入
パイプ2内の水圧が上下アンバランスとなり、矢示20
のような上昇流となる。この場合に、前記横設パイプ2
aの断面積と吸入パイプ2の断面積が同一ならば、横設
パイプ2a内に毎秒1mの流速が生じれば、吸入パイプ
2の下端の流速も毎秒1mとなるので、鉱石等の吸込み
の良否を勘案し、横設パイプ2a内の流速を調節して吸
入パイプ2の下端部の流速を決める。
In the above embodiment, when high-pressure water is jetted from a high-pressure nozzle 17 through a high-pressure pump 16 installed near a curved portion at the upper end of the suction pipe 2 as shown by an arrow 18, a horizontal connection with the suction pipe 2 is established. The water inside the pipe 2a shows arrow 1
Since the flow starts as shown in FIG. 9 and the pressure in the section is reduced, the water pressure in the suction pipe 2 becomes unbalanced up and down.
Upflow like In this case, the horizontal pipe 2
If the cross-sectional area of the suction pipe 2 is the same as the cross-sectional area of the suction pipe 2, if a flow velocity of 1 m / sec is generated in the horizontal pipe 2a, the flow velocity at the lower end of the suction pipe 2 will be 1 m / sec. The flow velocity in the lower end of the suction pipe 2 is determined by adjusting the flow velocity in the horizontal pipe 2a in consideration of the quality.

【0034】前記において、母船1上に持ち上げた混合
水から、大粒固形物72と、小粒固形物73を分離する
装置を図10、11について説明する。
An apparatus for separating large solid matter 72 and small solid matter 73 from the mixed water lifted on the mother ship 1 will be described with reference to FIGS.

【0035】前記横設パイプ2aの一部に分離装置74
を介装する。該分離装置74は、前記横設パイプ2aに
分離パイプ75を連結し、該分離パイプ75内に、前記
横設パイプ2aから矢示76のように直進する混合水に
対し、角度をなして分別網77を張設し、前記分別網7
7の下側に、分別固形物(大粒)を収容する為の分岐パ
イプ78の上端を連結し、該分岐パイプ78の下端に大
粒固形物72の収容タンク79を連設して構成してあ
る。前記分別網77は図10の実施例のように下向きに
設けたり、図11の実施例のように上向きに設けるが、
要は大粒固形物72を分別する為であって、その形状及
び設置の具体的構造には限定されない。
A separating device 74 is provided on a part of the horizontal pipe 2a.
Intervene. The separation device 74 connects a separation pipe 75 to the horizontal pipe 2a, and separates the mixed water flowing straight from the horizontal pipe 2a as indicated by an arrow 76 into the separation pipe 75 at an angle. A net 77 is set up and the sorting net 7 is
The lower end of the pipe 7 is connected to the upper end of a branch pipe 78 for storing separated solids (large grains), and the lower end of the branch pipe 78 is connected to a storage tank 79 for the large solids 72. . The separation network 77 is provided downward as in the embodiment of FIG. 10 or upward as in the embodiment of FIG.
The point is to separate the large solid matter 72, and the shape and the specific structure of installation are not limited.

【0036】前記のように分別網77を張設する位置
は、前記横設パイプ2aの断面積よりも断面積を大きく
して、分別網77による抵抗損失を可及的に小さくす
る。
At the position where the separation net 77 is stretched as described above, the cross-sectional area is larger than the cross-sectional area of the horizontal pipe 2a, so that the resistance loss due to the separation net 77 is reduced as much as possible.

【0037】前記実施例において、混合水が横設パイプ
2a内を矢示76のように直進し、分別網77を通過す
る時に大粒固形物72は、分別網77により分別され、
矢示80のように落下して収容タンク79に収容され
る。該収容タンク79に収容された大粒固形物72は、
取出しパイプ81から取出され、次工程(処理又は投
棄)へ運ばれる。前記分別網77を通過した混合水は、
分離円筒24に導かれて有用金属等と残余混合水に分別
処理される。
In the above embodiment, when the mixed water goes straight in the horizontal pipe 2a as shown by the arrow 76 and passes through the separation net 77, the large solid matter 72 is separated by the separation net 77,
As shown by the arrow 80, it falls and is stored in the storage tank 79. The large solid matter 72 stored in the storage tank 79 is
It is taken out from the take-out pipe 81 and carried to the next step (processing or dumping). The mixed water that has passed through the separation net 77 is
It is guided to the separation cylinder 24 and separated into useful metals and the like and residual mixed water.

【0038】前記のようにして、適度の流速により母船
に混合水を持ち上げ、流動中に有用金属等と、残余混合
水とに分別し、残余混合水は磁気分別装置21の排水側
に連結した投棄パイプ22を介し投棄混合水として海中
深く投棄する。この場合における投棄深度は公害汚染を
勘案して適宜定める。
As described above, the mixed water is lifted to the mother ship at an appropriate flow rate, and is separated into useful metals and the like and the remaining mixed water during the flow, and the remaining mixed water is connected to the discharge side of the magnetic separation device 21. It is dumped deep into the sea through the dump pipe 22 as dumped mixed water. The dumping depth in this case is appropriately determined in consideration of pollution.

【0039】前記において、ハウジング4の下方の鉱石
等を採取し尽したならば、噴射ノズル17の何れか一つ
又は二つを噴射して必要なだけハウジング4を移動し、
再び前記と同一操作で採鉱を開始する。
In the above, if the ore and the like below the housing 4 have been completely collected, one or two of the injection nozzles 17 are injected to move the housing 4 as necessary,
Mining is started again by the same operation as above.

【0040】またハウジング4の移動量が限界に達した
ならば(例えば半径50m)、母船を移動し、次の採取
区に移動する。この発明の採鉱においては、予め鉱区の
位置を決めているので、該鉱区を区分して、計画に基づ
き順次採鉱することにより、合理的かつ洩れなく採鉱す
ることができる。
When the amount of movement of the housing 4 reaches the limit (for example, a radius of 50 m), the mother ship is moved to move to the next sampling zone. In the mining of the present invention, since the position of the mining area is determined in advance, the mining area is divided and mined sequentially according to the plan, so that the mining can be performed rationally and without omission.

【0041】[0041]

【実施例3】この発明の海底資源の吸上げ流動搬送シス
テム及び装置の実施例を図7、8、9について説明す
る。
[Embodiment 3] An embodiment of a system and apparatus for sucking and flowing seabed resources according to the present invention will be described with reference to FIGS.

【0042】この発明は、電磁石により生成した磁場内
で流動する混合水中から強磁性粒子と弱磁性粒子を夫々
分別し、別々に系外に取出し、残余の投棄混合水を海中
へ投棄するようにした海底資源の採取システム及び装置
である。以下砂金採取について説明する。
According to the present invention, ferromagnetic particles and weak magnetic particles are separated from mixed water flowing in a magnetic field generated by an electromagnet, separately taken out of the system, and the remaining discarded mixed water is discarded into the sea. And a system for collecting seabed resources. Hereinafter, the collection of gold dust will be described.

【0043】即ち吸入パイプ2で吸上げられた混合水を
分離円筒24内へ給送する。この場合に、図7中バルブ
25、26、27、28を開き、バルブ29、30、3
1、32を閉じれば、混合水は、矢示34、35、38
のように分離円筒24内へ入る。該分離円筒24は強磁
性のステンレス製であって、外側には、複数組のソレノ
イドコイル37、37a、37b、37cが順次並列設
置してある。前記ソレノイドコイル37、37a、37
b、37cは、混合水の下流に行く程磁力が強くなるよ
うにしてある。例えばソレノイドコイル37は5千ガウ
ス、ソレノイドコイル37aは2万ガウス、ソレノイド
コイル37bは5万ガウス、ソレノイドコイル37cは
20万ガウスとし、ソレノイドコイル37、37a、3
7bはほぼ同一幅であって、ソレノイドコイル37cは
2倍以上の幅にしてある。従って、強磁性の砂鉄(又は
鉄粒子に固着した砂金)は5千ガウスの磁場に磁着し、
弱磁性の砂金(砂金又は非磁性粒子が固着した砂金)
は、5万ガウス、20万ガウスの磁場に磁着する。
That is, the mixed water sucked up by the suction pipe 2 is fed into the separation cylinder 24. In this case, the valves 25, 26, 27 and 28 in FIG.
When the first and the second are closed, the mixed water is indicated by arrows 34, 35 and 38.
As shown in FIG. The separation cylinder 24 is made of ferromagnetic stainless steel, and a plurality of sets of solenoid coils 37, 37a, 37b, 37c are sequentially arranged in parallel on the outside. The solenoid coils 37, 37a, 37
In b and 37c, the magnetic force increases as going to the downstream of the mixed water. For example, the solenoid coil 37 is 5,000 gauss, the solenoid coil 37a is 20,000 gauss, the solenoid coil 37b is 50,000 gauss, the solenoid coil 37c is 200,000 gauss, and the solenoid coils 37, 37a,
7b has substantially the same width, and the solenoid coil 37c has a width twice or more. Therefore, ferromagnetic iron sand (or gold dust attached to iron particles) magnetically attaches to a magnetic field of 5,000 gauss,
Weak magnetic placer (placer or placer with non-magnetic particles fixed)
Magnetically attaches to a magnetic field of 50,000 Gauss or 200,000 Gauss.

【0044】前記のようにして、強磁性砂鉄はもとより
弱磁性砂金も、悉く磁着し、混合水から分離される。残
余の混合水は、矢示40、41、59のように、バルブ
26、27、28を経て投棄パイプ22へ送られる。前
記分離円筒24内の遊離強磁性体64(ねじ)に磁着し
た砂金が飽和状態になったならば、バルブ25、27を
閉じ(例えばタイマーの指示による)バルブ43、32
を開き、バルブ44を閉じると、混合水は、矢示34、
55、56のように分離円筒24aに入り、分離円筒2
4と同様に砂金を磁着して分離混合水はバルブ32、2
8を経て矢示57、58、59のように投棄パイプ22
へ送られる。
As described above, not only ferromagnetic iron sand but also weak magnetic gold dust is magnetically attached and separated from the mixed water. The remaining mixed water is sent to the dump pipe 22 via the valves 26, 27, 28 as indicated by arrows 40, 41, 59. When the gold dust magnetically attached to the free ferromagnetic material 64 (screw) in the separation cylinder 24 becomes saturated, the valves 25 and 27 are closed (for example, according to a timer instruction) and the valves 43 and 32 are closed.
When the valve 44 is closed and the mixed water is
55 and 56, the separation cylinder 24a enters the separation cylinder 24a.
As in the case of No. 4, the separated mixed water is magnetically magnetized with gold dust, and the
8, as shown by arrows 57, 58 and 59.
Sent to

【0045】一方バルブ31、29を開き、ポンプ45
を始動すると、清掃用の清水が水タンク46から矢示4
7、48、49、50のように圧送(例えば5kg/c
2)されて、分離円筒24内の混合水を投棄パイプ2
2へ送る。
On the other hand, the valves 31 and 29 are opened and the pump 45 is opened.
Is started, clean water for cleaning is supplied from the water tank 46 to the arrow 4.
7, 48, 49, 50 (for example, 5 kg / c
m 2 ), and dumps the mixed water in the separation cylinder 24
Send to 2.

【0046】このようにして混合水がなくなったなら
ば、バルブ29を閉じ、バルブ30を開くと共に、全ソ
レノイドコイル37、37a、37b、37cの電流を
遮断する。このようにして総てのソレノイドコイルの磁
場を消磁し、砂金への磁着力を消失させた後、ポンプ4
5により清水を圧送すると、砂金は清水と共に、矢示4
9、51、52のように流動し、捕集タンク53へ送ら
れるので、砂金の磁着分離と、捕集の一サイクルを終了
する。
When the mixed water runs out, the valve 29 is closed, the valve 30 is opened, and the current of all the solenoid coils 37, 37a, 37b, 37c is cut off. After demagnetizing the magnetic fields of all the solenoid coils and losing the magnetic adhesion to the gold dust, the pump 4
When Shimizu is pumped by 5, the gold dust is transported along with Shimizu 4
Since the fluid flows like 9, 51, and 52 and is sent to the collection tank 53, one cycle of magnetic adhesion separation and collection of the gold dust is completed.

【0047】一方分離円筒24aで砂金の磁着が飽和状
態に達したならば(例えばタイマーにより定める)バル
ブ43、32を閉じると共に、バルブ25、26、27
を開いて、当初と同様に混合水を分離円筒24に給送
し、分離円筒24内で砂金を磁着させ、残余の混合水を
投棄パイプ22へ排出させる。
On the other hand, when the magnetic adhesion of the gold dust reaches the saturated state in the separation cylinder 24a (for example, determined by a timer), the valves 43, 32 are closed, and the valves 25, 26, 27 are closed.
Is opened, the mixed water is fed to the separation cylinder 24 in the same manner as at the beginning, the gold dust is magnetized in the separation cylinder 24, and the remaining mixed water is discharged to the dump pipe 22.

【0048】次にバルブ23、33を開き、バルブ31
を閉じてポンプ45を始動すれば、清水が水タンク46
から矢示47、54のように分離円筒24a内へ送ら
れ、矢示61、50のように、分離円筒24a内に残留
している混合水を投棄パイプ22へ投棄する。このよう
にして分離円筒24a内の混合水が清掃されたならば、
バルブ23、30を閉じ、バルブ44を開き、全ソレノ
イドコイル37、37a、37b、37cの電源を遮断
すると、消磁されて分離円筒24aの磁着力がなくなる
ので磁着されていた砂金は清水と共に送流され、捕集タ
ンク53へ溜まる。
Next, the valves 23 and 33 are opened, and the valve 31 is opened.
Is closed, and the pump 45 is started.
Then, as shown by arrows 47 and 54, the mixed water sent into the separation cylinder 24a and remaining in the separation cylinder 24a as shown by arrows 61 and 50 is dumped into the dump pipe 22. If the mixed water in the separation cylinder 24a is cleaned in this way,
When the valves 23 and 30 are closed, the valve 44 is opened, and the power to all the solenoid coils 37, 37a, 37b and 37c is cut off, the magnetism is lost and the magnetic force of the separation cylinder 24a is lost. It is washed and accumulates in the collection tank 53.

【0049】前記により捕集された捕集タンク53の混
合水は、固液分離し、砂金のみを取出して適宜包装す
る。
The mixed water in the collection tank 53 collected as described above is separated into a solid and a liquid, and only gold dust is taken out and packed as appropriate.

【0050】前記実施例は、分離円筒24又は24aの
全磁着砂金を同時に清掃流体で流除したので、砂金の外
に砂鉄なども混入しているが、各ソレノイドコイル毎の
磁場を個別に消磁し、夫々の磁着物を個別に取出すこと
ができる。
In the above embodiment, since all the magnetically deposited gold in the separation cylinder 24 or 24a was simultaneously removed by the cleaning fluid, iron sand or the like was mixed in outside the gold dust. However, the magnetic field for each solenoid coil was individually adjusted. It can be demagnetized and each magnetic substance can be taken out individually.

【0051】例えば、砂金床によっては、砂鉄その他の
強磁性粒子を多く含む場合などには、5千ガウスの磁場
へ強磁性粒子が磁着し、弱磁性の砂金は5万ガウス以上
の磁場のみへ磁着するので、該5万ガウス以上の磁場の
み消磁すれば、砂金のみを捕集し、強磁性粒子と自動分
別することができる。
For example, depending on the placer bed, when ferrous particles such as iron sand are contained in a large amount, the ferromagnetic particles magnetically adhere to a magnetic field of 5,000 Gauss, and the weak magnetic placer only has a magnetic field of 50,000 Gauss or more. Since only the magnetic field of 50,000 Gauss or more is demagnetized, only the gold dust can be collected and automatically separated from the ferromagnetic particles.

【0052】次に前記実施例中、分離円筒24について
説明する。該分離円筒24は強磁性の保持筒63の内側
に、ステンレス製の分離円筒24を回転自在に嵌挿し、
該分離円筒24内へ遊離強磁性片として多数のステンレ
ス製のねじ64を収容する。該ねじ64の収容量は、5
0%〜90%(見掛け容積)とするが、通常80%前後
を用いる。
Next, the separating cylinder 24 in the above embodiment will be described. The separation cylinder 24 is rotatably fitted with a stainless steel separation cylinder 24 inside a ferromagnetic holding cylinder 63.
A number of stainless steel screws 64 are accommodated in the separation cylinder 24 as free ferromagnetic pieces. The capacity of the screw 64 is 5
0% to 90% (apparent volume), usually around 80%.

【0053】前記保持筒63の外側に、ソレノイドコイ
ル37、37a、37b、37cを装着し、該ソレノイ
ドコイル37、37a、37b、37cの外側に保護筒
65装着し、前記分離円筒24の一側に加圧パイプ66
を連結し、他側に投棄パイプ67を連結したもので、図
中68、69は軸受け、70は分離円筒24を回転する
為のプーリー、71は各ソレノイドコイル37、37
a、37b、37cに対応して分離円筒24内を仕切、
ねじ64が所定の位置を保つべく設けた仕切網であっ
て、仕切網は混合水中の砂金等は通過させるが、ねじ6
4は通過させない程度の網目としてある。
The solenoid coils 37, 37a, 37b, and 37c are mounted outside the holding cylinder 63, and the protection cylinder 65 is mounted outside the solenoid coils 37, 37a, 37b, and 37c. Pressurized pipe 66
And the other side is connected with a dump pipe 67. In the drawing, 68 and 69 are bearings, 70 is a pulley for rotating the separation cylinder 24, and 71 is each solenoid coil 37, 37
a, 37b, 37c, the inside of the separation cylinder 24 is partitioned,
The screw 64 is a partition net provided to maintain a predetermined position.
4 is a mesh that does not allow passage.

【0054】前記実施例において、各ソレノイドコイル
37、37a、37b、37cに通電すれば、ねじ64
は磁化されて、図5(a)、(b)のようになり、金粒
子52は各ねじ64の先鋭部64aに磁着する図5
(c)。
In the above-described embodiment, if the solenoid coils 37, 37a, 37b, 37c are energized, the screw 64
5 (a) and 5 (b) are magnetized, and the gold particles 52 are magnetically attached to the sharpened portions 64a of the screws 64 in FIG.
(C).

【0055】またソレノイドコイル37の電流遮断する
と共に、分離円筒24を回転すると、急激に磁力を失う
ので清掃流体を送流すれば、ねじ64から分離した砂金
を分離円筒24から系外へ取出することができる。
When the current of the solenoid coil 37 is cut off and the separation cylinder 24 is rotated, the magnetic force is suddenly lost. Therefore, if cleaning fluid is sent, the gold dust separated from the screw 64 is taken out of the separation cylinder 24 from the system. be able to.

【0056】この発明で使用する遊離強磁性片は、前記
ねじ64の他、楕円体、球体その他の不整形線体に尖鋭
突条(又は突起)を設けた小片など、何れも使用するこ
とができる。然し乍ら発錆により磁着力が低下するの
で、ステンレススチールなど、強磁性であって、尖鋭外
面を有する不銹性の小片が好ましい。前記尖鋭外面は磁
力が強くなるので、弱磁性物でも容易に磁着することが
できる。
As the free ferromagnetic piece used in the present invention, in addition to the screw 64, an elliptical body, a spherical body, or a small piece provided with a sharp ridge (or a projection) on an irregularly shaped linear body may be used. it can. However, since the magnetic force is reduced by rusting, it is preferable to use a ferromagnetic, non-small piece having a sharp outer surface, such as stainless steel. Since the sharp outer surface has a strong magnetic force, a weak magnetic material can be easily magnetized.

【0057】また消磁に際して、分離筒を回転させるの
で、消磁速度を向上させると共に、強磁着力(例えば5
万ガウス)で磁着する物は、消磁後の残留磁気が一時的
に千ガウス付近になったとしても、弱磁性物に対しては
最早磁着力は無いと同じであって、分別に支障はない。
Further, at the time of degaussing, the separating cylinder is rotated, so that the degaussing speed is improved and the strong magnetic force (for example, 5
Even if the remanent magnetism after demagnetization temporarily becomes around 1,000 Gauss, the magnetically magnetized material is the same as having no magnetic attraction for a weak magnetic material. Absent.

【0058】[0058]

【発明の効果】この発明は、海底に吊下した吸入パイプ
の上端部内側へ加圧流体をジェット噴射することにより
上昇流を生成し、海底の資源と海水との混合水を吸入パ
イプを介して母船上へ吸い上げ、有用金属等を海水と分
別採取すると共に、残余の混合水を海中へ戻すので、著
しく簡単なシステム及び装置により、浅海底(例えば1
00m)の資源はもとより、深海底(例えば1000m
以上)の資源でも容易に採取できる効果がある。
According to the present invention, an upward flow is generated by jetting a pressurized fluid to the inside of the upper end portion of a suction pipe suspended on the seabed, and mixed water of seabed resources and seawater is passed through the suction pipe. The water is sucked up onto the mother ship, useful metals and the like are separated and collected from seawater, and the remaining mixed water is returned into the sea.
00m) as well as the deep sea floor (for example, 1000m
The above-mentioned resources can be easily collected.

【0059】また磁気分別するので、資源中の磁性体を
磁性の強さ別に分別採取することもできる。
Since the magnetic separation is performed, the magnetic substance in the resources can be separated and collected according to the magnetic strength.

【0060】この発明によれば、海底の資源を海水と共
に吸い上げ、同一速度で流動中に分別処理することがで
きるので、一貫全自動作業により能率よく資源を採取で
きる効果がある。
According to the present invention, the resources on the seabed can be sucked up together with the seawater and separated at the same speed while flowing, so that there is an effect that the resources can be efficiently collected by the integrated automatic operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】同じくシステムの実施例の概念図。FIG. 2 is a conceptual diagram of an embodiment of the system.

【図3】同じく吸込み装置の実施例の概念図。FIG. 3 is a conceptual diagram of an embodiment of the suction device.

【図4】同じく平面の概念図。FIG. 4 is a conceptual plan view of the same plane.

【図5】(a)同じく吸入パイプの実施例の一部縦断面
図。 (b)同じく一部横断面図。
FIG. 5 (a) is a partial longitudinal sectional view of an embodiment of the same suction pipe. (B) Partial cross-sectional view.

【図6】同じく吸入動力の実施例の概念図。FIG. 6 is a conceptual diagram of an embodiment of the suction power.

【図7】同じく磁気分別装置の実施例の概念図。FIG. 7 is a conceptual diagram of an embodiment of the magnetic separation device.

【図8】同じく回転分離筒の実施例の一部を断面した正
面図。
FIG. 8 is a front view in which a part of the embodiment of the rotary separation tube is similarly sectioned.

【図9】同じく遊離強磁性を収容した回転分離筒の一部
断面図で、 (a)着磁状態の説明図。 (b)消磁状態の説明図。
FIGS. 9A and 9B are partial cross-sectional views of a rotary separation cylinder accommodating free ferromagnetism, and FIG. (B) Explanatory drawing of a demagnetization state.

【図10】同じく大粒固形物分離装置の実施例の一部断
面図。
FIG. 10 is a partial cross-sectional view of an embodiment of the same large solids separation apparatus.

【図11】同じく他の実施例の一部断面図。FIG. 11 is a partial cross-sectional view of another embodiment.

【符号の説明】[Explanation of symbols]

1 母船 2 吸入パイプ 2a 横設パイプ 3 海底 4 ハウジング 5 吸入口部 6 構造材 7(7a、7b、7c、7d)、9 噴射ノズル 8 覆材 8a 収容部 10 照明灯 11 カメラ 12 切替バルブ 13 電気ケーブル 14 加圧水パイプ 15 分岐パイプ 16 高圧ポンプ 17 高圧ノズル 21 磁気分別装置 22 投棄パイプ 23、25、26、27、28、29、30、31、3
2、33、43、44バルブ 24、24a 分離円筒 36 吸上げ装置 37、37a、37b、37c ソレノイドコイル 42 フレキシブルジョイント 45 ポンプ 46 水タンク 53 捕集タンク 63 保持筒 64 ねじ(遊離強磁性体) 65 保護筒 66 加圧パイプ 67 投棄パイプ 68、69 軸受け 70 プーリー 71 仕切 72 大粒固形物 73 小粒固形物 74 分離装置 75 分離パイプ 77 分別網 78 分岐パイプ 79 収容タンク 81 取出しパイプ
REFERENCE SIGNS LIST 1 mother ship 2 suction pipe 2 a horizontal pipe 3 seabed 4 housing 5 suction port 6 structural material 7 (7 a, 7 b, 7 c, 7 d), 9 injection nozzle 8 covering material 8 a storage unit 10 illumination light 11 camera 12 switching valve 13 electricity Cable 14 Pressurized water pipe 15 Branch pipe 16 High pressure pump 17 High pressure nozzle 21 Magnetic separation device 22 Dump pipe 23, 25, 26, 27, 28, 29, 30, 31, 3
2, 33, 43, 44 Valves 24, 24a Separation cylinder 36 Suction device 37, 37a, 37b, 37c Solenoid coil 42 Flexible joint 45 Pump 46 Water tank 53 Collection tank 63 Holding cylinder 64 Screw (free ferromagnetic material) 65 Protective cylinder 66 Pressurized pipe 67 Discarded pipe 68, 69 Bearing 70 Pulley 71 Partition 72 Large solids 73 Small solids 74 Separation device 75 Separation pipe 77 Sorting net 78 Branch pipe 79 Storage tank 81 Extraction pipe

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 海底にある資源を海水との混合水として
吸入パイプを介して母船内に流動搬送し、混合水の流動
中に、前記混合水の固形物を大粒と小粒に分別して、小
粒入り混合水は分別手段を介して有用粒子と無用粒子と
に分別すると共に、無用粒子入り混合水は投棄パイプを
介して海中に戻すことを特徴とした海底資源の採取方
法。
1. A method according to claim 1, wherein the resources on the seabed are flowed and conveyed into the mother ship through a suction pipe as mixed water with seawater, and the solids of the mixed water are separated into large particles and small particles during the flow of the mixed water, and A method for collecting seabed resources, wherein mixed water containing waste particles is separated into useful particles and useless particles through a separation means, and the mixed water containing useless particles is returned to the sea through a waste pipe.
【請求項2】 吸上げパイプの吸入口と、投棄パイプの
排出口とは、開放口なく連結されることを特徴とした請
求項1記載の海底資源の採取方法。
2. The method according to claim 1, wherein the suction port of the suction pipe and the discharge port of the dump pipe are connected without opening.
【請求項3】 分別手段は、磁気分離、スクリーン分
離、比重分離又は遠心分離を組合せて使用することを特
徴とした請求項1記載の海底資源の採取方法。
3. The method according to claim 1, wherein the separation means uses a combination of magnetic separation, screen separation, specific gravity separation, and centrifugation.
【請求項4】 海底における資源の探鉱手段、と採鉱手
段と、資源を海底から母船までの運搬手段と、運搬した
資源の分別手段と、不用物を海中に戻す投棄手段とを連
結し、連続処理ラインとしたことを特徴とする海底資源
の採取システム。
4. A method of continuously connecting resources exploring means on the seabed, mining means, means for transporting resources from the seabed to the mother ship, means for separating the conveyed resources, and means for discarding returning waste materials to the sea. A seabed resource extraction system characterized by a processing line.
【請求項5】 探鉱手段及び採鉱手段は、海底移動ハウ
ジングに照明手段と、撮影手段と、資源と水との吸入手
段を設置し、前記により撮影した映像を母船内でのモニ
ターにより、ハウジング移動手段を操作することを特徴
とした請求項4記載の海底資源の採取システム。
5. The exploration means and the mining means are provided with an illuminating means, a photographing means, and a means for sucking resources and water in a seabed moving housing, and moving the housing by means of a monitor in the mother ship by using the image photographed by the monitor. 5. The system according to claim 4, wherein the means is operated.
【請求項6】 分別手段は、固形物を大粒と小粒に分別
するスクリーン分別手段と、小粒を磁性の強弱により分
別する磁気分別手段とを連結したことを特徴とした請求
項4記載の海底資源の採取システム。
6. The submarine resource according to claim 4, wherein the separation means is connected to a screen separation means for separating solids into large grains and small grains, and a magnetic separation means for sorting small grains by magnetic strength. Sampling system.
【請求項7】 投棄手段は、上端を分別手段の排水口に
接続し、他端部を海中深く投棄パイプを挿入したことを
特徴とした請求項4記載の海底資源の採取システム。
7. The submarine resource collection system according to claim 4, wherein the dumping means has an upper end connected to a drainage port of the separating means, and the other end inserted with a dumping pipe deep in the sea.
【請求項8】 ドーム状のハウジングの中央部に、吸入
パイプを貫通設置し、前記ハウジングの外側壁上部に複
数の照明手段と、撮影手段を設置し、前記ハウジングの
外側壁下部に、ハウジングを前後、左右に移動させる移
動手段を設置し、前記吸入パイプの下端部は、吸入口を
形成すると共に、該吸入口の外壁に、掘削用のジェット
ノズルを設置したことを特徴とする海底資源採取装置。
8. A dome-shaped housing is provided with a suction pipe penetrating through a central portion thereof, a plurality of illuminating means and a photographing means being provided at an upper portion of an outer wall of the housing, and a housing is provided at a lower portion of the outer wall of the housing. A means for moving back and forth, left and right, a suction port is formed at a lower end of the suction pipe, and a jet nozzle for excavation is installed on an outer wall of the suction port; apparatus.
【請求項9】 吸入パイプの外壁に、電気ケーブル及び
加圧水パイプを一体的に添設したことを特徴とする海底
資源の流動搬送装置。
9. A flow conveying apparatus for submarine resources, wherein an electric cable and a pressurized water pipe are integrally attached to an outer wall of a suction pipe.
【請求項10】 一端を吸入管に連結し、他端を排出管
に連結した強磁性の分離円筒の外側に、磁場形成用のソ
レノイドコイルを配置し、前記分離円筒内に、強磁性の
遊離固形片を収容すると共に、分別すべき混合水の送流
と、前記分離円筒内に磁着した固形物の排出の為の清掃
流体の送流に必要なパイプ装置を、前記吸入管と排出管
に夫々連結したことを特徴とする海底資源の流動搬送装
置。
10. A solenoid coil for forming a magnetic field is disposed outside a ferromagnetic separation cylinder having one end connected to a suction pipe and the other end connected to a discharge pipe. A pipe device necessary for accommodating the solid pieces and for sending the mixed water to be separated and for sending the cleaning fluid for discharging the solid matter magnetized in the separation cylinder is provided by the suction pipe and the discharge pipe. A fluid transport device for submarine resources, characterized in that they are connected to each other.
【請求項11】 吸入パイプの上端部に、内部を減圧
し、上昇流を得る為の水のジェットノズル又は水と空気
との混合物のジェットノズルを設置したことを特徴とす
る海底資源の吸上げ流動力付与装置。
11. A method for sucking seabed resources, wherein a jet nozzle of water or a jet nozzle of a mixture of water and air is provided at an upper end of a suction pipe to reduce the pressure inside the pipe and obtain an upward flow. Fluid force imparting device.
JP04843699A 1999-02-25 1999-02-25 Seabed resource collection method and system Expired - Fee Related JP4528987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04843699A JP4528987B2 (en) 1999-02-25 1999-02-25 Seabed resource collection method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04843699A JP4528987B2 (en) 1999-02-25 1999-02-25 Seabed resource collection method and system

Publications (2)

Publication Number Publication Date
JP2000248874A true JP2000248874A (en) 2000-09-12
JP4528987B2 JP4528987B2 (en) 2010-08-25

Family

ID=12803312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04843699A Expired - Fee Related JP4528987B2 (en) 1999-02-25 1999-02-25 Seabed resource collection method and system

Country Status (1)

Country Link
JP (1) JP4528987B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796065B1 (en) 2007-01-19 2008-01-21 대우조선해양 주식회사 Treatment method for seabed resources in the deep sea mining vessel
JP2009235781A (en) * 2008-03-27 2009-10-15 National Institute Of Advanced Industrial & Technology System for crushing large mass of rock
JP2010236179A (en) * 2009-03-30 2010-10-21 Taisei Corp Sampling device and sampling method for water bottom resource
JP2010534777A (en) * 2007-07-13 2010-11-11 シー. マーシャル,ブルース Hydrothermal energy and deep sea resource recovery system
JP2012057350A (en) * 2010-09-08 2012-03-22 National Maritime Research Institute Marine mineral treatment system
JP6052691B1 (en) * 2016-02-12 2016-12-27 信 成井 Mining equipment and method for mining rare earth resources in the deep sea
WO2017038148A1 (en) * 2015-08-28 2017-03-09 徹三 永田 Mineral lifting system and mineral lifting method
JP2019120063A (en) * 2018-01-09 2019-07-22 株式会社不動テトラ Carrier material, and method and device for lifting ore of valuable substance of seabed using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191897A (en) * 1982-05-06 1983-11-09 斉藤 仲治 Continuous lifting apparatus of ore from deep sea bottom
JPS5955995A (en) * 1982-09-21 1984-03-31 内田 優明 Mining device for nodule-shaped sea-bottom resource
JPS6312381A (en) * 1986-07-04 1988-01-19 日本鋼管株式会社 Method of separating base rock of clust
WO1991010808A1 (en) * 1990-01-17 1991-07-25 Kenjiro Jimbo Pumping method for ores of deep sea mineral resources using heavy liquid
JPH04310494A (en) * 1991-04-08 1992-11-02 Mitsubishi Materials Corp Gathering ship for granular underwater resources
JPH05256082A (en) * 1991-04-18 1993-10-05 Kaiyo Kogyo Kk Method of collecting submarine mineral, etc. and device thereof
JPH11131438A (en) * 1997-10-29 1999-05-18 Zipangu:Kk Processing method and device for sedimentary layer in vicinity of mouth river-mouth

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191897A (en) * 1982-05-06 1983-11-09 斉藤 仲治 Continuous lifting apparatus of ore from deep sea bottom
JPS5955995A (en) * 1982-09-21 1984-03-31 内田 優明 Mining device for nodule-shaped sea-bottom resource
JPS6312381A (en) * 1986-07-04 1988-01-19 日本鋼管株式会社 Method of separating base rock of clust
WO1991010808A1 (en) * 1990-01-17 1991-07-25 Kenjiro Jimbo Pumping method for ores of deep sea mineral resources using heavy liquid
JPH04310494A (en) * 1991-04-08 1992-11-02 Mitsubishi Materials Corp Gathering ship for granular underwater resources
JPH05256082A (en) * 1991-04-18 1993-10-05 Kaiyo Kogyo Kk Method of collecting submarine mineral, etc. and device thereof
JPH11131438A (en) * 1997-10-29 1999-05-18 Zipangu:Kk Processing method and device for sedimentary layer in vicinity of mouth river-mouth

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796065B1 (en) 2007-01-19 2008-01-21 대우조선해양 주식회사 Treatment method for seabed resources in the deep sea mining vessel
JP2010534777A (en) * 2007-07-13 2010-11-11 シー. マーシャル,ブルース Hydrothermal energy and deep sea resource recovery system
JP2009235781A (en) * 2008-03-27 2009-10-15 National Institute Of Advanced Industrial & Technology System for crushing large mass of rock
JP2010236179A (en) * 2009-03-30 2010-10-21 Taisei Corp Sampling device and sampling method for water bottom resource
JP2012057350A (en) * 2010-09-08 2012-03-22 National Maritime Research Institute Marine mineral treatment system
WO2017038148A1 (en) * 2015-08-28 2017-03-09 徹三 永田 Mineral lifting system and mineral lifting method
JPWO2017038148A1 (en) * 2015-08-28 2017-08-31 徹三 永田 Pumping system and pumping method
JP6052691B1 (en) * 2016-02-12 2016-12-27 信 成井 Mining equipment and method for mining rare earth resources in the deep sea
JP2019120063A (en) * 2018-01-09 2019-07-22 株式会社不動テトラ Carrier material, and method and device for lifting ore of valuable substance of seabed using the same

Also Published As

Publication number Publication date
JP4528987B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP6208401B2 (en) Pumping system and pumping method
US3672725A (en) Deep sea mining method and apparatus
CN107476267B (en) A kind of algae salvaging collection device
US3132852A (en) Method for mining soluble mineral substances
JPH1157527A (en) Placer gold digging and sorting method and digging and sorting system
JP2000248874A (en) Method and system for gathering seabed resource and device for use in the same
ATE390538T1 (en) PROPANT RECOVERY SYSTEM
CN106545341B (en) A kind of deep-sea mining method and device
RU2375578C1 (en) Method for selective sampling and preliminary concentration of ferromanganese burrs and device for its realisation
CN1204332C (en) Placer gold mining method, placer gold mining boat used in this method, placer gold digging and separating method and system therefor, and placer gold separating method and system therefor
WO1991010808A1 (en) Pumping method for ores of deep sea mineral resources using heavy liquid
CN107438689A (en) System for being sampled to the deposit on liquid medium bottom
CN107035375B (en) A kind of marine mining engineering machinery
CN106013307B (en) A kind of structure improved dredger
KR101172431B1 (en) System for treating of dredging sediment and floating matter exclusion
RU2530950C2 (en) Method and device for processing dredge spoils excavated by dredger
RU2053366C1 (en) Method for mining of iron-manganese concretions from ocean bottom and device for its embodiment
JP2009022834A (en) Apparatus for recovering useless algae, floating mud and the like floating or depositing in water and on water bottom
US3950030A (en) Underwater mining
JP2015203210A (en) Sludge dredging method in enclosed area
JP2004300710A (en) Device and method for eliminating water bottom sediment
RU2043500C1 (en) Method for mineral mining from nonmagnetic bottom deposits of seas and oceans and device for its realization
CN208667440U (en) A kind of module-integrated equipment of intelligent and high-efficiency river and lake silt dredging
JPH11131438A (en) Processing method and device for sedimentary layer in vicinity of mouth river-mouth
RU2089295C1 (en) Flushing device with uninterrupted discharge of concentrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees