JP2000247976A - Construction of indolocarbazole skeleton - Google Patents

Construction of indolocarbazole skeleton

Info

Publication number
JP2000247976A
JP2000247976A JP11052498A JP5249899A JP2000247976A JP 2000247976 A JP2000247976 A JP 2000247976A JP 11052498 A JP11052498 A JP 11052498A JP 5249899 A JP5249899 A JP 5249899A JP 2000247976 A JP2000247976 A JP 2000247976A
Authority
JP
Japan
Prior art keywords
formula
following formula
compound
reaction
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11052498A
Other languages
Japanese (ja)
Other versions
JP3916791B2 (en
Inventor
Toru Fukuyama
透 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP05249899A priority Critical patent/JP3916791B2/en
Publication of JP2000247976A publication Critical patent/JP2000247976A/en
Application granted granted Critical
Publication of JP3916791B2 publication Critical patent/JP3916791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Saccharide Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain the subject skeleton in high reproducibility under mild conditions by condensation reaction of a specific bromoindoleacetic acid compound with tryptamine followed by oxidation and then acetylation of the condensate thus formed followed by carrying out cyclodehydration, light irradiation and HBr elimination reaction, etc. SOLUTION: This skeleton is obtained by the following process: a 2- bromoindoleacetic acid compound of formula I (R2 is H or a substituent) is subjected to condensation reaction with tryptamine to form an amide compound of formula II, which is then oxidized followed by acetylation of the nitrogen atom in the amide compound to derive the corresponding acyl compound of formula III (Ac is acetyl), which, in turn, subjected to cyclodehydration to form a compound of formula IV, which is then put to light irradiation and HBr elimination reaction, and as desired, furthermore, deacylation reaction or protective group or substituent introduction to obtain the aimed skeleton of formula V (R1 to R3 are each H, a protective group or substituent). The method described above is useful as a method for synthesizing physiologically active alkaloids.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、インドロ
カルバゾール骨格の構築方法に関するものである。さら
に詳しくは、この出願の発明は、生理活性を有するアル
カロイドの合成法として有用な、温和な条件で再現性良
く、効率的にインドロカルバゾール骨格を構築すること
のできる新しい方法に関するものである。
TECHNICAL FIELD The invention of this application relates to a method for constructing an indolocarbazole skeleton. More specifically, the invention of this application relates to a novel method that is useful as a method for synthesizing an alkaloid having a physiological activity and that can efficiently and efficiently construct an indolocarbazole skeleton under mild conditions.

【0002】[0002]

【従来の技術とその課題課題】次式(1)2. Description of the Related Art The following equation (1)

【0003】[0003]

【化11】 Embedded image

【0004】で表わされる化合物K252aはインドロ
カルバゾール骨格を有するアルカロイドとして、次式
(2)
Compound K252a represented by the following formula (2) is an alkaloid having an indolocarbazole skeleton.

【0005】[0005]

【化12】 Embedded image

【0006】で表わされるstaurosporine とともに強力
なプロテインキナーゼC阻害活性を有することが知られ
ている。たとえばこれら物質にみられるように、アルカ
ロイド等としてインドロカルバゾール骨格を有する化合
物がその生理活性の点からも注目されているが、その合
成は必ずしも容易でないのが実情である。
It is known that staurosporine represented by the formula (1) has potent protein kinase C inhibitory activity. For example, as seen in these substances, compounds having an indolocarbazole skeleton as alkaloids and the like have attracted attention from the viewpoint of their physiological activities, but the fact is that their synthesis is not always easy.

【0007】たとえば前記のK252a(1)は、アグ
リコン部の2つのインドール窒素原子が糖部分と環状の
グリコシドを形成していることから、それらのグリコシ
ル結合の生成における、アグリコン部のラクタムと糖部
分の位置異性の制御が合成上の最大の問題となってい
る。実際、Woodらや、Danishefskyらによりそれぞれ
(1)、(2)の全合成が達成されたが、いずれもこの
問題の克服には至っていない。
For example, K252a (1) is characterized in that the two indole nitrogen atoms of the aglycone moiety form a cyclic glycoside with the sugar moiety, and thus the lactam and sugar moiety of the aglycone moiety in their glycosyl bond formation. Is the biggest problem in the synthesis. In fact, Wood, et al., And Danishefsky, et al. Achieved total synthesis of (1) and (2), respectively, but none of them has overcome this problem.

【0008】位置異性体の副生を伴うことなくK252
aを合成するには、2つのグリコシル結合を段階的かつ
位置選択的に形成させる必要がある。そこで問題となる
のが、このような位置選択性を実現するために、いかに
してインドロカルバゾール骨格を構築するのかの点であ
る。この出願の発明者によっても様々なアプローチとし
て検討されてきたが、より温和な条件でしかも高い合成
選択性として効率的にインドロカルバゾール骨格を構築
することには成功していなかった。そして、このインド
ロカルバゾール骨格の構築法の検討においては、前記K
252a(1)に限られることなしに、より広範な化合
物の合成に適用可能とされる一般法を確立することが大
きな命題であった。
K252 without regioisomer by-product
To synthesize a, it is necessary to form two glycosyl bonds stepwise and regioselectively. The problem is how to construct an indolocarbazole skeleton in order to achieve such regioselectivity. Although various approaches have been studied by the inventor of this application, it has not been successful to construct an indolocarbazole skeleton efficiently under milder conditions and with higher synthetic selectivity. In the study of the method for constructing the indolocarbazole skeleton,
It was a great proposition to establish a general method that could be applied to the synthesis of a wider range of compounds without being limited to 252a (1).

【0009】この出願の発明は、以上のとおりの背景を
踏まえてなされたものであり、アルカロイド等のインド
ロカルバゾール骨格を有する化合物のできるだけ簡便
で、かつ効率のよい合成方法として、インドロカルバゾ
ール骨格の新しい構築方法を提供することを課題として
いる。
The invention of this application has been made in view of the above background, and has been proposed as a method for synthesizing a compound having an indolocarbazole skeleton such as an alkaloid as simple and efficient as possible. It is an object to provide a new construction method.

【0010】[0010]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、第1には、次式(A)
Means for Solving the Problems The invention of the present application solves the above-mentioned problems.

【0011】[0011]

【化13】 Embedded image

【0012】(式中のR1 、R2 およびR3 は、各々、
水素原子、保護基もしくは置換基を示す。)で表わされ
るインドロカルバゾール骨格の構築方法であって、次式
(B)
(Wherein R 1 , R 2 and R 3 are each
Represents a hydrogen atom, a protecting group or a substituent. A method for constructing an indolocarbazole skeleton represented by the following formula (B):

【0013】[0013]

【化14】 Embedded image

【0014】(R4 は置換基もしくは水素原子を示
す。)で表わされる2−ブロモインドール酢酸化合物を
トリプタミンと縮合反応させて次式(C)
[0014] (R 4 is. Indicating a substituent or a hydrogen atom) with 2-bromoindole acid compound represented by was tryptamine and condensation reaction following formula (C)

【0015】[0015]

【化15】 Embedded image

【0016】で表わされるアミド化合物を生成させ、酸
化反応とこれに続く窒素原子のアセチル化によって次式
(D)
The amide compound represented by the formula (D) is produced by an oxidation reaction and subsequent acetylation of a nitrogen atom.

【0017】[0017]

【化16】 Embedded image

【0018】で表わされるアシル化合物に導いた後に閉
環脱水反応させて次式(E)
The acyl compound represented by the formula (E) is subjected to a ring-closing dehydration reaction to give the following formula (E)

【0019】[0019]

【化17】 Embedded image

【0020】で表わされる化合物を生成させ、次いで光
照射と脱HBr反応とを経由させて次式(F)
A compound represented by the following formula (F) is produced through light irradiation and HBr removal reaction.

【0021】[0021]

【化18】 Embedded image

【0022】で表わされる化合物を導くか、さらに所望
により脱アシル化反応させるかもしくは保護基または置
換基を導入することを特徴とするインドロカルバゾール
骨格の構築方法を提供する。また、この出願の発明は、
第2には、R2 が糖基である前記第1の発明のインドロ
カルバゾール骨格の構築方法を提供する。
The present invention provides a method for constructing an indolocarbazole skeleton, which comprises deriving a compound represented by the formula, further performing a deacylation reaction as required, or introducing a protecting group or a substituent. Also, the invention of this application
Secondly, the present invention provides the method for constructing an indolocarbazole skeleton according to the first invention, wherein R 2 is a sugar group.

【0023】そして、この出願の発明は、第3には、次
式(G)
Third, the invention of this application is based on the following formula (G):

【0024】[0024]

【化19】 Embedded image

【0025】で表わされる化合物から、次式(H)From the compound represented by the following formula (H)

【0026】[0026]

【化20】 Embedded image

【0027】で表わされる化合物を製造するインドロカ
ルバゾール骨格の構築方法を、第4には、請求項3の方
法により導かれた式(H)の化合物から、次式(I)
Fourth, a method for constructing the indolocarbazole skeleton for producing the compound represented by the formula (I) is to convert the compound of the formula (H) derived by the method of claim 3 into the following formula (I)

【0028】[0028]

【化21】 Embedded image

【0029】で表わされる糖ケトン化合物を製造し、次
いで次式(J)
A sugar ketone compound represented by the following formula (J) is prepared.

【0030】[0030]

【化22】 Embedded image

【0031】で表わされるインドロカルバゾール(+)
−K252aを製造することを特徴とするインドロカル
バゾール骨格の構築方法を提供する。
Indolocarbazole (+) represented by
A method for constructing an indolocarbazole skeleton characterized by producing -K252a.

【0032】[0032]

【発明の実施の形態】この出願の発明は、以上のとおり
の特徴を有するものであるが以下にその実施の形態を合
成例に沿って説明する。なお、前記の符号R1 、R2
3 、そしてR4 は許容される各種の保護基や置換基で
あってよく、目的に応じて選択されてよいことは言うま
でもない。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and the embodiments thereof will be described below along with synthesis examples. Note that the above symbols R 1 , R 2 ,
R 3 and R 4 may be various acceptable protecting groups and substituents, and may be selected according to the purpose.

【0033】また、前記式(A)〜(J)の化合物が、
カルバゾール環にさらに適宜な置換基を有してもよいこ
とも当然のことである。この発明はインドロカルバゾー
ル骨格の構築法であってみれば、原料、中間体そして目
的物に様々な態様が許容されることも言うまでもない。 (合成例1)次の反応式に従って、インドロカルバゾー
ル(19)化合物を合成した。
Further, the compounds of the formulas (A) to (J)
It is a matter of course that the carbazole ring may further have an appropriate substituent. If the present invention is concerned with a method for constructing an indolocarbazole skeleton, it goes without saying that various embodiments are permissible for the raw materials, intermediates and target products. (Synthesis Example 1) According to the following reaction formula, an indolocarbazole (19) compound was synthesized.

【0034】[0034]

【化23】 Embedded image

【0035】すなわち、インドール酢酸から容易に誘導
可能な2−ブロモインドール(15)とトリプタミンと
の縮合によりアミド(16)を得た。このアミド(1
6)のDDQによるアルキルインドールからアシルイン
ドールへの酸化(J.Org.Chem1977.42,1213)は位置選
択的に進行し、続いてインドールとアミドの窒素原子の
アセチル化により活性化された中間体(17)を得た。
モレキュラーシーブスと触媒量のDBUで閉環脱水反応
が容易に進行しビスインドール(18)を得た。閉環反
応は可視光(自然太陽光またはハロゲンランプ)による
光反応とそれに続く脱HBr反応でほぼ定量的に進行し
インドロカルバソール(19)を得た。これは光反応に
より同旋的に閉環し、水素原子と臭素原子がantiperipl
anarの位置関係になるために臭化水素の脱離による芳香
環化反応が容易に進行するためである。こうして、3−
インドール酢酸を原料として8段階でインドロカルバゾ
ール(19)が合成でき、穏やかな条件で効率的なイン
ドロカルバゾール骨格の構築法を開発することができ
た。 (合成例2)合成例1の方法を利用して、K252aを
次の反応式に従って合成した。
That is, condensation of 2-bromoindole (15), which can be easily derived from indoleacetic acid, with tryptamine yielded amide (16). This amide (1
6) Oxidation of alkyl indole to acyl indole by DDQ (J. Org. Chem 1977.42, 1213) proceeds regioselectively, followed by an intermediate activated by acetylation of the nitrogen atom of indole and amide (17) was obtained.
The ring-closing dehydration reaction easily proceeded with molecular sieves and a catalytic amount of DBU to obtain bisindole (18). The ring closure reaction proceeded almost quantitatively by a photoreaction with visible light (natural sunlight or a halogen lamp) followed by a de-HBr reaction to obtain indolocarbazole (19). It is closed in a helical manner by a photoreaction, and hydrogen and bromine atoms become antiperipl
This is because the aromatic cyclization reaction due to elimination of hydrogen bromide easily proceeds due to the positional relationship of anar. Thus, 3-
Indoleacetic acid was used as a raw material to synthesize indolocarbazole (19) in eight steps, and a method for constructing an efficient indolocarbazole skeleton under mild conditions could be developed. (Synthesis Example 2) Using the method of Synthesis Example 1, K252a was synthesized according to the following reaction formula.

【0036】[0036]

【化24】 Embedded image

【0037】2−ブロモインドール酢酸アリルエステル
とリボシルクロリド(11)とのグリコシル化反応は立
体選択的に進行(収率97%)し化合物(20)が得ら
れた。この化合物(20)から合成例1のインドロカル
バゾール骨格構築法で7段階、収率46%で、位置異性
をコントロールした合成のための重要鍵中間体であるイ
ンドロカルバゾール(21)がアノマー位の異性化を伴
うことなく得られた。これを一級アルコールの選択的ヨ
ウ素化を経て、フェニルセレニドへと変換した後、MC
PBAによる酸化後のセレノキシド脱離によりエノール
エーテル(22)とした。第二の鍵反応である環状グリ
コシル化反応について種々検討したこところ、ヨウ化カ
リウム−ヨウ素を用いる方法が最も良い収率で化合物
(23)を与えた。続いて脱ヨウ素化を行い、脱アセチ
ル化および酸化によりケトン(24)を得た。
The glycosylation reaction between 2-bromoindole acetic acid allyl ester and ribosilyl chloride (11) proceeded stereoselectively (yield 97%) to give compound (20). From this compound (20), indolocarbazole (21), which is an important key intermediate for the synthesis in which regioisomerism is controlled, is obtained in seven steps in a yield of 46% in the indolocarbazole skeleton construction method of Synthesis Example 1 in the anomeric position. Without isomerization. This is converted to phenyl selenide through selective iodination of primary alcohol, and then MC
Enol ether (22) was obtained by elimination of selenoxide after oxidation with PBA. After various studies on the cyclic glycosylation reaction, which is the second key reaction, the method using potassium iodide-iodine gave compound (23) in the best yield. Subsequently, deiodination was performed, and ketone (24) was obtained by deacetylation and oxidation.

【0038】最後に、糖部分のケトンに対して立体選択
的に一炭素ユニットを導入した。ケトン体(24)の青
酸−ピリジンによるシアノヒドリン形成は完全に立体選
択的に起こり、化合物(25)を得た。塩酸−ギ酸によ
りニトリルをアミドとしたのちアルカリ加水分解、カル
ボン酸をジアゾメタンでメチルエステルとして(+)−
K252aを得た。このものは、天然の(+)−K25
2aと各種スペクトルデータが完全に一致した。こうし
て、インドロカルバゾール骨格を介しての環状グリコシ
ド構造の立体化学と上部ラクタムとの位置異性を完全に
制御した(+)−K252aの全合成を完了した。
Finally, one carbon unit was introduced stereoselectively with respect to the ketone of the sugar moiety. Cyanohydrin formation of the ketone body (24) by hydrocyanic acid-pyridine occurred completely stereoselectively, and a compound (25) was obtained. The nitrile is converted to an amide with hydrochloric acid-formic acid, and then subjected to alkali hydrolysis.
K252a was obtained. This is natural (+)-K25
2a and various spectrum data completely matched. Thus, the complete synthesis of (+)-K252a in which the stereochemistry of the cyclic glycoside structure via the indolocarbazole skeleton and the positional isomerism of the upper lactam were completely controlled was completed.

【0039】[0039]

【発明の効果】以上詳しく説明したように、この出願の
発明によって、温和な条件で、再現性良く、効率的にイ
ンドロカルバゾール骨格の構築が可視とされる。この発
明の方法は、一般的方法として広く応用可能とされるも
のである。
As described in detail above, according to the invention of this application, the construction of an indolocarbazole skeleton can be made visible under mild conditions with good reproducibility and efficiency. The method of the present invention is widely applicable as a general method.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 次式(A) 【化1】 (式中のR1 、R2 およびR3 は、各々、水素原子、保
護基もしくは置換基を示す。で表わされるインドロカル
バゾール骨格の構築方法であって、次式(B) 【化2】 (R4 は置換基もしくは水素原子を示す。)で表わされ
る2−ブロモインドール酢酸化合物をトリプタミンと縮
合反応させて次式(C) 【化3】 で表わされるアミド化合物を生成させ、酸化反応とこれ
に続く窒素原子のアセチル化によって次式(D) 【化4】 で表わされるアシル化合物に導いた後に閉環脱水反応さ
せて次式(E) 【化5】 で表わされる化合物を生成させ、次いで光照射と脱HB
r反応とを経由させて次式(F) 【化6】 で表わされる化合物を導くか、さらに所望により脱アシ
ル化反応させるかもしくは保護基または置換基を導入す
ることを特徴とするインドロカルバゾール骨格の構築方
法。
(1) The following formula (A): (Wherein R 1 , R 2 and R 3 each represent a hydrogen atom, a protecting group or a substituent. A method for constructing an indolocarbazole skeleton represented by the following formula (B): (R 4 represents a substituent or a hydrogen atom.) A 2-bromoindoleacetic acid compound represented by the following formula (C) is subjected to a condensation reaction with tryptamine. An amide compound represented by the following formula is generated, and the amide compound is subjected to an oxidation reaction and subsequent acetylation of a nitrogen atom to obtain the following formula (D). And then subjected to a ring-closing dehydration reaction to obtain an acyl compound represented by the following formula (E): To produce a compound represented by the formula
The following formula (F) via the r reaction A method for constructing an indolocarbazole skeleton, which comprises deriving a compound represented by the formula (I), further subjecting the compound to a deacylation reaction as required, or introducing a protecting group or a substituent.
【請求項2】R2 が糖基である請求項1のインドロカル
バゾール骨格の構築方法。
2. The method for constructing an indolocarbazole skeleton according to claim 1, wherein R 2 is a sugar group.
【請求項3】次式(G) 【化7】 で表わされる化合物から、次式(H) 【化8】 で表わされる化合物を製造する請求項1または2のイン
ドロカルバゾール骨格の構築方法。
3. The following formula (G): From the compound represented by the following formula (H): 3. The method for constructing an indolocarbazole skeleton according to claim 1 or 2, wherein the compound represented by the formula is produced.
【請求項4】請求項3の方法により導かれた式(H)の
化合物から、次式(I) 【化9】 で表わされる糖ケトン化合物を製造し、次いで次式
(J) 【化10】 で表わされるインドロカルバゾール(+)−K252a
を製造することを特徴とするインドロカルバゾール骨格
の構築方法。
4. A compound of the formula (H) derived by the method of claim 3, A sugar ketone compound represented by the following formula is produced, and then the following formula (J) is prepared. Indolocarbazole (+)-K252a represented by
And a method for constructing an indolocarbazole skeleton.
JP05249899A 1999-03-01 1999-03-01 Method for producing indolocarbazole Expired - Fee Related JP3916791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05249899A JP3916791B2 (en) 1999-03-01 1999-03-01 Method for producing indolocarbazole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05249899A JP3916791B2 (en) 1999-03-01 1999-03-01 Method for producing indolocarbazole

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006275816A Division JP4558697B2 (en) 2006-10-06 2006-10-06 Method for producing indolocarbazole

Publications (2)

Publication Number Publication Date
JP2000247976A true JP2000247976A (en) 2000-09-12
JP3916791B2 JP3916791B2 (en) 2007-05-23

Family

ID=12916396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05249899A Expired - Fee Related JP3916791B2 (en) 1999-03-01 1999-03-01 Method for producing indolocarbazole

Country Status (1)

Country Link
JP (1) JP3916791B2 (en)

Also Published As

Publication number Publication date
JP3916791B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
Shono et al. Electroorganic chemistry. 113. Synthesis of (+)-and (-)-N-methylpseudoconhydrine from L-lysine using anodic oxidation as the key reaction
CN107400128B (en) Monoterpene-like indole alkaloid and preparation method and application thereof
Paik et al. Mirabimide E, an unusual N-acylpyrrolinone from the blue-green alga Scytonema mirabile: Structure determination and synthesis
Kuehne et al. Syntheses and biological evaluation of vinblastine congeners
Sollogoub et al. Titanium (IV) promoted rearrangement of 6-deoxy-hex-5-enopyranosides into cyclohexanones
Kaur et al. Diversity-oriented synthetic approaches for furoindoline: a review
Yadav et al. Unprecedented InCl3-catalyzed formation of cis-fused perhydrofuro [2, 3-b] oxepines
Weisbach et al. Stereospecific total synthesis of dl-corynantheidine and dl-dihydrocorynantheine
JP2000247976A (en) Construction of indolocarbazole skeleton
Shaw et al. 3-Ureidoacrylonitriles: Novel products from the photoisomerization of cytosine, 5-methylcytosine, and related compounds
Robins et al. Nucleic acid related compounds. 9. Synthesis of 6-amino-9-(2-deoxy-D-erythro-pent-1-enofuranosyl) purine, the first 1', 2'-unsaturated purine nucleoside
JP4558697B2 (en) Method for producing indolocarbazole
Soengas et al. Synthesis of polyhydroxylated α-nitrocyclohexane carboxylic acids derived from d-glucose: a striking case of racemization
Sato et al. Use of 1, 3‐dioxin‐4‐ones and their related compounds in synthesis. Part 28. Asymmetric de mayo reactions using chiral spirocyclic dioxinones
Angyal et al. Oxidation of carbohydrates with chromium trioxide in acetic acid. III. Synthesis of the 3-hexuloses
Panosyan et al. An efficient route to 5-iodo-1-methylimidazole: synthesis of xestomanzamine A
JPH0327355A (en) Mismatched synthesis for manu- facture of 1-azacycld (2.2.1) heptane-3-caboxylate
Muraoka et al. Tandem Beckmann and Huisgen–White rearrangement of the9-azabicyclo [3.3. 1] nonan-3-one system. Part 2.1 The secondmode of the rearrangement leading to 6-(prop-1-enyl) piperidin-2-ylaceticacid, a versatile intermediate for the syntheses of piperidine alkaloids (+)-pinidine and (+)-monomorine I
Santos et al. A new approach to N-protected staurosporinones
Kimishima et al. Single-step construction of an acetoxypyrroloindole skeleton via tandem iodocyclization/acetoxylation of indoles
Demir et al. Intermolecular one-pot cyclization of formyl-pyrroles of amino acid esters with norephedrine: stereoselective routes to new tricyclic pyrrole–pyrazine–oxazole fused structures
US20140213797A1 (en) Novel Pharmaceutical Intermediates and Methods for Preparing the Same
Cordero-Vargas et al. Stereodivergent reduction of enelactams embedded in hexahydroindoles. Synthesis of trans-3-substituted-cis-3a-methyloctahydroindoles
Enjo et al. Photochemistry of tosylstilbenoids in the preparation of complex heterocyclic compounds. Synthesis of a cyclopropafuroindolone analogue of the DNA-alkylating section of the antitumor compound CC-1065
CN109369672B (en) Preparation method of polysubstituted cycloheptatriene derivative

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070207

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees