JP2000246392A - Molding method of wax model having ceramic core - Google Patents

Molding method of wax model having ceramic core

Info

Publication number
JP2000246392A
JP2000246392A JP11053984A JP5398499A JP2000246392A JP 2000246392 A JP2000246392 A JP 2000246392A JP 11053984 A JP11053984 A JP 11053984A JP 5398499 A JP5398499 A JP 5398499A JP 2000246392 A JP2000246392 A JP 2000246392A
Authority
JP
Japan
Prior art keywords
wax
ceramic core
core
mold
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11053984A
Other languages
Japanese (ja)
Other versions
JP4092674B2 (en
Inventor
Makoto Ishihara
誠 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP05398499A priority Critical patent/JP4092674B2/en
Publication of JP2000246392A publication Critical patent/JP2000246392A/en
Application granted granted Critical
Publication of JP4092674B2 publication Critical patent/JP4092674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a model which does not generate core cracks by installing a solid wax between a ceramic core surface and a mold inner face in advance, before the molten wax is injected inside the mold. SOLUTION: A molten wax is injected between the core outer surface of a wax model ceramic formed from a product drawing and a mold inner surface. Then, the face of the ceramic core is checked to see which face of the core is pressured by interrupting injection or the like. The solid wax with the same thickness as a space between the ceramic core surface opposed to the pressure applied face and the mold inner surface is adhered on the ceramic core surface opposed to the pressure applied face. The solid wax is made to be a sheet with an adhesive. During injection of the molten wax, if the pressure is applied to the ceramic core, the mold inner surface holds the ceramic core via the solid wax so as to prevent fracture of the core. It is suitable for the wax model having an expensive ceramic core such as a moving blade or the like for a gas turbine by a lost wax precise casting method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロストワックス精
密鋳造法により製造される内部に空間部を有する鋳造製
品、特に、内部に空気冷却孔を有するガスタービン用動
翼、静翼等のワックス模型の成型方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cast product manufactured by a lost-wax precision casting method and having a space inside, and in particular, a wax model for a gas turbine moving blade and a stationary blade having an air cooling hole therein. And a method for molding the same.

【0002】[0002]

【従来の技術】従来、ガスタービン用動翼、静翼等は、
ロストワックス精密鋳造法により製造されている。その
翼は、高温の燃焼ガスに暴露されるために、翼内部に冷
却用孔が設けられ強制空冷される構造となっている。そ
して、その冷却用孔は非常に複雑で、その隙間も数mm
と薄く設計されている。
2. Description of the Related Art Conventionally, moving blades and stationary blades for gas turbines are:
Manufactured by lost wax precision casting. Since the blade is exposed to high-temperature combustion gas, a cooling hole is provided inside the blade and the blade is forcibly cooled. And the cooling hole is very complicated and the gap is several mm.
And it is designed to be thin.

【0003】ロストワックス精密鋳造法により前記冷却
用孔を有するガスタービン用動翼、静翼を製造する場
合、製造しようとする動翼、静翼形状ワックス内部に冷
却用孔形状のセラミック中子を埋め込んだ模型を成型す
る必要がある。具体的には製造しようとする動翼、静翼
形状のキャビティーを持った金型内部に巾木で保持され
たセラミック中子を置き、その後に溶融ワックスを射出
することによって得ることが出来る。
[0003] When manufacturing a rotor blade and a stationary blade for a gas turbine having the cooling hole by the lost wax precision casting method, a ceramic core having a cooling hole shape is placed inside the rotor blade and the stationary blade shaped wax to be manufactured. It is necessary to mold the embedded model. Specifically, it can be obtained by placing a ceramic core held by a baseboard in a mold having a cavity in the shape of a moving blade or a stationary blade to be manufactured, and thereafter injecting a molten wax.

【0004】[0004]

【発明が解決しようとする課題】上述した方法により得
られるガスタービン用動翼、静翼形状ワックス模型は、
内部のセラミック中子に割れが生じる場合があり、成型
歩留まりが低いといった問題点がある。このような中子
の割れを防止する方法として、例えば、通常シリカで製
作される中子にジルコンを配合させたり、有機樹脂を含
浸させたりすることで、セラミック中子の強度を上げる
手法が提案されている。
SUMMARY OF THE INVENTION A wax model of a moving blade and a stationary blade shape for a gas turbine obtained by the above-described method is as follows.
There is a problem that cracks may occur in the internal ceramic core and the molding yield is low. As a method of preventing such a crack of the core, for example, a method of increasing the strength of the ceramic core by mixing zircon in a core usually made of silica or impregnating with an organic resin is proposed. Have been.

【0005】しかし、前記成型方法ではその強度が十分
でなく、中子の折損を抑制するに十分ではない。また、
金属鋳造を終えた後のセラミック中子は最終的にアルカ
リ溶液で製品より溶融除去されるため、アルカリで溶融
するシリカ以外が含まれると中子除去に長時間を要する
といった問題点もある。そこで、本発明の目的は、低コ
ストで、中子割れの発生しないガスタービン用動翼、静
翼等のワックス模型の成型を可能にする方法を提供する
ことにある。
[0005] However, the above-mentioned molding method has insufficient strength and is not sufficient to suppress breakage of the core. Also,
Since the ceramic core after metal casting is finally melted and removed from the product with an alkaline solution, there is also a problem in that the removal of the core takes a long time if it contains anything other than silica that is melted with alkali. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method capable of molding a wax model such as a moving blade or a stationary blade for a gas turbine which is low in cost and does not cause core cracking.

【0006】[0006]

【課題を解決するための手段】本発明者は、セラミック
中子の割れについて詳細に分析したところ、中子の割れ
は、金型内に溶融ワックスが射出される過程でワックス
圧力にセラミック中子が耐え切れずに折損する結果とし
て生じることを突きとめた。つまり、ガスタービン用動
翼や静翼を例に取れば、その中子割れは図3及び図4に
示す様な状況で生じ、その原因は薄い冷却孔を作るため
にセラミック中子が薄いことに加え、巾木以外に金型内
でセラミック中子を保持する部分が無く、溶融ワックス
の射出時にその圧力に耐え切れず折損するというもので
ある。
The inventor of the present invention has analyzed the cracks in the ceramic core in detail, and found that the cracks in the core were caused by the pressure of the ceramic core during the injection of the molten wax into the mold. Was found to be the result of unbreakable breakage. In other words, taking the rotor blades and stationary blades for gas turbines as an example, the core cracks occur in the situation shown in Figs. 3 and 4, and the reason is that the ceramic core is thin to make thin cooling holes. In addition to the above, there is no portion other than the baseboard for holding the ceramic core in the mold, and the molten wax cannot withstand the pressure during the injection and breaks.

【0007】そこで、本発明者は、上述した中子割れの
発生要因に焦点を当て、溶融ワックスの射出によるワッ
クス圧力に耐え得るセラミック中子の強度を得る方法を
見いだした。すなわち、本発明は、金型内部に溶融ワッ
クスを射出する前に、予めセラミック中子表面と金型内
面の間に固形ワックスを設けるワックス模型の成型方法
である。
Accordingly, the present inventor has focused on the above-mentioned factor of the occurrence of core cracking, and has found a method for obtaining a ceramic core having strength that can withstand wax pressure caused by injection of molten wax. That is, the present invention is a method for molding a wax model in which solid wax is previously provided between the surface of the ceramic core and the inner surface of the mold before the molten wax is injected into the mold.

【0008】[0008]

【発明の実施の形態】本発明の特徴は、単に中子自体の
強度を上げる従来の方法に比して、その中子割れが溶融
ワックス射出時に起こるところに注目した結果として、
中子にかかる圧力に応じ補強部材を設けることで、中子
の折損を低コストかつ効率良く抑えられるところにあ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The feature of the present invention is that, as compared with the conventional method of simply increasing the strength of the core itself, as a result of focusing on the fact that the core cracking occurs at the time of injection of the molten wax,
By providing the reinforcing member in accordance with the pressure applied to the core, breakage of the core can be efficiently suppressed at low cost.

【0009】中子割れは、図3及び図4に示す様な状況
で生じ、その原因の一つが溶融ワックスの射出時にその
圧力に耐え切れず折損するというものであることは、前
述の通りである。つまり、溶融ワックスが金型内に完全
に充填された状態であれば、セラミック中子に折損をき
たす力は働かないが、充填途中では金型キャビティーが
複雑形状であったり、射出口の位置によりどうしてもセ
ラミック中子の片面にのみ圧力が働き、折損するのであ
る。
As described above, the core cracking occurs in a situation as shown in FIGS. 3 and 4, and one of the causes is that the molten wax cannot withstand the pressure during injection and breaks. is there. In other words, if the molten wax is completely filled in the mold, the force that breaks the ceramic core does not work, but the mold cavity has a complicated shape during filling, or the position of the injection port is not sufficient. As a result, pressure acts on only one side of the ceramic core and breaks.

【0010】この場合、セラミック中子の折損防止策と
して、前述の折損原因を排除することが、すなわち、セ
ラミック中子の全面にかつ均等に溶融ワックスの圧力が
掛かるようにすることが考えられる。しかし、そのよう
な条件とするためにはワックス射出口を複数個設け、さ
らには、それぞれの流量を制御するといった非常に複雑
な金型、射出機が必要となり、その実施が困難となる。
In this case, as a measure for preventing the breakage of the ceramic core, it is conceivable to eliminate the above-mentioned cause of breakage, that is, to apply the pressure of the molten wax uniformly over the entire surface of the ceramic core. However, in order to satisfy such conditions, a very complicated mold and injection machine are required, such as providing a plurality of wax injection ports and controlling the flow rates of the respective wax injection ports.

【0011】そこで、本発明者は、セラミック中子の折
損を防ぐために種々実験検討の結果、セラミック中子に
割れを生じさせない成型方法を見いだし、本発明に至っ
たのである。具体的には、金型内部に溶融ワックスを射
出する前に、予めセラミック中子表面と金型内面の間に
固形ワックスを設けるワックス模型の成型方法であり、
以下、その詳細を述べる。
The present inventor has conducted various experiments and studies to prevent breakage of the ceramic core, and as a result, has found a molding method that does not cause cracks in the ceramic core, and has reached the present invention. Specifically, before injecting the molten wax into the mold, it is a method of molding a wax model in which solid wax is previously provided between the ceramic core surface and the mold inner surface,
The details are described below.

【0012】まず、本発明の成形方法を実施する上での
流れとして、その一例を述べる。最初に、ガスタービン
用動翼、静翼といった目的の製品図から、金型とセラミ
ック中子の形状およびワックス射出口の位置が決まる。
次に、これらの決定条件によるワックス模型にて、その
表面肌、収縮等の状況を見ながら溶融ワックス温度、射
出圧力、射出速度等を決定する。
First, an example will be described as a flow for carrying out the molding method of the present invention. First, the shapes of the mold and the ceramic core and the position of the wax injection port are determined from the target product drawings such as the moving blade and the stationary blade for the gas turbine.
Next, the temperature of the molten wax, the injection pressure, the injection speed, and the like are determined while observing the state of the surface skin, shrinkage, and the like, using the wax model under these determination conditions.

【0013】すべての条件が決まれば、次にセラミック
中子外面と金型内面間に充填される溶融ワックスの流れ
を見て、セラミック中子のどの面に圧力が作用するかを
調査する。具体的には射出を中途で止め、その充填状況
を見ても良いし、溶融ワックスに異種のワックスを混入
し、射出された模型に縞模様を残して判断しても良い。
図5は、ガスタービン用静翼によるその調査結果の一例
を示すものであり、この場合、射出された溶融ワックス
がセラミック中子のそれぞれの面に対してどちらかが先
行した形となっている。つまり、セラミック中子の先行
した面から遅れた面側に圧力が作用する(図5中のB
部)。
When all the conditions are determined, the flow of the molten wax filled between the outer surface of the ceramic core and the inner surface of the mold is examined to examine which surface of the ceramic core is subjected to pressure. Specifically, the injection may be stopped halfway and the filling state may be checked, or a different kind of wax may be mixed into the molten wax, and the judgment may be made while leaving a striped pattern on the injected model.
FIG. 5 shows an example of the result of the investigation using the stationary blade for a gas turbine. In this case, the injected molten wax has a shape in which either surface precedes each surface of the ceramic core. . That is, pressure acts on the surface of the ceramic core that is delayed from the preceding surface (B in FIG. 5).
Department).

【0014】このようにして得た溶融ワックスの流れか
ら、金型キャビティー内に置かれたセラミック中子のど
の方向に圧力が作用するかを判断することができ、溶融
ワックスからの圧力に対する中子の補強箇所が決定され
るのである。次に、圧力の作用する反対面のセラミック
中子表面と金型内面との間隔(つまり、図5中の寸法
A)を求める。そして、この寸法の厚さを持つ固形ワッ
クスを用意し、例えば、圧力の作用する反対面のセラミ
ック中子表面に張り付ける。こうすることにより、溶融
ワックスの射出中にセラミック中子が圧力を受けても、
金型内面が固形ワックスを介し該セラミック中子を保持
し、かつ固形ワックス自体も十分な強度を有するので、
中子の折損を防止することができるのである。
From the flow of the molten wax thus obtained, it is possible to determine in which direction the pressure acts on the ceramic core placed in the mold cavity. The point of child reinforcement is determined. Next, the distance between the inner surface of the mold and the surface of the ceramic core on the opposite side to which pressure acts (that is, the dimension A in FIG. 5) is determined. Then, a solid wax having a thickness of this dimension is prepared and attached to, for example, the surface of the ceramic core on the opposite side where pressure acts. By doing so, even if the ceramic core is under pressure during the injection of the molten wax,
Since the inner surface of the mold holds the ceramic core through the solid wax, and the solid wax itself has sufficient strength,
It is possible to prevent the core from being broken.

【0015】そして、本発明に使用される固形ワックス
は、結果としてワックス模型を構成するワックスの一部
となるので、その後のロストワックス工程に支障をきた
すこともない。なお、固形ワックスには、容易に入手で
きる接着剤付きシートワックスが良いが、特に限定する
ものではない。また、固形ワックスの寸法は、大き過ぎ
るとテーパー状に連続変化するキャビティー寸法に対応
が出来ないために、金型内面とセラミック中子表面との
寸法に合わず、金型閉時に中子が折損したりする。ま
た、小さ過ぎると固形ワックスと言えど強度的に不十分
となり、本発明の効果が減少する。望ましくは、5.0
mm以下の肉厚部、とりわけ、ガスタービン用動翼、静
翼といったワックス模型の翼厚部に対し、2mm角〜8
mm角の面積を有する大きさが良い。
Since the solid wax used in the present invention becomes a part of the wax constituting the wax model as a result, it does not hinder the subsequent lost wax process. The solid wax is preferably an easily available sheet wax with an adhesive, but is not particularly limited. In addition, the dimensions of the solid wax cannot be adapted to the dimensions of the cavity, which continuously changes in a tapered shape if the dimensions are too large, so that the dimensions do not match the dimensions of the inner surface of the mold and the surface of the ceramic core. Or break. On the other hand, if it is too small, the strength of the solid wax is insufficient, and the effect of the present invention is reduced. Desirably, 5.0
2 mm square to 8 mm for a thick part of a wax model such as a rotor blade and a stationary blade for a gas turbine.
A size having an area of mm square is good.

【0016】また、複数個の固形ワックスを要する場
合、その個数、間隔は成型する模型形状とセラミック中
子の形状に応じて適宜決定すればよい。この場合、個数
は多いほど、間隔は狭いほど中子割れ防止に対する効果
は高いが、固形ワックスを配する工数が掛かるので必要
最小限とすべきである。
When a plurality of solid waxes are required, the number and spacing may be determined appropriately according to the shape of the model to be molded and the shape of the ceramic core. In this case, the larger the number and the narrower the interval, the higher the effect of preventing core cracking, but the number of steps for arranging the solid wax increases, so that it should be minimized.

【0017】[0017]

【実施例】以下、実施例にもとづいて具体的に説明す
る。本実施例では、寸法として翼長200mm、コード
長230mmで内外シュラウドのあるガスタービン用静
翼のワックス模型を成形する。まず、セラミック中子は
内外シュラウド部に巾木があり、巾木を含む翼長方向寸
法は250mmである。翼後縁部にも巾木を有し、巾木
を含むコード長は252mmである。金型内面とセラミ
ック中子表面により形成される翼厚は最大3.5mm、
最小1.4mmである。また、セラミック中子の肉厚は
最大30mm、最小1.2mmである。セラミック中子
後縁部には鋳物でピンフィン、仕切り壁を形成する孔が
空いている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to embodiments. In the present embodiment, a wax model of a gas turbine stationary blade having dimensions of a blade length of 200 mm, a cord length of 230 mm, and inner and outer shrouds is formed. First, the ceramic core has a baseboard at the inner and outer shroud portions, and the dimension in the blade length direction including the baseboard is 250 mm. The wing trailing edge also has a baseboard, and the cord length including the baseboard is 252 mm. The maximum blade thickness formed by the inner surface of the mold and the surface of the ceramic core is 3.5 mm,
The minimum is 1.4 mm. The thickness of the ceramic core is 30 mm at the maximum and 1.2 mm at the minimum. At the trailing edge of the ceramic core, there are formed holes for forming pin fins and partition walls by casting.

【0018】まず、セラミック中子に固形ワックスを張
り付けずに金型内にセットし、射出条件を決定した。そ
の後、射出すべき溶融ワックス量の1/5を射出し、順
次1/5量増加し計5回の射出により溶融ワックスの流
れを把握した。この結果、溶融ワックスの射出時に圧力
の作用する面は図1のB部であることが把握出来た。こ
の結果に応じ、固形ワックスを圧力の作用する反対面で
ある図1のC部に張り付けた。なお、使用した固形ワッ
クスは容易に入手可能な接着剤付きのシートワックスで
ある。
First, the ceramic core was set in a mold without sticking a solid wax, and injection conditions were determined. Thereafter, 1/5 of the amount of the molten wax to be injected was injected, the amount was sequentially increased by 1/5, and the flow of the molten wax was grasped by a total of 5 injections. As a result, it was found that the surface on which pressure acts upon injection of the molten wax is the portion B in FIG. According to this result, the solid wax was attached to the part C in FIG. The solid wax used is a sheet wax with an adhesive which can be easily obtained.

【0019】用いた固形ワックスの寸法は2種類であ
り、その高さ寸法は予め図面から求めた翼厚に相当する
1.8mmおよび2.3mm、そして、断面寸法は2.
5×2.5mmである。個数はそれぞれ11個で、間隔
は翼長方向に等分とした。図2に固形ワックスを張り付
けたセラミック中子を示す。そして、固形ワックスを張
り付けたセラミック中子を金型内にセットし、ワックス
温度74℃、射出圧力8Kgf/平方cm、射出速度2
30立方cm/秒で金型内に溶融ワックスの射出を行な
った。
The dimensions of the solid wax used are two types, the height dimensions of which are 1.8 mm and 2.3 mm corresponding to the blade thickness previously determined from the drawings, and the cross-sectional dimensions are 2.8 mm and 2.3 mm.
5 × 2.5 mm. The number of each was eleven, and the interval was equally divided in the blade length direction. FIG. 2 shows a ceramic core to which solid wax has been attached. Then, the ceramic core to which the solid wax was attached was set in a mold, and the wax temperature was 74 ° C., the injection pressure was 8 kgf / cm 2, and the injection speed was 2
The molten wax was injected into the mold at 30 cubic cm / sec.

【0020】成型されたワックス模型のX線透過検査の
結果、セラミック中子の割れは皆無であった。また、同
模型を150℃の電気加熱炉内に入れ、ワックスを溶融
除去し、セラミック中子を取り出し、カラーチェックに
より詳細に割れを調査した結果、中子割れは認められず
良好であった。なお、本実施例ではガスタービン用静翼
を例に用いたが、静翼に限定するものではなく、セラミ
ック中子を用いる全てのロストワックス精密鋳造法に適
用が可能である。
As a result of X-ray transmission inspection of the molded wax model, no crack was found in the ceramic core. Further, the model was placed in an electric heating furnace at 150 ° C., the wax was melted and removed, the ceramic core was taken out, and a detailed check for cracks was made by color check. In the present embodiment, the stationary blade for gas turbine is used as an example. However, the present invention is not limited to the stationary blade, and is applicable to all lost wax precision casting methods using a ceramic core.

【0021】[0021]

【発明の効果】本発明によれば、セラミック中子の折損
無く、ワックス模型を成型することが可能である。これ
により、ロストワックス精密鋳造法によるガスタービン
用動翼や静翼等、高価なセラミック中子を有するワック
ス模型の成型にて中子折損等の発生を抑制でき、しか
も、低コストかつ高歩留りであることから、工業的価値
は高い。
According to the present invention, it is possible to mold a wax model without breaking the ceramic core. As a result, the occurrence of core breakage and the like can be suppressed by molding a wax model having an expensive ceramic core such as a rotor blade or a stationary blade for a gas turbine by a lost wax precision casting method, and at a low cost and a high yield. Therefore, its industrial value is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金型内部に溶融ワックスを射出する前におい
て、その本発明の一例を示す図である。
FIG. 1 is a view showing an example of the present invention before a molten wax is injected into a mold.

【図2】溶融ワックスを射出する前の金型内部にセット
される中子において、その本発明の一例を示す図であ
る。
FIG. 2 is a view showing an example of the present invention in a core set inside a mold before molten wax is injected.

【図3】ガスタービン用動翼のワックス模型の成型に係
り、その中子に発生する割れの一例を示す図である。
FIG. 3 is a view showing an example of cracks generated in a core of a wax model of a moving blade for a gas turbine.

【図4】ガスタービン用静翼のワックス模型の成型に係
り、その中子に発生する割れの一例を示す図である。
FIG. 4 is a diagram showing an example of cracks generated in a core of a wax model of a stationary blade for a gas turbine.

【図5】金型内部に射出されたワックスの充填状況の一
例を示す図である。
FIG. 5 is a diagram showing an example of a filling state of wax injected into a mold.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金型内部に溶融ワックスを射出する前
に、予めセラミック中子表面と金型内面の間に固形ワッ
クスを設けることを特徴とするセラミック中子を有する
ワックス模型の成型方法。
1. A method of molding a wax model having a ceramic core, wherein a solid wax is provided between the surface of the ceramic core and the inner surface of the die before injecting the molten wax into the die.
JP05398499A 1999-03-02 1999-03-02 Molding method of wax model with ceramic core Expired - Fee Related JP4092674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05398499A JP4092674B2 (en) 1999-03-02 1999-03-02 Molding method of wax model with ceramic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05398499A JP4092674B2 (en) 1999-03-02 1999-03-02 Molding method of wax model with ceramic core

Publications (2)

Publication Number Publication Date
JP2000246392A true JP2000246392A (en) 2000-09-12
JP4092674B2 JP4092674B2 (en) 2008-05-28

Family

ID=12957899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05398499A Expired - Fee Related JP4092674B2 (en) 1999-03-02 1999-03-02 Molding method of wax model with ceramic core

Country Status (1)

Country Link
JP (1) JP4092674B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163942A (en) * 2006-12-26 2008-07-17 General Electric Co <Ge> Airfoil reduced in trailing edge slot flow, and manufacturing method thereof
EP1970142A1 (en) * 2007-03-09 2008-09-17 Rolls-Royce Deutschland Ltd & Co KG Method for fine casting of metallic parts with narrow channels
CN101992268A (en) * 2010-11-20 2011-03-30 沈阳工业大学 Preparation process of high-temperature alloy multigang hollow turbine blade
JP2015094268A (en) * 2013-11-12 2015-05-18 三菱日立パワーシステムズ株式会社 Gas turbine blade, gas turbine, and gas turbine blade manufacturing method
JP2016182680A (en) * 2015-03-25 2016-10-20 日立金属株式会社 Method for producing lost pattern mold and injection molding die
US9835035B2 (en) 2013-03-12 2017-12-05 Howmet Corporation Cast-in cooling features especially for turbine airfoils
CN113518699A (en) * 2019-03-08 2021-10-19 三菱化学株式会社 Method for producing fiber-reinforced resin product and core

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163942A (en) * 2006-12-26 2008-07-17 General Electric Co <Ge> Airfoil reduced in trailing edge slot flow, and manufacturing method thereof
EP1970142A1 (en) * 2007-03-09 2008-09-17 Rolls-Royce Deutschland Ltd & Co KG Method for fine casting of metallic parts with narrow channels
US8096343B2 (en) 2007-03-09 2012-01-17 Rolls-Royce Deutschland Ltd & Co Kg Method for precision casting of metallic components with thin passage ducts
CN101992268A (en) * 2010-11-20 2011-03-30 沈阳工业大学 Preparation process of high-temperature alloy multigang hollow turbine blade
CN101992268B (en) * 2010-11-20 2012-09-05 沈阳工业大学 Preparation process of high-temperature alloy multigang hollow turbine blade
US9835035B2 (en) 2013-03-12 2017-12-05 Howmet Corporation Cast-in cooling features especially for turbine airfoils
JP2015094268A (en) * 2013-11-12 2015-05-18 三菱日立パワーシステムズ株式会社 Gas turbine blade, gas turbine, and gas turbine blade manufacturing method
JP2016182680A (en) * 2015-03-25 2016-10-20 日立金属株式会社 Method for producing lost pattern mold and injection molding die
CN113518699A (en) * 2019-03-08 2021-10-19 三菱化学株式会社 Method for producing fiber-reinforced resin product and core
CN113518699B (en) * 2019-03-08 2023-07-04 三菱化学株式会社 Method for producing fiber-reinforced resin product and core

Also Published As

Publication number Publication date
JP4092674B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
EP1634665B1 (en) Composite core for use in precision investment casting
US4434835A (en) Method of making a blade aerofoil for a gas turbine engine
JP4731238B2 (en) Apparatus for cooling a gas turbine engine rotor blade
US7993106B2 (en) Core for use in a casting mould
US10465532B2 (en) Core positioning
JP4369622B2 (en) Multi-wall ceramic core assembly, method for manufacturing the same, and method for manufacturing blade casting having a multi-wall defining the shape of the internal cooling passage
US3965963A (en) Mold and process for casting high temperature alloys
USRE39398E1 (en) Apparatus and methods for cooling slot step elimination
US20080216983A1 (en) Method for precision casting of metallic components with thin passage ducts
EP3381585B1 (en) Apparatus for and method of making multi-walled passages in components
EP2385216B1 (en) Turbine airfoil with body microcircuits terminating in platform
US10486230B2 (en) Method for manufacturing a two-component blade for a gas turbine engine and blade obtained by such a method
US7144215B2 (en) Method and apparatus for cooling gas turbine engine rotor blades
KR20140018632A (en) Method for manufacturing a impeller and method for manufacturing a turbine wheel
JP2017537251A (en) Die casting system with ceramic mold for forming components usable in gas turbine engines
JP2000246392A (en) Molding method of wax model having ceramic core
US9981308B2 (en) Method for manufacturing a core for moulding a blade
CN115740367A (en) Method for solving multi-metal of inner cavity of large-size complex inner cavity structure casting
EP3536418B1 (en) Casting core removal through thermal cycling
EP3693100A1 (en) Method of investment casting chaplet
CN112077261B (en) Preparation process of porous casting
RU2721260C2 (en) Refractory core comprising main housing and casing
JP2000071057A (en) Casting method
EP3060363B1 (en) Lost core molding for forming cooling passages
JPH035040A (en) Casting method into wax pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees