JP2000244598A - Controller, frequency offset compensator and demodulator using the same - Google Patents

Controller, frequency offset compensator and demodulator using the same

Info

Publication number
JP2000244598A
JP2000244598A JP11041227A JP4122799A JP2000244598A JP 2000244598 A JP2000244598 A JP 2000244598A JP 11041227 A JP11041227 A JP 11041227A JP 4122799 A JP4122799 A JP 4122799A JP 2000244598 A JP2000244598 A JP 2000244598A
Authority
JP
Japan
Prior art keywords
signal
phase
timing
component
phase variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11041227A
Other languages
Japanese (ja)
Inventor
Yutaka Murakami
豊 村上
Shinichiro Takabayashi
真一郎 高林
Masayuki Orihashi
雅之 折橋
Akihiko Matsuoka
昭彦 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11041227A priority Critical patent/JP2000244598A/en
Priority to US09/499,303 priority patent/US6748026B1/en
Priority to EP00102770A priority patent/EP1028566A2/en
Publication of JP2000244598A publication Critical patent/JP2000244598A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a demodulator capable of obtaining satisfactory bit error rate characteristics even in the case of weak received electric field intensity or violent fluctuation. SOLUTION: The controller is provided with a phase fluctuation quantity calculating part 204 for inputting in-phase and orthogonal components 201 and 202 of a received orthogonal base band signal and a timing signal 203 and outputting a phase fluctuation quantity signal 205 between known symbols, a storage part 206 for inputting the phase fluctuation quantity signal 205 and the timing signal 203 and outputting a phase fluctuation quantity signal 207 between preceding known symbols and a correlation detecting part 208 for inputting the phase fluctuation quantity 205, the preceding phase fluctuation quantity signal 207 and the timing signal 203 and outputting a phase fluctuation quantity correlation signal 209. Thus, the demodulator, with which the bit error rate characteristics are satisfactory even in the case of weak received electric field intensity or violent fluctuation, can be provided by having such a controller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無線通信に用いら
れる制御装置、周波数オフセット補償装置、及び復調装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device, a frequency offset compensator, and a demodulator used for wireless communication.

【0002】[0002]

【従来の技術】従来の周波数オフセット補償方法とし
て、特開平1−196924号公報に記載されている技
術がある。この方法は、受信機における受信ベースバン
ド信号から、既知のデータからなるパイロットシンボル
を検出するものである。この方式について図8を用いて
説明する。
2. Description of the Related Art As a conventional frequency offset compensation method, there is a technique described in Japanese Patent Application Laid-Open No. 1-196924. This method detects a pilot symbol composed of known data from a received baseband signal at a receiver. This method will be described with reference to FIG.

【0003】図8は複素平面上におけるパイロットシン
ボルの位相の時間変化を示す。図8において、時刻t=
mNT(mは自然数、Nはパイロットシンボルの挿入間
隔、Tはシンボル周期)において、1つ前のパイロット
シンボルから位相変動量をamとすると、周波数オフセ
ットがある場合、各パイロットシンボル(P0 、P1
2 、・・・、Pm-1 、Pm 、Pm+1 、・・・)は、周
波数オフセット量に比例した回転量で複素平面上を一定
方向に回転する。従って、この回転量を観測し、この位
相回転に見合った分だけ、受信ベースバンド信号の位相
を逆回転させることにより、周波数オフセットの補償を
行うものである。
FIG. 8 shows a temporal change in the phase of a pilot symbol on a complex plane. In FIG. 8, time t =
In mNT (m is a natural number, N is a pilot symbol insertion interval, and T is a symbol period), assuming that the phase fluctuation amount is am from the immediately preceding pilot symbol, if there is a frequency offset, each pilot symbol (P 0 , P 0 1 ,
P 2, ···, P m- 1, P m, P m + 1, ···) rotates on a complex plane in a predetermined direction by the rotation amount which is proportional to the frequency offset. Therefore, the amount of rotation is observed, and the phase of the received baseband signal is reversely rotated by an amount corresponding to the phase rotation, thereby compensating for the frequency offset.

【0004】[0004]

【発明が解決しようとする課題】しかしながらこの方式
は、受信電界強度が弱いときや変動が激しいとき、位相
変動量の推定誤差が大きくなり、ビット誤り率特性が劣
化するという問題があった。
However, this method has a problem that when the received electric field intensity is weak or the fluctuation is severe, the estimation error of the amount of phase fluctuation becomes large and the bit error rate characteristic is deteriorated.

【0005】本発明は、受信電界強度が弱いときや変動
が激しいときにおいても良好なビット誤り率特性が得ら
れるように、制御を行う制御装置、または周波数オフセ
ットを補償する周波数オフセット補償装置、またはそれ
を用いて得られる復調装置を提供することを目的とす
る。
[0005] The present invention provides a control device for performing control, a frequency offset compensating device for compensating for a frequency offset, or a frequency offset compensating device so as to obtain a good bit error rate characteristic even when the received electric field strength is weak or the fluctuation is severe. It is an object of the invention to provide a demodulation device obtained by using the same.

【0006】[0006]

【課題を解決するための手段】この問題を解決するため
に本発明は、送信側で送信データに既知信号を挿入して
送信し、受信側で受信し復調する無線通信の復調装置に
用いられ、受信直交ベースバンド信号の同相成分と直交
成分及びタイミング信号を入力とし、あるタイミングで
の既知シンボル間の位相変動量信号を出力する位相変動
量計算手段と、前記位相変動量信号とタイミング信号を
入力として前記位相変動量信号を保持し且つ前記あるタ
イミングより過去のタイミングで入力し保持していた過
去の既知シンボル間の位相変動量信号を過去位相変動量
信号として出力する記憶手段と、そして、前記位相変動
量信号と前記過去位相変動量信号及びタイミング信号を
入力して位相変動量相関信号を出力する相関検出手段
か、あるいは、前記位相変動量信号と前記過去位相変動
量信号及び前記受信直交ベースバンド信号の同相成分と
直交成分及びタイミング信号を入力して既知信号の同相
成分と直交成分を補間し、位相変動量相関信号及び補間
された既知信号の同相成分と直交成分を出力する周波数
オフセット計算手段か、あるいは、前記位相変動量信号
と前記過去位相変動量信号及び前記受信直交ベースバン
ド信号の同相成分および直交成分及びタイミング信号を
入力して周波数オフセット補償を行い、位相変動量相関
信号及び周波数オフセット補償後の受信直交ベースバン
ド信号の同相成分と直交成分を出力する周波数オフセッ
ト計算手段か、とを具備する制御装置または周波数オフ
セット補償装置、あるいはそれを用いた復調装置とした
ものである。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention is used in a demodulator for wireless communication in which a transmitting side inserts a known signal into transmission data and transmits the data, and a receiving side receives and demodulates the data. Receiving the in-phase component and the quadrature component of the received quadrature baseband signal and the timing signal, and outputting a phase variation signal between known symbols at a certain timing; A storage unit that holds the phase variation signal as an input and outputs a past phase variation signal between known symbols input and retained at a timing earlier than the certain timing as a past phase variation signal, and Correlation detection means for inputting the phase variation signal, the past phase variation signal and the timing signal and outputting a phase variation correlation signal, or A phase variation signal, the past phase variation signal, and an in-phase component and a quadrature component of the received quadrature baseband signal and a timing signal are inputted, and the in-phase component and the quadrature component of the known signal are interpolated, and the phase variation correlation signal and the interpolation are interpolated. Frequency offset calculating means for outputting the in-phase component and the quadrature component of the obtained known signal, or the in-phase component and the quadrature component and the timing signal of the phase variation signal, the past phase variation signal, and the reception quadrature baseband signal. Frequency offset compensation means for inputting and performing frequency offset compensation and outputting a phase variation correlation signal and an in-phase component and a quadrature component of the received quadrature baseband signal after frequency offset compensation. This is a device or a demodulation device using the same.

【0007】これにより、受信電界強度が弱いときや変
動が激しいときにおいても良好なビット誤り率特性が得
られる制御装置または周波数オフセット補償装置または
それを用いた復調装置が得られる。
As a result, it is possible to obtain a control device or a frequency offset compensator or a demodulator using the same that can obtain a good bit error rate characteristic even when the received electric field strength is weak or the fluctuation is severe.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、送信側で送信データに既知信号を挿入して送信し、
受信側で受信し復調する無線通信の復調装置に用いら
れ、受信直交ベースバンド信号の同相成分と直交成分及
びタイミング信号を入力とし、あるタイミングでの既知
シンボル間の位相変動量信号を出力する位相変動量計算
手段と、前記位相変動量信号とタイミング信号を入力と
して前記位相変動量信号を保持し且つ前記あるタイミン
グより過去のタイミングで入力し保持していた過去の既
知シンボル間の位相変動量信号を過去位相変動量信号と
して出力する記憶手段と、前記位相変動量信号と前記過
去位相変動量信号及びタイミング信号を入力して位相変
動量相関信号を出力する相関検出手段とを具備する制御
装置であり、受信電界強度が弱いときや変動が激しいと
きにおいても良好なビット誤り率特性を得るという作用
を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the first aspect of the present invention, a transmission side inserts a known signal into transmission data and transmits the data.
A phase which is used for a demodulation device of wireless communication which receives and demodulates on a receiving side, which receives an in-phase component and a quadrature component of a received quadrature baseband signal and a timing signal, and outputs a phase variation signal between known symbols at a certain timing. A variation calculating means, a phase variation signal between known symbols that is input and held at a timing earlier than the certain timing and holds the phase variation signal with the phase variation signal and the timing signal as inputs. As a past phase variation signal, and a correlation detection unit that receives the phase variation signal, the past phase variation signal, and the timing signal and outputs a phase variation correlation signal. There is an effect that a good bit error rate characteristic can be obtained even when the reception electric field strength is weak or the fluctuation is severe.

【0009】請求項2に記載の発明は、送信側で送信デ
ータに既知信号を挿入して送信し、受信側で受信し復調
する無線通信の復調装置に用いられ、受信直交ベースバ
ンド信号の同相成分と直交成分及びタイミング信号を入
力とし、あるタイミングでの既知シンボル間の位相変動
量信号を出力する位相変動量計算手段と、前記位相変動
量信号とタイミング信号を入力として前記位相変動量信
号を保持し且つ前記あるタイミングより過去のタイミン
グで入力し保持していた過去の既知シンボル間の位相変
動量信号を過去位相変動量信号として出力する記憶手段
と、前記位相変動量信号と前記過去位相変動量信号及び
前記受信直交ベースバンド信号の同相成分と直交成分及
びタイミング信号を入力して既知信号の同相成分と直交
成分を補間し、位相変動量相関信号及び補間された既知
信号の同相成分と直交成分を出力する周波数オフセット
計算手段とを具備する周波数オフセット補償装置であ
り、受信電界強度が弱いときや変動が激しいときにおい
ても良好なビット誤り率特性を得るという作用を有す
る。
A second aspect of the present invention is used for a radio communication demodulator in which a transmitting side inserts a known signal into transmission data and transmits the data, and a receiving side receives and demodulates the received data. Component and the orthogonal component and a timing signal as input, a phase variation calculating means for outputting a phase variation signal between known symbols at a certain timing, and the phase variation signal with the phase variation signal and the timing signal as inputs. Storage means for holding and outputting as a past phase variation signal a phase variation signal between past known symbols which has been input and held at a timing earlier than the certain timing; and the phase variation signal and the past phase variation A quantity signal and the in-phase component and the quadrature component of the received quadrature baseband signal and the timing signal are input, and the in-phase component and the quadrature component of the known signal are interpolated, A frequency offset compensator comprising frequency variation calculating means for outputting the in-phase component and the quadrature component of the variation correlation signal and the interpolated known signal, and provides a good bit even when the received electric field strength is weak or the variation is severe. It has an effect of obtaining an error rate characteristic.

【0010】請求項3に記載の発明は、送信側で送信デ
ータに既知信号を挿入して送信し、受信側で受信し復調
する無線通信の復調装置に用いられ、受信直交ベースバ
ンド信号の同相成分と直交成分及びタイミング信号を入
力とし、あるタイミングでの既知シンボル間の位相変動
量信号を出力する位相変動量計算手段と、前記位相変動
量信号とタイミング信号を入力として前記位相変動量信
号を保持し且つ前記あるタイミングより過去のタイミン
グで入力し保持していた過去の既知シンボル間の位相変
動量信号を過去位相変動量信号として出力する記憶手段
と、前記位相変動量信号と前記過去位相変動量信号及び
前記受信直交ベースバンド信号の同相成分および直交成
分及びタイミング信号を入力して周波数オフセット補償
を行い、位相変動量相関信号及び周波数オフセット補償
後の受信直交ベースバンド信号の同相成分と直交成分を
出力する周波数オフセット計算手段とを具備する周波数
オフセット補償装置であり、受信電界強度が弱いときや
変動が激しいときにおいても良好なビット誤り率特性を
得るという作用を有する。
A third aspect of the present invention is used for a radio communication demodulator in which a transmitting side inserts a known signal into transmission data and transmits the data, and a receiving side receives and demodulates the received data, and uses the same phase of a received quadrature baseband signal. Component and the orthogonal component and a timing signal as input, a phase variation calculating means for outputting a phase variation signal between known symbols at a certain timing, and the phase variation signal with the phase variation signal and the timing signal as inputs. Storage means for holding and outputting as a past phase variation signal a phase variation signal between past known symbols which has been input and held at a timing earlier than the certain timing; and the phase variation signal and the past phase variation Input the in-phase component and the quadrature component of the received quadrature baseband signal and the timing signal to perform frequency offset compensation, A frequency offset compensator comprising a correlation signal and a frequency offset calculating means for outputting an in-phase component and a quadrature component of the received quadrature baseband signal after frequency offset compensation, even when the received electric field strength is weak or the fluctuation is severe. This has the effect of obtaining good bit error rate characteristics.

【0011】請求項4に記載の発明は、請求項1から3
のいずれかの装置を具備する復調装置であり、受信電界
強度が弱いときや変動が激しいときにおいても良好なビ
ット誤り率特性を得るという作用を有する。
[0011] The invention described in claim 4 is the first to third aspects of the present invention.
And has an operation of obtaining a good bit error rate characteristic even when the received electric field strength is weak or the fluctuation is severe.

【0012】また、請求項5に記載の発明のように、無
線通信がシングルキャリア方式であることを特徴とする
請求項4記載の復調装置としても、同様の作用を呈す
る。
[0012] Further, as in the invention according to the fifth aspect, the demodulation apparatus according to the fourth aspect, characterized in that the wireless communication is of a single carrier system, has the same effect.

【0013】また、請求項6に記載の発明のように、無
線通信が符号分割多元方式式であることを特徴とする請
求項4記載の復調装置としても、同様の作用を呈する。
[0013] The demodulation device according to the fourth aspect, wherein the wireless communication is of a code division multiplex system as in the invention according to the sixth aspect, has the same effect.

【0014】以下、本発明の実施の形態について図1か
ら図7を用いて説明する。
An embodiment of the present invention will be described below with reference to FIGS.

【0015】(実施の形態1)図1は、本実施の形態に
おける無線通信システムの復調装置の一例を示す構成ブ
ロック図である。図1において、101はアンテナ、1
02は受信信号、103は受信無線部、104は受信直
交ベースバンド信号の同相成分、105は受信直交ベー
スバンド信号の直交成分、106はフレーム・シンボル
タイミング検出部、107はフレーム・シンボルタイミ
ング信号、108は制御装置である制御部、109は位
相変動量相関信号、110は検波部、111はディジタ
ル信号である。
(Embodiment 1) FIG. 1 is a configuration block diagram showing an example of a demodulation device of a wireless communication system according to the present embodiment. In FIG. 1, 101 is an antenna, 1
02 is a reception signal, 103 is a reception radio unit, 104 is an in-phase component of a reception quadrature baseband signal, 105 is a quadrature component of the reception quadrature baseband signal, 106 is a frame / symbol timing detection unit, 107 is a frame / symbol timing signal, Reference numeral 108 denotes a control unit which is a control device, 109 denotes a phase fluctuation amount correlation signal, 110 denotes a detection unit, and 111 denotes a digital signal.

【0016】図2は、制御部108の具体的な構成を示
すブロック図である。図2において、201は受信直交
ベースバンド信号の同相成分、202は受信直交ベース
バンド信号の直交成分、203はフレーム・シンボルタ
イミング信号、204は位相変動量計算部、205は既
知シンボル間の位相変動量信号、206は記憶部、20
7は直前の既知シンボル間の位相変動量信号、208は
相関検出部、209は位相変動量相関信号である。
FIG. 2 is a block diagram showing a specific configuration of the control unit 108. 2, reference numeral 201 denotes an in-phase component of a received quadrature baseband signal, 202 denotes a quadrature component of the received quadrature baseband signal, 203 denotes a frame / symbol timing signal, 204 denotes a phase variation calculator, and 205 denotes a phase variation between known symbols. A quantity signal, 206 is a storage unit, 20
Reference numeral 7 denotes a phase fluctuation amount signal between immediately preceding known symbols, 208 denotes a correlation detection unit, and 209 denotes a phase fluctuation amount correlation signal.

【0017】図3は、時間に対するデータシンボルと既
知シンボルのフレーム構成の一例を示す概念図であり、
301はデータシンボル、302は既知シンボルであ
る。
FIG. 3 is a conceptual diagram showing an example of a frame configuration of a data symbol and a known symbol with respect to time.
301 is a data symbol and 302 is a known symbol.

【0018】図1から図3を用いて、本実施の形態によ
る復調装置及び制御装置の動作を説明する。図1に示す
復調装置において、アンテナ101で受信信号102を
受信し、受信無線部103は受信信号102を入力して
直交復調を行い、受信直交ベースバンド信号の同相成分
104及び直交成分105を出力する。
The operation of the demodulation device and the control device according to the present embodiment will be described with reference to FIGS. In the demodulation device shown in FIG. 1, a reception signal 102 is received by an antenna 101, a reception radio section 103 receives the reception signal 102, performs quadrature demodulation, and outputs an in-phase component 104 and a quadrature component 105 of the reception quadrature baseband signal. I do.

【0019】フレーム・シンボルタイミング検出部10
6は、受信直交ベースバンド信号の同相成分104及び
直交成分105を入力してフレーム・シンボル同期をと
り、フレーム・シンボルタイミング信号107を出力す
る。
Frame / symbol timing detector 10
6 receives the in-phase component 104 and the quadrature component 105 of the received quadrature baseband signal, synchronizes the frame and the symbol, and outputs the frame and symbol timing signal 107.

【0020】制御部108は、受信直交ベースバンド信
号の同相成分104及び直交成分105、フレーム・シ
ンボルタイミング信号107を入力し、位相変動量を求
めて相関をとり、位相変動量相関信号109を出力す
る。
The control unit 108 receives the in-phase component 104 and the quadrature component 105 of the received quadrature baseband signal and the frame / symbol timing signal 107, obtains a phase variation, performs correlation, and outputs a phase variation correlation signal 109. I do.

【0021】検波部110は、受信直交ベースバンド信
号の同相成分104及び直交成分105、フレーム・シ
ンボルタイミング信号107、位相変動量相関信号10
9を入力して検波を行い、ディジタル信号111を出力
する。
The detector 110 includes an in-phase component 104 and a quadrature component 105 of the received quadrature baseband signal, a frame / symbol timing signal 107, and a phase variation correlation signal 10.
9 is input to perform detection, and a digital signal 111 is output.

【0022】図2に示す制御部108の構成について、
以下に具体的に説明する。本実施の形態では、フレーム
構成として図3に示すように、8シンボルおきに1シン
ボルの既知シンボルを挿入するフレーム構成、すなわ
ち、データシンボル301のブロックjのシンボルの1
から7の制御を例として用い、通信方式としてシングル
キャリア方式を用いるとする。
The configuration of the control unit 108 shown in FIG.
This will be specifically described below. In the present embodiment, as shown in FIG. 3, as the frame configuration, a known symbol of one symbol is inserted every eight symbols, that is, one of the symbols of block j of data symbol 301 is inserted.
To 7 are used as an example, and a single carrier system is used as a communication system.

【0023】位相変動量計算部204は、受信直交ベー
スバンド信号の同相成分201及び直交成分202、フ
レーム・シンボルタイミング信号203を入力とし、既
知シンボルを抽出し、既知シンボル間の位相変動量を求
め、既知シンボル間の位相変動量信号205として出力
する。
The phase variation calculator 204 receives as input the in-phase component 201 and the quadrature component 202 of the received quadrature baseband signal and the frame / symbol timing signal 203, extracts known symbols, and calculates the phase variation between the known symbols. , Is output as a phase fluctuation amount signal 205 between known symbols.

【0024】記憶部206は、既知シンボル間の位相変
動量信号205とフレーム・シンボルタイミング信号2
03を入力してそのタイミングでの位相変動量信号20
5を保持し、すでに保持していた直前のパイロットシン
ボル間の位相変動量信号207を出力する。
The storage unit 206 stores the phase fluctuation amount signal 205 between the known symbols and the frame / symbol timing signal 2
03 and the phase fluctuation amount signal 20 at that timing.
5, and outputs a phase variation amount signal 207 between the pilot symbols immediately before that has already been held.

【0025】相関検出部208は、既知シンボル間の位
相変動量信号205、既知シンボル間の位相変動量信号
205の直前のパイロットシンボル間の位相変動量信号
207、フレーム・シンボルタイミング信号203を入
力とし、位相変動量信号205と直前の位相変動量信号
207を比較し、相関値などを位相変動量相関信号20
9として出力する。
The correlation detection unit 208 receives as input the phase fluctuation signal 205 between known symbols, the phase fluctuation signal 207 between pilot symbols immediately before the phase fluctuation signal 205 between known symbols, and the frame / symbol timing signal 203. , The phase variation signal 205 is compared with the immediately preceding phase variation signal 207, and the correlation value and the like are compared with each other.
9 is output.

【0026】制御部108の動作を、既知シンボル30
2のi−2、i−1およびiにおける既知シンボル間の
位相変動量を例に説明する。位相変動量計算部204で
は、既知シンボルi−1、iから既知シンボル間の位相
変動量θi を(数1)を用いて求め、既知シンボル間の
位相変動量信号205として出力する。
The operation of the control unit 108
The phase variation between known symbols in i-2, i-1 and i of FIG. 2 will be described as an example. The phase variation calculator 204 obtains the phase variation θ i between the known symbols from the known symbols i−1 and i using (Equation 1), and outputs it as a phase variation signal 205 between the known symbols.

【0027】[0027]

【数1】 (Equation 1)

【0028】ただし、Xi-1 は既知シンボル302のi
−1の受信信号の同相成分、Yi-1は既知シンボル30
2のi−1の受信信号の直交成分、Xi は既知シンボル
302のiの受信信号の同相成分、Yi は既知シンボル
302のiの受信信号の直交成分である。
Here, X i−1 is the i of the known symbol 302
-1 is the in-phase component of the received signal, and Y i-1 is the known symbol 30.
X i is the in-phase component of the i received signal of the known symbol 302, and Y i is the quadrature component of the i received signal of the known symbol 302.

【0029】記憶部206は、既知シンボルi−1、i
から求めた既知シンボル間の位相変動量θi を入力して
保持し、すでに保持されている、(数2)により求めら
れた既知シンボルi−2、i−1から求めた既知シンボ
ル間の位相変動量θiー1 を直前の既知シンボル間の位相
変動量信号207として出力する。
The storage unit 206 stores the known symbols i-1, i
Held by entering the phase deviation theta i between known symbols obtained from, already held, the phase between the known symbols determined from known symbol i-2, i-1 obtained by (Equation 2) The variation θ i−1 is output as the phase variation signal 207 between the immediately preceding known symbols.

【0030】[0030]

【数2】 (Equation 2)

【0031】ただし、Xi-2 は既知シンボル302のi
−2の受信信号の同相成分、Yi-2は既知シンボル30
2のi−2の受信信号の直交成分である。
Where X i−2 is i of the known symbol 302
-2, the in-phase component of the received signal of Y -2, the known symbol 30
2 i-2 is the orthogonal component of the received signal.

【0032】相関検出部208は、既知シンボル302
のi−1、iから求めた既知シンボル間の位相変動量θ
i 、既知シンボル302のi−2、i−1から求めた既
知シンボル間の位相変動量θiー1 を入力とし、θi 、θ
iー1 を比較し、例えば(数3)を位相変動量相関信号2
09として出力し、この信号を検波部110や図示しな
いCPU部が受け取り、データシンボルの処理のために
用いる。
The correlation detecting section 208 outputs the known symbol 302
Phase variation amount θ between known symbols obtained from i−1 and i
i , the phase fluctuation amount θ i−1 between known symbols obtained from i−2 and i−1 of the known symbol 302 is input, and θ i , θ
i-1 are compared, and for example, (Equation 3) is
09, which is received by the detection unit 110 or a CPU unit (not shown) and used for processing data symbols.

【0033】[0033]

【数3】 (Equation 3)

【0034】これにより、受信電界強度が弱いときや変
動が激しいときにおいても、搬送波電力対雑音電力比に
対して、良好なビット誤り率特性を得ることが可能とな
る。
Thus, even when the received electric field strength is weak or fluctuates drastically, it is possible to obtain a good bit error rate characteristic with respect to the carrier power to noise power ratio.

【0035】以上のように、図2のような制御装置を構
成することにより、受信電界強度が弱いときや変動が激
しいときにおいても適切な制御が可能となり、受信電界
強度が弱いときや変動が激しいときにおいても、良好な
ビット誤り率特性を得ることができる。そしてこのよう
な制御装置を図1のように制御部として用いることで、
ビット誤り率特性の良好な復調装置を得ることができ
る。
As described above, by configuring the control device as shown in FIG. 2, appropriate control can be performed even when the received electric field strength is weak or the fluctuation is severe, and when the received electric field strength is weak or the fluctuation is small. Even in severe cases, good bit error rate characteristics can be obtained. By using such a control device as a control unit as shown in FIG. 1,
A demodulation device with good bit error rate characteristics can be obtained.

【0036】なお、本実施の形態において、フレーム構
成は図3で説明したが、これに限ったものではなく、ま
た、通信方式としてはシングルキャリア方式で説明した
が、符号分割多元接続方式を用いても同様の効果を有す
る。
In this embodiment, the frame configuration has been described with reference to FIG. 3. However, the present invention is not limited to this. The communication system has been described as a single carrier system, but a code division multiple access system is used. Has the same effect.

【0037】(実施の形態2)図4は、本実施の形態に
おける無線通信システムの復調装置の一例を示す構成ブ
ロック図である。図4において、401はアンテナ、4
02は受信信号、403は受信無線部、404は受信直
交ベースバンド信号の同相成分、405は受信直交ベー
スバンド信号の直交成分、406はフレーム・シンボル
タイミング検出部、407はフレーム・シンボルタイミ
ング信号、408は周波数オフセット補償装置である周
波数オフセット補償部、409は位相変動量相関信号、
410は補間された既知信号の同相成分、411は補間
された既知信号の直交成分、412は検波部、413は
ディジタル信号である。
(Embodiment 2) FIG. 4 is a configuration block diagram showing an example of a demodulation device of a radio communication system according to the present embodiment. In FIG. 4, reference numeral 401 denotes an antenna,
02 is a reception signal, 403 is a reception radio unit, 404 is an in-phase component of a reception quadrature baseband signal, 405 is a quadrature component of the reception quadrature baseband signal, 406 is a frame / symbol timing detection unit, 407 is a frame / symbol timing signal, 408 is a frequency offset compensator which is a frequency offset compensator, 409 is a phase fluctuation amount correlation signal,
410 is an in-phase component of the interpolated known signal, 411 is a quadrature component of the interpolated known signal, 412 is a detection unit, and 413 is a digital signal.

【0038】図5は、周波数オフセット補償部408の
具体的な構成を示すブロック図である。図5において、
501は受信直交ベースバンド信号の同相成分、502
は受信直交ベースバンド信号の直交成分、503はフレ
ーム・シンボルタイミング信号、504は位相変動量計
算部、505は既知シンボル間の位相変動量信号、50
6は記憶部、507は直前の既知シンボル間の位相変動
量信号、508は周波数オフセット計算部、509は位
相変動量相関信号、510は補間された既知信号の同相
成分、511は補間された既知信号の直交成分である。
FIG. 5 is a block diagram showing a specific configuration of the frequency offset compensator 408. In FIG.
501 is the in-phase component of the received quadrature baseband signal, 502
Is a quadrature component of the received quadrature baseband signal, 503 is a frame / symbol timing signal, 504 is a phase variation calculator, 505 is a phase variation signal between known symbols, 50
6 is a storage unit, 507 is a phase variation amount signal between immediately preceding known symbols, 508 is a frequency offset calculation unit, 509 is a phase variation amount correlation signal, 510 is an in-phase component of the interpolated known signal, and 511 is an interpolated known signal. This is the orthogonal component of the signal.

【0039】図3から図5を用いて、本実施の形態によ
る復調装置及び周波数オフセット補償装置の動作を説明
する。なお、図3の構成は(実施の形態1)と同様であ
り、説明を省略する。
The operation of the demodulator and the frequency offset compensator according to the present embodiment will be described with reference to FIGS. Note that the configuration in FIG. 3 is the same as in (Embodiment 1), and a description thereof will be omitted.

【0040】図4に示す復調装置において、アンテナ4
01で受信信号402を受信し、受信無線部403は受
信信号402を入力して直交復調を行い、受信直交ベー
スバンド信号の同相成分404及び直交成分405を出
力する。
In the demodulator shown in FIG.
In step 01, the reception signal 402 is received, and the reception radio section 403 inputs the reception signal 402, performs quadrature demodulation, and outputs the in-phase component 404 and the quadrature component 405 of the reception quadrature baseband signal.

【0041】フレーム・シンボルタイミング検出部40
6は、受信直交ベースバンド信号の同相成分404及び
直交成分405を入力してフレーム・シンボル同期をと
り、フレーム・シンボルタイミング信号407を出力す
る。
Frame / symbol timing detector 40
6 receives the in-phase component 404 and the quadrature component 405 of the received quadrature baseband signal, synchronizes the frame and the symbol, and outputs the frame and symbol timing signal 407.

【0042】周波数オフセット補償部408は、受信直
交ベースバンド信号の同相成分404と直交成分40
5、フレーム・シンボルタイミング信号407を入力
し、位相変動量を求めて相関をとるとともに既知信号の
補間を行い、位相変動量相関信号409及び補間された
既知信号の同相成分410と直交成分411を出力す
る。
The frequency offset compensating section 408 includes an in-phase component 404 and a quadrature component 40 of the received quadrature baseband signal.
5. The frame / symbol timing signal 407 is input, the phase variation is calculated, correlation is performed, and the known signal is interpolated. The phase variation correlation signal 409 and the in-phase component 410 and the quadrature component 411 of the interpolated known signal are calculated. Output.

【0043】検波部412は、受信直交ベースバンド信
号の同相成分404及び直交成分405、フレーム・シ
ンボルタイミング信号407、位相変動量相関信号40
9、補間された既知信号410及び直交成分411を入
力して検波を行い、ディジタル信号413を出力する。
The detection section 412 includes an in-phase component 404 and a quadrature component 405 of the received quadrature baseband signal, a frame / symbol timing signal 407, and a phase variation correlation signal 40.
9. Inputting the interpolated known signal 410 and orthogonal component 411, detection is performed, and a digital signal 413 is output.

【0044】図5に示す周波数オフセット補償部408
の構成について、以下に具体的に説明する。本実施の形
態では、フレーム構成として図3に示すように、8シン
ボルおきに1シンボルの既知シンボルを挿入するフレー
ム構成、特に、データシンボル301のブロックjのシ
ンボルの1から7の周波数オフセット量の推定につい
て、一例を説明する。また、通信方式としてシングルキ
ャリア方式を用いるとする。
The frequency offset compensator 408 shown in FIG.
The configuration will be specifically described below. In the present embodiment, as shown in FIG. 3, the frame configuration in which one known symbol is inserted every eight symbols, and in particular, the frequency offset amount of 1 to 7 of the symbol of block j of data symbol 301 is used. An example of the estimation will be described. It is assumed that a single carrier system is used as a communication system.

【0045】位相変動量計算部504は、受信直交ベー
スバンド信号の同相成分501及び直交成分502、フ
レーム・シンボルタイミング信号503を入力とし、既
知シンボルを抽出し、既知シンボル間の位相変動量を求
め、既知シンボル間の位相変動量信号505として出力
する。
The phase variation calculator 504 receives the in-phase component 501 and the quadrature component 502 of the received quadrature baseband signal and the frame / symbol timing signal 503, extracts a known symbol, and calculates the phase variation between the known symbols. , As a phase variation signal 505 between known symbols.

【0046】記憶部506は、既知シンボル間の位相変
動量信号505とフレーム・シンボルタイミング信号5
03を入力してそのタイミングでの位相変動量信号50
5を保持し、すでに保持していた直前のパイロットシン
ボル間の位相変動量信号507を出力する。
The storage unit 506 stores a phase variation amount signal 505 between known symbols and a frame / symbol timing signal 5.
03 and the phase fluctuation amount signal 50 at that timing.
5, and outputs a phase variation signal 507 between pilot symbols immediately before that has already been held.

【0047】周波数オフセット計算部508は、既知シ
ンボル間の位相変動量信号505、既知シンボル間の位
相変動量信号505の直前のパイロットシンボル間の位
相変動量信号507、受信直交ベースバンド信号の同相
成分501と直交成分502、フレーム・シンボルタイ
ミング信号503を入力とし、位相変動量信号505と
直前の位相変動量信号507を比較し、相関値などを位
相変動量相関信号509として、また、補間された既知
信号の同相成分510及び直交成分511を出力する。
The frequency offset calculator 508 includes a phase variation signal 505 between known symbols, a phase variation signal 507 between pilot symbols immediately before the phase variation signal 505 between known symbols, and an in-phase component of the received quadrature baseband signal. 501, the orthogonal component 502, and the frame / symbol timing signal 503 are input, the phase variation signal 505 is compared with the immediately preceding phase variation signal 507, and the correlation value and the like are interpolated as the phase variation correlation signal 509. The in-phase component 510 and the quadrature component 511 of the known signal are output.

【0048】周波数オフセット計算部508の動作を、
既知シンボル302のi−2、i−1およびiにおける
既知シンボル間の位相変動量を例に説明する。位相変動
量計算部504では、既知シンボルi−1、iから既知
シンボル間の位相変動量θiを(数1)を用いて求め、
既知シンボル間の位相変動量信号505として出力す
る。
The operation of the frequency offset calculator 508 is
The phase variation between the known symbols at i-2, i-1 and i of the known symbol 302 will be described as an example. The phase variation calculator 504 calculates the phase variation θ i between the known symbols from the known symbols i−1 and i using (Equation 1),
The signal is output as a phase fluctuation amount signal 505 between known symbols.

【0049】ただし、Xi-1 は既知シンボル302のi
−1の受信信号の同相成分、Yi-1は既知シンボル30
2のi−1の受信信号の直交成分、Xi は既知シンボル
302のiの受信信号の同相成分、Yi は既知シンボル
302のiの受信信号の直交成分である。
Here, X i−1 is the i of the known symbol 302
-1 is the in-phase component of the received signal, and Y i-1 is the known symbol 30.
X i is the in-phase component of the i received signal of the known symbol 302, and Y i is the quadrature component of the i received signal of the known symbol 302.

【0050】記憶部506は、既知シンボルi−1、i
から求めた既知シンボル間の位相変動量θi を入力して
保持し、すでに保持されている、(数2)により求めら
れた既知シンボルi−2、i−1から求めた既知シンボ
ル間の位相変動量θiー1 を直前の既知シンボル間の位相
変動量信号507として出力する。
The storage unit 506 stores the known symbols i-1, i
Held by entering the phase deviation theta i between known symbols obtained from, already held, the phase between the known symbols determined from known symbol i-2, i-1 obtained by (Equation 2) The variation θ i−1 is output as the phase variation signal 507 between the immediately preceding known symbols.

【0051】ただし、Xi-2 は既知シンボル302のi
−2の受信信号の同相成分、Yi-2は既知シンボル30
2のi−2の受信信号の直交成分である。
Where X i−2 is i of the known symbol 302
-2, the in-phase component of the received signal of Y -2, the known symbol 30
2 i-2 is the orthogonal component of the received signal.

【0052】周波数オフセット計算部508は、既知シ
ンボル302のi−1、iから求めた既知シンボル間の
位相変動量θi 、既知シンボル302のi−2、i−1
から求めた既知シンボル間の位相変動量θiー1 を入力と
し、θi 、θiー1 を比較し、例えば(数3)を位相変動
量相関信号209として出力し、この信号を検波部41
2や図示しないCPU部が受け取り、データシンボルの
処理のために用いる。
The frequency offset calculator 508 calculates the phase variation θ i between the known symbols obtained from i−1, i of the known symbol 302 and i−2, i−1 of the known symbol 302.
The phase variation θ i−1 between known symbols obtained from the above is input, θ i , θ i−1 are compared, and for example, (Equation 3) is output as a phase variation correlation signal 209, and this signal is detected by a detector. 41
2 and a CPU unit (not shown) receive and use the data symbols for processing.

【0053】また、例えば(数4)となった場合、
θi 、θiー1 を周波数オフセット量を推定するための計
算に用いることで、高精度の周波数オフセット量の推定
を行う。
For example, when (Expression 4) is obtained,
By using θ i and θ i−1 in the calculation for estimating the frequency offset amount, the frequency offset amount is estimated with high accuracy.

【0054】[0054]

【数4】 (Equation 4)

【0055】これにより、受信電界強度が弱いときや変
動が激しいときにおいても、搬送波電力対雑音電力比に
対して、良好なビット誤り率特性を得ることが可能とな
る。
As a result, even when the reception electric field strength is weak or the fluctuation is severe, it is possible to obtain a good bit error rate characteristic with respect to the carrier power to noise power ratio.

【0056】以上のように、図5のような周波数オフセ
ット補償装置を構成することにより、受信電界強度が弱
いときや変動が激しいときにおいても適切な周波数オフ
セット補償を行うことが可能となり、このような場合で
も良好なビット誤り率特性を得ることができる。そして
このような周波数オフセット補償装置を図4のように周
波数オフセット補償部として用いることで、ビット誤り
率特性の良好な復調装置を得ることができる。
As described above, by configuring the frequency offset compensating apparatus as shown in FIG. 5, it is possible to perform appropriate frequency offset compensation even when the received electric field strength is weak or the fluctuation is severe. In this case, good bit error rate characteristics can be obtained. By using such a frequency offset compensator as a frequency offset compensator as shown in FIG. 4, a demodulator having a good bit error rate characteristic can be obtained.

【0057】なお、本実施の形態において、フレーム構
成は図3で説明したが、これに限ったものではなく、ま
た、通信方式としてシングルキャリア方式で説明した
が、符号分割多元方式を用いても、同様の効果を有す
る。
In this embodiment, the frame configuration has been described with reference to FIG. 3. However, the present invention is not limited to this, and the single carrier system has been described as a communication system. Has the same effect.

【0058】(実施の形態3)図6は、本実施の形態に
おける無線通信システムの復調装置の一例を示す構成ブ
ロック図である。図6において、601はアンテナ、6
02は受信信号、603は受信無線部、604は受信直
交ベースバンド信号の同相成分、605は受信直交ベー
スバンド信号の直交成分、606はフレーム・シンボル
タイミング検出部、607はフレーム・シンボルタイミ
ング信号、608は周波数オフセット補償装置である周
波数オフセット補償部、609は位相変動量相関信号、
610は周波数オフセット補償後の受信直交ベースバン
ド信号の同相成分、611は周波数オフセット補償後の
受信直交ベースバンド信号の直交成分、612は検波
部、613はディジタル信号である。
(Embodiment 3) FIG. 6 is a configuration block diagram showing an example of a demodulation device of a radio communication system according to the present embodiment. In FIG. 6, reference numeral 601 denotes an antenna;
02 is a reception signal, 603 is a reception radio unit, 604 is an in-phase component of a reception quadrature baseband signal, 605 is a quadrature component of the reception quadrature baseband signal, 606 is a frame / symbol timing detection unit, 607 is a frame / symbol timing signal, 608 is a frequency offset compensator which is a frequency offset compensator, 609 is a phase variation correlation signal,
610 is an in-phase component of the received quadrature baseband signal after frequency offset compensation, 611 is a quadrature component of the received quadrature baseband signal after frequency offset compensation, 612 is a detection unit, and 613 is a digital signal.

【0059】図7は、周波数オフセット補償部608の
具体的な構成を示すブロック図である。図7において、
701は受信直交ベースバンド信号の同相成分、702
は受信直交ベースバンド信号の直交成分、703はフレ
ーム・シンボルタイミング信号、704は位相変動量計
算部、705は既知シンボル間の位相変動量信号、70
6は記憶部、707は直前の既知シンボル間の位相変動
量信号、708は周波数オフセット計算部、709は位
相変動量相関信号、710は周波数オフセット補償後の
受信直交ベースバンド信号の同相成分、711は周波数
オフセット補償後の受信直交ベースバンド信号の直交成
分である。
FIG. 7 is a block diagram showing a specific configuration of the frequency offset compensator 608. In FIG.
701 is an in-phase component of the received quadrature baseband signal;
Is a quadrature component of the received quadrature baseband signal, 703 is a frame / symbol timing signal, 704 is a phase variation calculator, 705 is a phase variation signal between known symbols, 70
6 is a storage unit, 707 is a phase variation signal between immediately preceding known symbols, 708 is a frequency offset calculator, 709 is a phase variation correlation signal, 710 is an in-phase component of a received quadrature baseband signal after frequency offset compensation, 711 Is the orthogonal component of the received orthogonal baseband signal after frequency offset compensation.

【0060】図3、図6及び図7を用いて、本実施の形
態による復調装置及び周波数オフセット補償装置の動作
を説明する。なお、図3の構成は(実施の形態1)と同
様であり、説明を省略する。
The operation of the demodulator and the frequency offset compensator according to the present embodiment will be described with reference to FIGS. 3, 6, and 7. Note that the configuration in FIG. 3 is the same as in (Embodiment 1), and a description thereof will be omitted.

【0061】図6に示す復調装置において、アンテナ6
01で受信信号602を受信し、受信無線部603は受
信信号602を入力して直交復調を行い、受信直交ベー
スバンド信号の同相成分604及び直交成分605を出
力する。
In the demodulator shown in FIG.
01, the reception signal 602 is received, the reception radio section 603 receives the reception signal 602, performs quadrature demodulation, and outputs an in-phase component 604 and a quadrature component 605 of the reception quadrature baseband signal.

【0062】フレーム・シンボルタイミング検出部60
6は、受信直交ベースバンド信号の同相成分604及び
直交成分605を入力してフレーム・シンボル同期をと
り、フレーム・シンボルタイミング信号607を出力す
る。
Frame / symbol timing detector 60
6 receives the in-phase component 604 and the quadrature component 605 of the received quadrature baseband signal, synchronizes the frame and the symbol, and outputs the frame and symbol timing signal 607.

【0063】周波数オフセット補償部608は、受信直
交ベースバンド信号の同相成分604と直交成分60
5、フレーム・シンボルタイミング信号607を入力
し、位相変動量を求めて相関をとるとともに周波数オフ
セット補償を行い、位相変動量相関信号609及び周波
数オフセット補償後の受信直交ベースバンド信号の同相
成分610と直交成分611を出力する。
The frequency offset compensator 608 includes the in-phase component 604 and the quadrature component 60 of the received orthogonal baseband signal.
5. The frame / symbol timing signal 607 is input, the phase shift amount is obtained, correlation is performed, and frequency offset compensation is performed. The phase shift amount correlation signal 609 and the in-phase component 610 of the received quadrature baseband signal after frequency offset compensation are used. The orthogonal component 611 is output.

【0064】検波部612は、周波数オフセット補償後
の受信直交ベースバンド信号の同相成分610と直交成
分611、フレーム・シンボルタイミング信号607、
位相変動量相関信号を入力して検波を行い、ディジタル
信号613を出力する。
Detection section 612 includes in-phase component 610 and quadrature component 611 of the received quadrature baseband signal after frequency offset compensation, frame / symbol timing signal 607,
A phase fluctuation amount correlation signal is input, detection is performed, and a digital signal 613 is output.

【0065】図7に示す周波数オフセット補償部708
の構成について、以下に具体的に説明する。本実施の形
態では、フレーム構成として図3に示すように、8シン
ボルおきに1シンボルの既知シンボルを挿入するフレー
ム構成、特に、データシンボル301のブロックjのシ
ンボルの1から7の周波数オフセット量の推定につい
て、一例を説明する。また、通信方式としてシングルキ
ャリア方式を用いるとする。
The frequency offset compensator 708 shown in FIG.
The configuration will be specifically described below. In the present embodiment, as shown in FIG. 3, the frame configuration in which one known symbol is inserted every eight symbols, and in particular, the frequency offset amount of 1 to 7 of the symbol of block j of data symbol 301 is used. An example of the estimation will be described. It is assumed that a single carrier system is used as a communication system.

【0066】位相変動量計算部704は、受信直交ベー
スバンド信号の同相成分701及び直交成分702、フ
レーム・シンボルタイミング信号703を入力とし、既
知シンボルを抽出し、既知シンボル間の位相変動量を求
め、既知シンボル間の位相変動量信号705として出力
する。
The phase variation calculator 704 receives the in-phase component 701 and the quadrature component 702 of the received quadrature baseband signal and the frame / symbol timing signal 703, extracts known symbols, and obtains the phase variation between known symbols. , As a phase variation signal 705 between known symbols.

【0067】記憶部706は、既知シンボル間の位相変
動量信号705とフレーム・シンボルタイミング信号5
03を入力してそのタイミングでの位相変動量信号70
5を保持し、すでに保持していた直前のパイロットシン
ボル間の位相変動量信号707を出力する。
The storage unit 706 stores the phase variation amount signal 705 between the known symbols and the frame / symbol timing signal 5
03 and the phase fluctuation amount signal 70 at that timing.
5, and outputs the phase variation amount signal 707 between the pilot symbols immediately before that has already been stored.

【0068】周波数オフセット計算部708は、既知シ
ンボル間の位相変動量信号705、既知シンボル間の位
相変動量信号705の直前のパイロットシンボル間の位
相変動量信号707、受信直交ベースバンド信号の同相
成分701と直交成分702、フレーム・シンボルタイ
ミング信号703を入力とし、位相変動量信号705と
直前の位相変動量信号707を比較し、相関値などを位
相変動量相関信号709として、また、周波数オフセッ
ト補償後の受信直交ベースバンド信号の同相成分710
及び直交成分711を出力する。
The frequency offset calculator 708 includes a phase variation signal 705 between known symbols, a phase variation signal 707 between pilot symbols immediately before the phase variation signal 705 between known symbols, and an in-phase component of the received quadrature baseband signal. 701, an orthogonal component 702, and a frame / symbol timing signal 703 are input, a phase variation signal 705 is compared with the immediately preceding phase variation signal 707, and a correlation value or the like is obtained as a phase variation correlation signal 709. In-phase component 710 of subsequent received quadrature baseband signal
And the orthogonal component 711.

【0069】周波数オフセット計算部508の動作を、
既知シンボル302のi−2、i−1およびiにおける
既知シンボル間の位相変動量を例に説明する。位相変動
量計算部704では、既知シンボルi−1、iから既知
シンボル間の位相変動量θiを(数1)を用いて求め、
既知シンボル間の位相変動量信号705として出力す
る。
The operation of the frequency offset calculator 508 is
The phase variation between the known symbols at i-2, i-1 and i of the known symbol 302 will be described as an example. The phase variation calculator 704 obtains the phase variation θ i between the known symbols from the known symbols i−1 and i using (Equation 1),
This is output as a phase variation signal 705 between known symbols.

【0070】ただし、Xi-1 は既知シンボル302のi
−1の受信信号の同相成分、Yi-1は既知シンボル30
2のi−1の受信信号の直交成分、Xi は既知シンボル
302のiの受信信号の同相成分、Yi は既知シンボル
302のiの受信信号の直交成分である。
Here, X i-1 is the i of the known symbol 302
-1 is the in-phase component of the received signal, and Y i-1 is the known symbol 30
X i is the in-phase component of the i received signal of the known symbol 302, and Y i is the quadrature component of the i received signal of the known symbol 302.

【0071】記憶部706は、既知シンボルi−1、i
から求めた既知シンボル間の位相変動量θi を入力して
保持し、すでに保持されている、(数2)により求めら
れた既知シンボルi−2、i−1から求めた既知シンボ
ル間の位相変動量θiー1 を直前の既知シンボル間の位相
変動量信号707として出力する。
The storage unit 706 stores the known symbols i−1, i
Held by entering the phase deviation theta i between known symbols obtained from, already held, the phase between the known symbols determined from known symbol i-2, i-1 obtained by (Equation 2) The variation θ i−1 is output as the phase variation signal 707 between the immediately preceding known symbols.

【0072】ただし、Xi-2 は既知シンボル302のi
−2の受信信号の同相成分、Yi-2は既知シンボル30
2のi−2の受信信号の直交成分である。
Here, X i−2 is i of known symbol 302
-2, the in-phase component of the received signal of Y -2, the known symbol 30
2 i-2 is the orthogonal component of the received signal.

【0073】周波数オフセット計算部708は、既知シ
ンボル302のi−1、iから求めた既知シンボル間の
位相変動量θi 、既知シンボル302のi−2、i−1
から求めた既知シンボル間の位相変動量θiー1 を入力と
し、θi 、θiー1 を比較し、例えば(数3)を位相変動
量相関信号209として出力し、この信号を検波部61
2や図示しないCPU部が受け取り、データシンボルの
処理のために用いる。
The frequency offset calculator 708 calculates the phase variation θ i between the known symbols obtained from i−1, i of the known symbol 302 and i−2, i−1 of the known symbol 302.
The phase variation θ i−1 between known symbols obtained from the above is input, θ i , θ i−1 are compared, and for example, (Equation 3) is output as a phase variation correlation signal 209, and this signal is detected by a detector. 61
2 and a CPU unit (not shown) receive and use the data symbols for processing.

【0074】また、例えば(数4)となった場合、
θi 、θiー1 を周波数オフセット量を推定するための計
算に用いることで、高精度の周波数オフセット量の推定
を行う。
For example, when (Expression 4) is obtained,
By using θ i and θ i−1 in the calculation for estimating the frequency offset amount, the frequency offset amount is estimated with high accuracy.

【0075】これにより、受信電界強度が弱いときや変
動が激しいときにおいても、搬送波電力対雑音電力比に
対して、良好なビット誤り率特性を得ることが可能とな
る。
As a result, even when the received electric field strength is weak or the fluctuation is severe, it is possible to obtain a good bit error rate characteristic with respect to the carrier power to noise power ratio.

【0076】以上のように、図7のような周波数オフセ
ット補償装置を構成することにより、受信電界強度が弱
いときや変動が激しいときにおいても適切な周波数オフ
セット補償を行うことが可能となり、このような場合で
も良好なビット誤り率特性を得ることができる。そして
このような周波数オフセット補償装置を図6のように周
波数オフセット補償部として用いることで、ビット誤り
率特性の良好な復調装置を得ることができる。
As described above, by configuring the frequency offset compensating apparatus as shown in FIG. 7, it is possible to perform appropriate frequency offset compensation even when the received electric field strength is weak or the fluctuation is severe. In this case, good bit error rate characteristics can be obtained. By using such a frequency offset compensator as a frequency offset compensator as shown in FIG. 6, a demodulator having a good bit error rate characteristic can be obtained.

【0077】なお、本実施の形態において、フレーム構
成は図3で説明したが、これに限ったものではなく、ま
た、通信方式としてシングルキャリア方式で説明した
が、符号分割多元方式を用いても、同様の効果を有す
る。
In this embodiment, the frame configuration has been described with reference to FIG. 3. However, the present invention is not limited to this. In addition, although a single carrier system has been described as a communication system, a code division multiple system may be used. Has the same effect.

【0078】[0078]

【発明の効果】以上のように本発明によれば、送信側で
送信データに既知信号を挿入して送信し、受信側で受信
し復調する無線通信の復調装置に用いられ、受信直交ベ
ースバンド信号の同相成分と直交成分及びタイミング信
号を入力とし、あるタイミングでの既知シンボル間の位
相変動量信号を出力する位相変動量計算手段と、前記位
相変動量信号とタイミング信号を入力として前記位相変
動量信号を保持し且つ前記あるタイミングより過去のタ
イミングで入力し保持していた過去の既知シンボル間の
位相変動量信号を過去位相変動量信号として出力する記
憶手段と、そして、前記位相変動量信号と前記過去位相
変動量信号及びタイミング信号を入力して位相変動量相
関信号を出力する相関検出手段か、あるいは、前記位相
変動量信号と前記過去位相変動量信号及び前記受信直交
ベースバンド信号の同相成分と直交成分及びタイミング
信号を入力して既知信号の同相成分と直交成分を補間
し、位相変動量相関信号及び補間された既知信号の同相
成分と直交成分を出力する周波数オフセット計算手段
か、あるいは、前記位相変動量信号と前記過去位相変動
量信号及び前記受信直交ベースバンド信号の同相成分お
よび直交成分及びタイミング信号を入力して周波数オフ
セット補償を行い、位相変動量相関信号及び周波数オフ
セット補償後の受信直交ベースバンド信号の同相成分と
直交成分を出力する周波数オフセット計算手段か、とを
具備する制御装置または周波数オフセット補償装置、あ
るいはそれを用いた復調装置とすることにより、受信電
界強度が弱いときや変動が激しいときにおいても、良好
なビット誤り率特性を得るという有利な効果が得られ
る。
As described above, according to the present invention, a receiving quadrature baseband is used for a radio communication demodulator in which a transmitting side inserts a known signal into transmission data and transmits the data, and a receiving side receives and demodulates. Phase fluctuation calculating means for inputting an in-phase component and a quadrature component of a signal and a timing signal, and outputting a phase fluctuation signal between known symbols at a certain timing; and Storage means for holding a quantity signal and outputting a past phase variation signal between known symbols input and retained at a timing earlier than the certain timing as a past phase variation signal; and the phase variation signal And a correlation detecting means for inputting the past phase variation signal and the timing signal and outputting a phase variation correlation signal, or the phase variation signal and the The in-phase component and the quadrature component of the received quadrature variation signal and the received quadrature baseband signal and the timing signal are input to interpolate the in-phase component and the quadrature component of the known signal, and the phase variation correlation signal and the in-phase of the interpolated known signal are input. Frequency offset calculating means for outputting a component and a quadrature component, or frequency offset compensation by inputting the phase variation signal, the past phase variation signal, and the in-phase component and the quadrature component of the received quadrature baseband signal and the timing signal. And a frequency offset calculating means for outputting an in-phase component and a quadrature component of the phase variation correlation signal and the received quadrature baseband signal after the frequency offset compensation. The demodulator can be used when the received electric field strength is weak or It can have the advantageous effect of obtaining a good bit error rate characteristic can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態による無線通信システム
の復調装置の一例を示す構成ブロック図
FIG. 1 is a configuration block diagram illustrating an example of a demodulation device of a wireless communication system according to an embodiment of the present invention.

【図2】本発明の一実施の形態による制御装置の具体的
な構成を示すブロック図
FIG. 2 is a block diagram showing a specific configuration of a control device according to an embodiment of the present invention.

【図3】本発明の一実施の形態による時間に対するデー
タシンボルと既知シンボルのフレーム構成の一例を示す
概念図
FIG. 3 is a conceptual diagram showing an example of a frame configuration of a data symbol and a known symbol with respect to time according to an embodiment of the present invention.

【図4】本発明の一実施の形態による無線通信システム
の復調装置の一例を示す構成ブロック図
FIG. 4 is a configuration block diagram illustrating an example of a demodulation device of a wireless communication system according to an embodiment of the present invention.

【図5】本発明の一実施の形態による周波数オフセット
補償装置の具体的な構成を示すブロック図
FIG. 5 is a block diagram showing a specific configuration of a frequency offset compensator according to one embodiment of the present invention;

【図6】本発明の一実施の形態による無線通信システム
の復調装置の一例を示す構成ブロック図
FIG. 6 is a configuration block diagram illustrating an example of a demodulation device of a wireless communication system according to an embodiment of the present invention.

【図7】本発明の一実施の形態による周波数オフセット
補償装置の具体的な構成を示すブロック図
FIG. 7 is a block diagram showing a specific configuration of a frequency offset compensator according to one embodiment of the present invention;

【図8】従来の周波数オフセット補償によるパイロット
シンボルの位相の時間変化を示す概念図
FIG. 8 is a conceptual diagram showing a temporal change in the phase of a pilot symbol by conventional frequency offset compensation.

【符号の説明】[Explanation of symbols]

101、401、601 アンテナ 102、402、602 受信信号 103、403、603 受信無線部 104、201、404、501、604、701 受
信直交ベースバンド信号の同相成分 105、202、405、502、605、702 受
信直交ベースバンド信号の直交成分 106、406、606 フレーム・シンボルタイミン
グ検出部 107、203、407、503、607、703 フ
レーム・シンボルタイミング信号 108 制御部 109 位相変動量相関信号 110、412、612 検波部 111、413、613 ディジタル信号 204、504、704 位相変動量計算部 205、505、705 既知シンボル間の位相変動量
信号 206、506、706 記憶部 207、507、707 直前の既知シンボル間の位相
変動量信号 208 相関検出部 209、409、509、609、709 位相変動量
相関信号 301 データシンボル 302 既知シンボル 408、608 周波数オフセット補償部 410、510 補間された既知信号の同相成分 411、511 補間された既知信号の直交成分 508、708 周波数オフセット計算部 610、710 周波数オフセット補償後の受信直交ベ
ースバンド信号の同相成分 611、711 周波数オフセット補償後の受信直交ベ
ースバンド信号の直交成分
101, 401, 601 Antenna 102, 402, 602 Received signal 103, 403, 603 Received radio section 104, 201, 404, 501, 604, 701 In-phase component of received quadrature baseband signal 105, 202, 405, 502, 605, 702 Orthogonal component of received orthogonal baseband signal 106, 406, 606 Frame / symbol timing detector 107, 203, 407, 503, 607, 703 Frame / symbol timing signal 108 Controller 109 Phase variation correlation signal 110, 412, 612 Detector 111, 413, 613 Digital signal 204, 504, 704 Phase variation calculator 205, 505, 705 Phase variation signal between known symbols 206, 506, 706 Storage 207, 507, 707 Between known symbols immediately before Phase variation signal 208 Correlation detector 209, 409, 509, 609, 709 Phase variation correlation signal 301 Data symbol 302 Known symbol 408, 608 Frequency offset compensator 410, 510 In-phase component of interpolated known signal 411, 511 interpolation 508, 708 Frequency offset calculator 610, 710 In-phase component of received quadrature baseband signal after frequency offset compensation 611, 711 Quadrature component of received quadrature baseband signal after frequency offset compensation

───────────────────────────────────────────────────── フロントページの続き (72)発明者 折橋 雅之 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 松岡 昭彦 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 Fターム(参考) 5K004 AA08 JJ05 JJ08 5K052 AA14 CC06 DD03 DD04 EE17 EE26 EE30 EE38 FF31 GG11 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Masayuki Orihashi 3-10-1, Higashi-Mita, Tama-ku, Kawasaki, Kanagawa Prefecture Inside Matsushita Giken Co., Ltd. (72) Akihiko Matsuoka 3-chome, Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa No.10 No.1 Matsushita Giken Co., Ltd. F-term (reference) 5K004 AA08 JJ05 JJ08 5K052 AA14 CC06 DD03 DD04 EE17 EE26 EE30 EE38 FF31 GG11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 送信側で送信データに既知信号を挿入し
て送信し、受信側で受信し復調する無線通信の復調装置
に用いられ、受信直交ベースバンド信号の同相成分と直
交成分及びタイミング信号を入力とし、あるタイミング
での既知シンボル間の位相変動量信号を出力する位相変
動量計算手段と、前記位相変動量信号とタイミング信号
を入力として前記位相変動量信号を保持し且つ前記ある
タイミングより過去のタイミングで入力し保持していた
過去の既知シンボル間の位相変動量信号を過去位相変動
量信号として出力する記憶手段と、前記位相変動量信号
と前記過去位相変動量信号及びタイミング信号を入力し
て位相変動量相関信号を出力する相関検出手段とを具備
する制御装置。
A transmission side inserts a known signal into transmission data, transmits the transmission signal, and uses the reception side to receive and demodulate the data. The in-phase component and the quadrature component of a received quadrature baseband signal and a timing signal are used. And a phase fluctuation amount calculating means for outputting a phase fluctuation amount signal between known symbols at a certain timing, and holding the phase fluctuation amount signal with the phase fluctuation amount signal and the timing signal as inputs, and Storage means for outputting as a past phase variation signal a phase variation signal between known symbols that has been input and held at a past timing; and inputs the phase variation signal, the past phase variation signal and a timing signal. And a correlation detecting means for outputting a phase fluctuation amount correlation signal.
【請求項2】 送信側で送信データに既知信号を挿入し
て送信し、受信側で受信し復調する無線通信の復調装置
に用いられ、受信直交ベースバンド信号の同相成分と直
交成分及びタイミング信号を入力とし、あるタイミング
での既知シンボル間の位相変動量信号を出力する位相変
動量計算手段と、前記位相変動量信号とタイミング信号
を入力として前記位相変動量信号を保持し且つ前記ある
タイミングより過去のタイミングで入力し保持していた
過去の既知シンボル間の位相変動量信号を過去位相変動
量信号として出力する記憶手段と、前記位相変動量信号
と前記過去位相変動量信号及び前記受信直交ベースバン
ド信号の同相成分と直交成分及びタイミング信号を入力
して既知信号の同相成分と直交成分を補間し、位相変動
量相関信号及び補間された既知信号の同相成分と直交成
分を出力する周波数オフセット計算手段とを具備する周
波数オフセット補償装置。
2. A demodulator for wireless communication in which a transmitting side inserts a known signal into transmission data and transmits the data, and a receiving side demodulates and receives the signal. The in-phase component and the quadrature component of the received quadrature baseband signal and the timing signal are used. And a phase fluctuation amount calculating means for outputting a phase fluctuation amount signal between known symbols at a certain timing, and holding the phase fluctuation amount signal with the phase fluctuation amount signal and the timing signal as inputs, and Storage means for outputting a past phase variation signal between known symbols input and held at a past timing as a past phase variation signal; and the phase variation signal, the past phase variation signal, and the reception quadrature base. The in-phase and quadrature components of the band signal and the timing signal are input, and the in-phase and quadrature components of the known signal are interpolated. A frequency offset compensating unit that outputs an in-phase component and a quadrature component of the obtained known signal.
【請求項3】 送信側で送信データに既知信号を挿入し
て送信し、受信側で受信し復調する無線通信の復調装置
に用いられ、受信直交ベースバンド信号の同相成分と直
交成分及びタイミング信号を入力とし、あるタイミング
での既知シンボル間の位相変動量信号を出力する位相変
動量計算手段と、前記位相変動量信号とタイミング信号
を入力として前記位相変動量信号を保持し且つ前記ある
タイミングより過去のタイミングで入力し保持していた
過去の既知シンボル間の位相変動量信号を過去位相変動
量信号として出力する記憶手段と、前記位相変動量信号
と前記過去位相変動量信号及び前記受信直交ベースバン
ド信号の同相成分および直交成分及びタイミング信号を
入力して周波数オフセット補償を行い、位相変動量相関
信号及び周波数オフセット補償後の受信直交ベースバン
ド信号の同相成分と直交成分を出力する周波数オフセッ
ト計算手段とを具備する周波数オフセット補償装置。
3. A radio communication demodulator for transmitting a known signal by inserting a known signal into transmission data on a transmission side and receiving and demodulating on a reception side, wherein the in-phase component and the quadrature component of a reception quadrature baseband signal and a timing signal are used. And a phase fluctuation amount calculating means for outputting a phase fluctuation amount signal between known symbols at a certain timing, and holding the phase fluctuation amount signal with the phase fluctuation amount signal and the timing signal as inputs, and Storage means for outputting a past phase variation signal between known symbols input and held at a past timing as a past phase variation signal; and the phase variation signal, the past phase variation signal, and the reception quadrature base. Inputs the in-phase and quadrature components of the band signal and the timing signal, performs frequency offset compensation, and outputs the phase variation correlation signal and frequency off signal. A frequency offset compensator comprising: a frequency offset calculator that outputs an in-phase component and a quadrature component of a received quadrature baseband signal after set compensation.
【請求項4】 請求項1から3のいずれかの装置を具備
する復調装置。
4. A demodulation device comprising the device according to claim 1.
【請求項5】 無線通信がシングルキャリア方式である
ことを特徴とする請求項4記載の復調装置。
5. The demodulator according to claim 4, wherein the wireless communication is of a single carrier type.
【請求項6】 無線通信が符号分割多元方式式であるこ
とを特徴とする請求項4記載の復調装置。
6. The demodulation device according to claim 4, wherein the wireless communication is a code division multiplex system.
JP11041227A 1999-02-12 1999-02-19 Controller, frequency offset compensator and demodulator using the same Pending JP2000244598A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11041227A JP2000244598A (en) 1999-02-19 1999-02-19 Controller, frequency offset compensator and demodulator using the same
US09/499,303 US6748026B1 (en) 1999-02-12 2000-02-07 Distortion estimation apparatus, frequency offset compensation apparatus and reception apparatus
EP00102770A EP1028566A2 (en) 1999-02-12 2000-02-10 Distortion estimation apparatus, frequency offset compensation apparatus and reception apparatus for QAM signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041227A JP2000244598A (en) 1999-02-19 1999-02-19 Controller, frequency offset compensator and demodulator using the same

Publications (1)

Publication Number Publication Date
JP2000244598A true JP2000244598A (en) 2000-09-08

Family

ID=12602536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041227A Pending JP2000244598A (en) 1999-02-12 1999-02-19 Controller, frequency offset compensator and demodulator using the same

Country Status (1)

Country Link
JP (1) JP2000244598A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521281A (en) * 2004-11-16 2008-06-19 トムソン ライセンシング Method and apparatus for carrier recovery using multiple sources
JP2009182837A (en) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp Demodulator
US7778281B2 (en) 2001-04-27 2010-08-17 Panasonic Corporation Wireless communication apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7778281B2 (en) 2001-04-27 2010-08-17 Panasonic Corporation Wireless communication apparatus
JP2008521281A (en) * 2004-11-16 2008-06-19 トムソン ライセンシング Method and apparatus for carrier recovery using multiple sources
JP4714746B2 (en) * 2004-11-16 2011-06-29 トムソン ライセンシング Method and apparatus for carrier recovery using multiple sources
JP2009182837A (en) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp Demodulator

Similar Documents

Publication Publication Date Title
US6693882B1 (en) Frequency correction burst detection
JP4095249B2 (en) Frequency acquisition tracking method and apparatus for DS-SSCDMA receiver
WO2001003395A1 (en) A method and apparatus for performing dc-offset compensation in a radio receiver
JPH08107431A (en) Demodulator
WO2007001808A1 (en) Method and system for equalizing received signal in communications systems
KR101138698B1 (en) Method and apparatus for estimating frequency offset in mobile communications system
US20170324595A1 (en) Circuits and methods for frequency offset estimation in fsk communications
US6249518B1 (en) TDMA single antenna co-channel interference cancellation
CN101103556A (en) Method and system for synchronization between a transmitter and a receiver in a wireless communication system
FI101919B (en) Method for calculating impulse response and receiver
US6973142B2 (en) Timing synchronization for M-DPSK channels
US20050180518A1 (en) Preamble for estimation and equalization of asymmetries between inphase and quadrature branches in multicarrier transmission systems
JP2773562B2 (en) Signal sequence detection method
US6625237B2 (en) Null-pilot symbol assisted fast automatic frequency control (AFC) system for coherent demodulation of continuous phase modulation (CPM) signals and method for implementing same
US7583770B2 (en) Multiplex signal error correction method and device
JP2000244598A (en) Controller, frequency offset compensator and demodulator using the same
EP1236320B1 (en) Method and apparatus for transforming a channel estimate
JP3461522B2 (en) Frame signal processing device
WO2001059980A1 (en) Dtse at less than two complex samples per symbol
EP1243112A1 (en) Method for blind modulation detection
US7116727B2 (en) Frequency offset estimation apparatus for intersymbol interference channels
JPH10210093A (en) Signal offset eliminating method
JP3421879B2 (en) Demodulator
JP3178217B2 (en) Direct conversion receiver
JPH0630070A (en) Demodulator