JP2000242910A - Mr head and its production - Google Patents

Mr head and its production

Info

Publication number
JP2000242910A
JP2000242910A JP11038221A JP3822199A JP2000242910A JP 2000242910 A JP2000242910 A JP 2000242910A JP 11038221 A JP11038221 A JP 11038221A JP 3822199 A JP3822199 A JP 3822199A JP 2000242910 A JP2000242910 A JP 2000242910A
Authority
JP
Japan
Prior art keywords
head
film
plating
magnetic pole
upper magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11038221A
Other languages
Japanese (ja)
Other versions
JP3842475B2 (en
Inventor
Shuji Sudo
修二 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP03822199A priority Critical patent/JP3842475B2/en
Publication of JP2000242910A publication Critical patent/JP2000242910A/en
Application granted granted Critical
Publication of JP3842475B2 publication Critical patent/JP3842475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration in the recording performance even when the recording track width is decreased, by forming a part of an upper magnetic pole near the floating face by plating so that the film thickness of the plated magnetic film determines the recording track width, and by controlling the ratio of the height of the upper magnetic pole exposing on the floating face to the recording track width to a specified value or larger. SOLUTION: A plating base film 1a is formed on a recording gap 8, and a resist frame 11 is formed on the plating base film 1a. Then a nonmagnetic metal film 1b is formed by plating, and the resist frame 11 is removed. Further, the plating base film 1a is removed. Then while the nonmagnetic metal film 1b is partly covered with a resist 12, a plating magnetic metal film (top of an upper magnetic pole) 1 is formed on the side face of the nonmagnetic metal film 1b, and then the upper part of the plating magnetic metal film 1, the resist 12, the nonmagnetic metal film 1b and the plating base film 1a are removed. In this process, the height (h) of the upper magnetic pole to the recording track width Tw observed from the floating face are controlled to satisfy h/Tw>=6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘導型記録ヘッドと
磁気抵抗型再生ヘッドを具備するMRヘッドに関し、特
に狭トラック幅のMRヘッドに係わる。
The present invention relates to an MR head having an inductive recording head and a magnetoresistive reproducing head, and more particularly to an MR head having a narrow track width.

【0002】[0002]

【従来の技術】ハードディスク装置の記録密度は年々高
くなっており、使われる磁気ヘッドは誘導型ヘッドから
記録再生分離型ヘッドに急速に置き換わっている。記録
再生分離型ヘッドは再生に磁気抵抗効果(MR効果)を
用いていることからMRヘッドと呼ばれている。図7に
従来のMRヘッドの一例を断面図で示す。また、図8に
従来のMRヘッドの一例を斜視図で説明する。図8で
は、アルミナ・チタンカーバイドなどで作られた非磁性
基板106の上に、アルミナの絶縁膜、下部シールド1
05、絶縁膜、磁気抵抗素子104、絶縁膜、下部磁極
としての機能を有する中間シールド102、記録ギャッ
プ、上部磁極101を持つ。下部シールド105、磁気
抵抗素子104、中間シールド102の各々の間を絶縁
する絶縁膜110は図示を省略しているが、実際には各
々の膜の間に充填されるものである。中間シールド10
2と上部磁極101の間には、絶縁膜からなる記録ギャ
ップ108を有しており、誘導型記録ヘッドの磁気的な
ギャップとして機能する。さらに、中間シールドと上部
磁極の間には絶縁膜を介してコイル107が巻回配置さ
れている。また、中間シールドと下部シールドの間に
は、磁気抵抗素子104を包む絶縁膜からなる再生ギャ
ップ109が設けられ、磁気抵抗型再生ヘッドの磁気的
なギャップとして機能する。図7は、図8のような従来
のMRヘッドを媒体対向面からみたときの一部断面図に
相当する。媒体対向面は図中の矢印Aに垂直な面に相当
する。
2. Description of the Related Art The recording density of hard disk drives has been increasing year by year, and the magnetic heads used have rapidly been replaced by inductive heads with separate recording / reproducing heads. The read / write separation type head is called an MR head because it uses a magnetoresistance effect (MR effect) for reproduction. FIG. 7 is a sectional view showing an example of a conventional MR head. FIG. 8 is a perspective view illustrating an example of a conventional MR head. In FIG. 8, an alumina insulating film and a lower shield 1 are formed on a non-magnetic substrate 106 made of alumina / titanium carbide or the like.
05, an insulating film, a magnetoresistive element 104, an insulating film, an intermediate shield 102 functioning as a lower magnetic pole, a recording gap, and an upper magnetic pole 101. Although the insulating film 110 that insulates the lower shield 105, the magnetoresistive element 104, and the intermediate shield 102 from each other is not shown, it is actually filled between the respective films. Intermediate shield 10
A recording gap 108 made of an insulating film is provided between the upper magnetic pole 2 and the upper magnetic pole 101, and functions as a magnetic gap of an inductive recording head. Further, a coil 107 is wound between the intermediate shield and the upper magnetic pole via an insulating film. A reproducing gap 109 made of an insulating film surrounding the magnetoresistive element 104 is provided between the intermediate shield and the lower shield, and functions as a magnetic gap of the magnetoresistive reproducing head. FIG. 7 is a partial sectional view of the conventional MR head as shown in FIG. 8 when viewed from the medium facing surface. The medium facing surface corresponds to a surface perpendicular to the arrow A in the figure.

【0003】高密度記録化を進めるためにトラック密度
が高くなるが、対応して記録トラック幅を狭くする必要
がある。媒体の記録トラック幅は上部磁極先端の幅でほ
ぼ規定されるため、以降は上部磁極先端の幅を記録トラ
ック幅Twと呼ぶことにする。以下に、上部磁極をフレ
ームメッキ法で形成する従来技術について、中間シール
ドを形成した後から上部磁極を形成するまでの工程を図
9を用いて説明する。中間シールド102上に記録ギャ
ップ108を形成する。コイル、絶縁膜を形成後、記録
ギャップ108の膜上にメッキ下地膜101aを成膜す
る(図9(1))。本図は上部磁極先端部に相当する部
分のみを図示した。レジストを塗布、露光、現像し、メ
ッキ用フレームパターン111を形成(図9(2))。
上部磁極として磁性金属膜101をメッキ法で成膜(図
9(3))。フレームレジスト111を除去し、メッキ
下地膜101aをイオンミリングで除去(図9
(4))。さらにポールトリミングを加える(図9
(5))。
The track density is increased in order to increase the recording density, but the recording track width must be correspondingly narrowed. Since the recording track width of the medium is substantially defined by the width of the upper magnetic pole tip, the width of the upper magnetic pole tip is hereinafter referred to as a recording track width Tw. Hereinafter, a description will be given of a conventional technique of forming an upper magnetic pole by a frame plating method, with reference to FIG. 9, illustrating a process from forming an intermediate shield to forming an upper magnetic pole. A recording gap 108 is formed on the intermediate shield 102. After forming the coil and the insulating film, a plating base film 101a is formed on the film of the recording gap 108 (FIG. 9A). This drawing shows only a portion corresponding to the tip of the upper magnetic pole. A resist is applied, exposed, and developed to form a plating frame pattern 111 (FIG. 9B).
A magnetic metal film 101 is formed as an upper magnetic pole by a plating method (FIG. 9C). The frame resist 111 is removed, and the plating base film 101a is removed by ion milling (FIG. 9).
(4)). Add pole trimming (Fig. 9
(5)).

【0004】従来法では上部磁極を上記のようにフレー
ムメッキ法で形成するため、磁性膜を厚くメッキするた
めにはフレームレジストを厚くする必要がある。一方レ
ジストが厚くなると(2)の工程で狭いフレームパター
ンを形成することが難しくなる。例えば、フレームの側
面に傾斜がついて、垂直な側面でなくなったり、上部磁
極101の先端を正確にTwに形成できなくなる。即
ち、従来法では寸法精度を保持しつつ記録トラック幅を
狭くすると上部磁極高さが低くなってしまう。記録トラ
ック幅が狭くなると同時に上部磁極高さが低くなると上
部磁極断面が小さくなり、上部磁極先端に達する総磁束
量が低下し、記録性能が劣化する。このように従来技術
では記録トラック幅が狭くなると、記録性能が劣化する
問題があった。
In the conventional method, since the upper magnetic pole is formed by the frame plating method as described above, it is necessary to thicken the frame resist in order to plate the magnetic film thickly. On the other hand, if the resist becomes thick, it becomes difficult to form a narrow frame pattern in the step (2). For example, the side surface of the frame is inclined so that it is not a vertical side surface, or the tip of the upper magnetic pole 101 cannot be accurately formed at Tw. That is, in the conventional method, if the recording track width is reduced while maintaining the dimensional accuracy, the height of the upper magnetic pole decreases. If the height of the upper magnetic pole decreases at the same time as the recording track width becomes narrower, the cross section of the upper magnetic pole becomes smaller, so that the total magnetic flux reaching the top end of the upper magnetic pole decreases, and the recording performance deteriorates. As described above, in the related art, when the recording track width is reduced, there is a problem that the recording performance is deteriorated.

【0005】[0005]

【発明が解決しようとする課題】従来のMRヘッドのプ
ロセスでは、記録トラック幅が狭くなると、記録性能が
劣化する問題があった。そこで本発明は、狭トラック形
成と記録性能を両立させることを目的とする。
In the process of the conventional MR head, there has been a problem that the recording performance is deteriorated when the recording track width is reduced. Accordingly, an object of the present invention is to achieve both narrow track formation and recording performance.

【0006】[0006]

【課題を解決するための手段】本発明のMRヘッドは、
記録トラック幅に対する浮上面に露出する上部磁極の高
さの比が5以上であることを特徴とする。MRヘッド
は、下部シールドと中間シールドおよび両シールドの間
の再生ギャップ内の磁気抵抗素子で構成される磁気抵抗
型再生ヘッドと、前記中間シールドと上部磁極の間にコ
イルを設けた誘導型記録ヘッドを具備する。本発明は記
録トラック幅が0.7μm以下において効果が大きい。
さらに記録トラック幅Twと上部磁極の高さhの比h/
Tw≧6とすることで、0.7μm以下の狭トラックで
も上部磁極先端に達する総磁束量が増大し、高いオーバ
ーライト特性を得ることが可能である。
An MR head according to the present invention comprises:
The ratio of the height of the upper magnetic pole exposed on the air bearing surface to the recording track width is 5 or more. The MR head includes a magnetoresistive read head composed of a lower shield, an intermediate shield, and a magnetoresistive element in a read gap between the two shields, and an inductive write head having a coil provided between the intermediate shield and the upper magnetic pole. Is provided. The present invention has a great effect when the recording track width is 0.7 μm or less.
Further, the ratio h / of the recording track width Tw and the height h of the upper magnetic pole is calculated.
By setting Tw ≧ 6, the total amount of magnetic flux reaching the top end of the upper magnetic pole increases even in a narrow track of 0.7 μm or less, and high overwrite characteristics can be obtained.

【0007】また、本発明のMRヘッドは、上部磁極の
浮上面近傍の部分をメッキ法で作製し、メッキされた磁
性膜の膜厚が記録トラック幅を規定することを特徴とす
る。
The MR head according to the present invention is characterized in that a portion near the air bearing surface of the upper magnetic pole is formed by plating, and the thickness of the plated magnetic film defines the recording track width.

【0008】また、本発明は、上部磁極の浮上面近傍の
部分をメッキ法で作製し、メッキされた磁性膜の厚さが
記録トラック幅を規定するMRヘッドの製造方法におい
て、フレームメッキ法で作製した非磁性金属膜をメッキ
用電極として、前記メッキ用電極の少なくとも側面に上
部磁極の浮上面近傍の部分をメッキ法で作製することを
特徴とする。
The present invention also provides a method of manufacturing an MR head in which a portion near the air bearing surface of an upper magnetic pole is formed by plating, and the thickness of a plated magnetic film defines a recording track width. Using the produced nonmagnetic metal film as a plating electrode, a portion near the air bearing surface of the upper magnetic pole is formed on at least a side surface of the plating electrode by a plating method.

【0009】また、本発明は、上部磁極の浮上面近傍の
部分をメッキ法で作製し、メッキされた磁性膜の厚さが
記録トラック幅を規定するMRヘッドの製造方法におい
て、前記上部磁極の浮上面近傍の部分を形成した後に、
フレームメッキ法で作製した非磁性金属膜を上部磁極の
浮上面近傍の部分の材料に対する選択エッチングで除去
することを特徴とする。
The present invention also relates to a method of manufacturing an MR head in which a portion near the air bearing surface of an upper magnetic pole is formed by plating, and the thickness of a plated magnetic film defines a recording track width. After forming the part near the air bearing surface,
The method is characterized in that the nonmagnetic metal film formed by the frame plating method is removed by selective etching of a material in a portion near the air bearing surface of the upper magnetic pole.

【0010】また、本発明は、上部磁極の浮上面近傍の
部分をメッキ法で作製し、メッキされた磁性膜の厚さが
記録トラック幅を規定するMRヘッドを製造する方法で
あって、金属膜を成膜した後にフレームレジストを形成
し、その後、前記金属膜にイオンミリングを加えること
でフレームレジスト側面に金属膜を再付着させて上部磁
極メッキ用下地膜とすることを特徴とする。
The present invention also relates to a method of manufacturing an MR head in which a portion near an air bearing surface of an upper magnetic pole is formed by plating and the thickness of a plated magnetic film defines a recording track width. After the film is formed, a frame resist is formed, and thereafter, the metal film is subjected to ion milling to re-attach the metal film to the side surface of the frame resist, thereby forming a base film for upper pole plating.

【0011】[0011]

【発明の実施の形態】以下、図面を用いて本発明による
MRヘッドを示す。図1及び図2は本発明のMRヘッド
の製造工程を説明する断面図である。図2は図1の製造
工程の続きである。図3及び図4は本発明のMRヘッド
の製造工程を説明する断面図である。図4は図3の製造
工程の続きである。図5は、図6のMRヘッドの製造工
程を説明する断面図である。図6は本発明のMRヘッド
の断面図であり、図1及び図2の製造工程、あるいは図
3及び図4の製造工程のいずれかを含む製造工程で作製
したMRヘッドに相当する。図2中の(11)あるいは
図4中の(11)は、図6のMRヘッドのB−B断面の
要部に相当する。図6は、例えば図8の矢印Bの向きか
らみた横断面図に相当する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An MR head according to the present invention will be described below with reference to the drawings. 1 and 2 are cross-sectional views for explaining a manufacturing process of the MR head of the present invention. FIG. 2 is a continuation of the manufacturing process of FIG. FIGS. 3 and 4 are cross-sectional views illustrating the steps of manufacturing the MR head of the present invention. FIG. 4 is a continuation of the manufacturing process of FIG. FIG. 5 is a cross-sectional view for explaining a manufacturing process of the MR head of FIG. FIG. 6 is a cross-sectional view of an MR head according to the present invention, and corresponds to an MR head manufactured in a manufacturing process including any of the manufacturing processes of FIGS. 1 and 2 or the manufacturing processes of FIGS. (11) in FIG. 2 or (11) in FIG. 4 corresponds to the main part of the BB section of the MR head in FIG. FIG. 6 corresponds to, for example, a cross-sectional view seen from the direction of arrow B in FIG.

【0012】実施例1として、図1、図2、図5および
図6で本発明のMRヘッドを形成する工程を説明する。
まず、図5の構成を形成するまでの工程を説明する。ア
ルミナ・チタンカーバイド基板41の上にアルミナの非
磁性絶縁膜42を形成した。この非磁性絶縁膜42の上
に80Ni20Feの下部シールド43をメッキで形成
した。この上に再生ギャップを構成する非磁性絶縁膜と
して、アルミナの非磁性絶縁膜44を積層した後、磁気
抵抗素子45とそれに電流を供給する電極膜を形成し
た。電極膜には磁気抵抗素子にバイアスを印加する永久
磁石膜等を含む。さらに再生ギャップを構成する非磁性
絶縁膜46を積層した。
As a first embodiment, a process for forming an MR head according to the present invention will be described with reference to FIGS. 1, 2, 5 and 6. FIG.
First, steps required until a structure shown in FIG. 5 is formed will be described. An alumina nonmagnetic insulating film 42 was formed on an alumina / titanium carbide substrate 41. A lower shield 43 of 80Ni20Fe was formed on the nonmagnetic insulating film 42 by plating. After laminating a nonmagnetic insulating film 44 of alumina as a nonmagnetic insulating film constituting a reproducing gap thereon, a magnetoresistive element 45 and an electrode film for supplying current thereto were formed. The electrode film includes a permanent magnet film for applying a bias to the magnetoresistive element. Further, a nonmagnetic insulating film 46 constituting a reproducing gap was laminated.

【0013】次に、この非磁性絶縁膜の上に、メッキ用
の下地となる導電膜47として80Ni20Fe膜をス
パッタリングで形成する。ここで、80Ni20Fe膜
は、その組成がニッケル80%と鉄20%で構成されて
いる磁性膜であることを示す。この導電膜47上にフォ
トレジスト膜を塗布し、所定の温度でベークを行う。こ
のレジスト膜の上にフォトマスクを位置決めして露光
し、続いて現像および水洗処理を施す。この処理により
中間シールド2の外形に沿ったレジストパターンが形成
される。次に硫化ニッケルや硫化鉄を含むメッキ溶液を
用いて80Ni20Fe膜をメッキして4μmの厚みの
中間シールド2を形成した。メッキ処理後、洗浄と乾燥
処理を行って、メッキ液の成分や水分を除去した。
Next, an 80Ni20Fe film is formed on the nonmagnetic insulating film by sputtering as a conductive film 47 serving as a base for plating. Here, the 80Ni20Fe film is a magnetic film having a composition of 80% nickel and 20% iron. A photoresist film is applied on the conductive film 47 and baked at a predetermined temperature. A photomask is positioned and exposed on this resist film, followed by development and washing. This process forms a resist pattern along the outer shape of the intermediate shield 2. Next, an 80Ni20Fe film was plated using a plating solution containing nickel sulfide or iron sulfide to form an intermediate shield 2 having a thickness of 4 μm. After the plating, washing and drying were performed to remove components and moisture of the plating solution.

【0014】次に絶縁膜を6μm成膜した後、中間シー
ルド2の膜厚が2.5μmとなるように研磨を行い(CM
P)、中間シールド2を露出させた(図5には図示せず)。
CMP(Chemical Mechanic Polishing)とは、研磨材に
エッチング液を添加することにより、精密で平坦な研磨
面を得る研磨方法である。レジストを塗布、露光、現像
し、メッキ用のフレームを形成し、上部磁極との接続部
分(バックコンタクト31)に45Ni55Fe膜を5μ
mの厚みにメッキした。次に記録ギャップ8の絶縁膜と
してアルミナを0.2μm成膜した後、絶縁膜22を形
成し、その上にらせん状の薄膜コイル24の第一層5タ
ーンをフレームを用いたメッキで形成した。
Next, after forming an insulating film of 6 μm, polishing is performed so that the thickness of the intermediate shield 2 becomes 2.5 μm (CM
P), the intermediate shield 2 was exposed (not shown in FIG. 5).
CMP (Chemical Mechanical Polishing) is a polishing method for obtaining a precise and flat polished surface by adding an etchant to a polishing material. A resist is applied, exposed and developed to form a frame for plating, and a 45Ni55Fe film is formed on a connection portion (back contact 31) with the upper magnetic pole by 5 μm.
m. Next, after an alumina film having a thickness of 0.2 μm was formed as an insulating film for the recording gap 8, an insulating film 22 was formed, and the first turn of the first layer of the helical thin-film coil 24 was formed thereon by plating using a frame. .

【0015】続けて図5の要部の製造工程を図1および
図2で説明する。この後メッキ下地膜1aとして非磁性
導電膜をスパッタリング法で成膜した(図1、(1))。メ
ッキ下地膜1a上にレジストを塗布、露光、現像し、メ
ッキ用フレーム11を形成した(図1、(2))。フレーム
の厚さは7μm、フレーム間隔は3μmとした。次にC
uやNi等の非磁性金属膜1bを6μm厚メッキした
(図1、(3))。フレームのレジストを有機溶剤で除去後
(図1、(4))、イオンミリングによりメッキ下地膜1a
を除去した。図1には図示しないが、基板41の一部を
レジストで覆い、一部メッキ下地膜1aを残すことで、
後の工程でメッキする際の導通が容易になる。
Next, the manufacturing process of the main part of FIG. 5 will be described with reference to FIGS. Thereafter, a non-magnetic conductive film was formed as a plating base film 1a by a sputtering method (FIG. 1, (1)). A resist was applied, exposed, and developed on the plating base film 1a to form a plating frame 11 (FIG. 1, (2)). The thickness of the frame was 7 μm, and the frame interval was 3 μm. Then C
Non-magnetic metal film 1b such as u or Ni is plated at a thickness of 6 μm.
(FIG. 1, (3)). After removing the resist on the frame with an organic solvent
(FIG. 1, (4)), plating underlayer 1a by ion milling
Was removed. Although not shown in FIG. 1, by covering a part of the substrate 41 with a resist and leaving a part of the plating base film 1 a,
Conduction during plating in a later step is facilitated.

【0016】次にレジスト12を塗布、露光、現像し
(図1、(6))、(3)の工程でメッキした非磁性金属膜
1bの一部を覆った(図1、(6))。この状態で、メッキ
磁性金属膜として45Ni55Fe膜を0.6μm厚で
非磁性金属膜1bの側面にメッキし(図2、(7))、上部
磁極先端1を形成した。イオンミリングにより非磁性金
属膜1bの上面の一部にメッキされた45Ni55Fe
膜を除去した(図2、(8))。
Next, a resist 12 is applied, exposed and developed.
A part of the nonmagnetic metal film 1b plated in the steps (FIGS. 1, (6)) and (3) was covered (FIGS. 1, (6)). In this state, a 45Ni55Fe film as a plating magnetic metal film was plated on the side surface of the nonmagnetic metal film 1b to a thickness of 0.6 μm (FIG. 2, (7)) to form the top pole tip 1. 45Ni55Fe plated on a part of the upper surface of the nonmagnetic metal film 1b by ion milling
The film was removed (FIG. 2, (8)).

【0017】レジスト12を有機溶剤で除去し(図2、
(9))、非磁性金属膜1bとそのメッキ下地膜1aを選
択エッチングで除去した(図2、(10))。薄膜コイル
(図5の24に相当する)をレジストで保護した後、上
部磁極先端をマスクにしてイオンミリングによるポール
トリミングを行った(図2、(11))。図2の(11)に
浮上面からみた記録トラック幅Twと、上部磁極の高さ
hを示す。ここでポールトリミングとは、上部磁極また
は中間シールドの少なくとも一部をトラック幅に加工す
ることをいう。
The resist 12 is removed with an organic solvent (FIG. 2,
(9)), the nonmagnetic metal film 1b and the plating base film 1a were removed by selective etching (FIG. 2, (10)). After protecting the thin film coil (corresponding to 24 in FIG. 5) with a resist, pole trimming by ion milling was performed using the tip of the upper magnetic pole as a mask (FIG. 2, (11)). FIG. 2 (11) shows the recording track width Tw and the height h of the upper magnetic pole as viewed from the air bearing surface. Here, the pole trimming refers to processing at least a part of the upper magnetic pole or the intermediate shield to have a track width.

【0018】続けて、図5の説明に戻る。次に、上部磁
極先端1や中間シールド2を覆う絶縁膜23を成膜した
後、研磨(CMP)により上部磁極先端1とバックコンタク
ト31を露出させた(図5)。この上に巻数が4ターンの
薄膜コイルの第二層25を形成し、さらに薄膜コイルを
覆う絶縁層26を形成した後、上部磁極後部40として
厚さ3.0μmの45Ni55Fe膜をメッキで形成し
た。最後に保護膜27としてアルミナ等の絶縁膜をスパ
ッタリングで積層した。このようにして得たMRヘッド
の断面形状を図6に示す。
Next, the description returns to FIG. Next, after forming the insulating film 23 covering the upper magnetic pole tip 1 and the intermediate shield 2, the upper magnetic pole tip 1 and the back contact 31 were exposed by polishing (CMP) (FIG. 5). A second layer 25 of a thin-film coil having four turns is formed thereon, and an insulating layer 26 covering the thin-film coil is further formed. Then, a 3.0 μm-thick 45Ni55Fe film is formed as an upper magnetic pole rear portion 40 by plating. . Finally, an insulating film such as alumina was laminated as a protective film 27 by sputtering. FIG. 6 shows the cross-sectional shape of the MR head thus obtained.

【0019】実施例1で上部磁極先端の記録トラック幅
が0.5μm、上部磁極高さが3.5μmのMRヘッド
を得た。上記の構成としたMRヘッドの記録再生特性を
以下の条件で評価した。保磁力が3500Oeの媒体
(ディスク)を5400rpmで回転させ、MRヘッド
で記録と再生を行なった。すなわち、MRヘッドを備え
たスライダーを媒体に対して一定の浮上量で浮上させる
ことによりMRヘッドを媒体に対向させ、初期記録周波
数で記録と再生を行ない、続けて重ね書き周波数で記録
後に再生を行って、オーバーライト特性を評価した。オ
ーバーライトの評価は初めに長波長の信号を磁気ディス
クに記録した後にその信号Vhを読み出し、次に短波長
の信号を重ね書きしてから先に記録した長波長信号の残
存分Vlを読み出す。オーバーライト特性(O/W)と
は、重ね書きする前の信号と重ね書き後に残存する信号
との比の対数値、すなわち次のような式をdBの単位で表
示する。 O/W=20×log(Vl/Vh) 以下、O/Wの値をオーバーライトと呼ぶ。
In Example 1, an MR head having a recording track width of 0.5 μm at the top of the top pole and a top pole height of 3.5 μm was obtained. The recording / reproducing characteristics of the MR head having the above configuration were evaluated under the following conditions. A medium (disk) having a coercive force of 3500 Oe was rotated at 5400 rpm, and recording and reproduction were performed with an MR head. That is, the MR head is made to face the medium by floating the slider with the MR head at a constant flying height with respect to the medium, and recording and reproduction are performed at the initial recording frequency, and then reproduction is performed after recording at the overwriting frequency. Then, the overwrite characteristics were evaluated. In the evaluation of overwriting, first, a signal of a long wavelength is recorded on a magnetic disk, then the signal Vh is read out, then a signal of a short wavelength is overwritten, and then the remaining Vl of the previously recorded long wavelength signal is read. The overwrite characteristic (O / W) is a logarithmic value of a ratio between a signal before overwriting and a signal remaining after overwriting, that is, the following expression is expressed in dB. O / W = 20 × log (V1 / Vh) Hereinafter, the value of O / W is referred to as overwriting.

【0020】オーバーライトが低いと、先に記録した信
号が残留して再生出力信号にノイズが生じ易くなるた
め、−30dB程度以下にすることが望ましい。本実施
例では、磁気浮上量は35nm、再生素子の電流密度8
0MA/cm、記録電流は35mA、初期記録は70
kFCI、重ね書きは420kFCIとした。この結
果、MRヘッドのオーバーライトは−36dBと高い記
録性能が得られた。
If the overwrite is low, the previously recorded signal remains and the reproduced output signal is apt to generate noise. Therefore, it is desirable that the overwrite be about -30 dB or less. In this embodiment, the magnetic levitation amount is 35 nm, and the current density of the reproducing element is 8 nm.
0 MA / cm 2 , recording current 35 mA, initial recording 70
kFCI and 420 kFCI for overwriting. As a result, a high recording performance of -36 dB was obtained for the overwriting of the MR head.

【0021】従来技術(図9)の製造方法で作成したMR
ヘッドは、上部磁極先端の記録トラック幅は実施例1と
同じ0.5μmだが上部磁極高さはフォトリソの限界か
ら2.0μmになった。その他は実施例1と同様の条件
で作製した。実施例1と同じ条件で測定したところ、オ
ーバーライトが−23dBであり、従来技術の狭トラッ
クヘッドでは記録特性が得られなかった。
The MR prepared by the manufacturing method of the prior art (FIG. 9)
In the head, the recording track width at the tip of the upper magnetic pole was 0.5 μm as in Example 1, but the height of the upper magnetic pole was 2.0 μm from the limit of photolithography. Others were manufactured under the same conditions as in Example 1. When measured under the same conditions as in Example 1, the overwrite was -23 dB, and the recording characteristics could not be obtained with the conventional narrow track head.

【0022】実施例2として、図3および図4にイオン
ミリングによりレジスト側面にメッキ下地膜を再付着さ
せ、上部磁極を形成するプロセスを示す。なお、基板上
に1層目の薄膜コイルを設けるまでの工程は、実施例1
と同様である。まず、基板上に絶縁膜を介して80Ni
20Fe膜からなる下部シールドを形成し、この上に再
生ギャップのアルミナ等の非磁性絶縁膜を積層した後、
磁気抵抗素子を形成し、さらに再生ギャップ用の非磁性
絶縁膜を積層した。磁気抵抗素子は実施例1と同じ構成
である。これらの上に、中間シールドを成膜した。中間
シールドは厚さ4μmの80Ni20Fe膜である。
As a second embodiment, FIGS. 3 and 4 show a process of forming an upper magnetic pole by reattaching a plating base film to the side surface of a resist by ion milling. The steps up to providing the first-layer thin-film coil on the substrate are described in Example 1.
Is the same as First, 80Ni is formed on a substrate via an insulating film.
A lower shield made of a 20Fe film is formed, and a non-magnetic insulating film such as alumina for a reproducing gap is laminated thereon.
A magnetoresistive element was formed, and a nonmagnetic insulating film for a reproducing gap was further laminated. The configuration of the magnetoresistive element is the same as that of the first embodiment. On these, an intermediate shield was formed. The intermediate shield is a 4 μm thick 80Ni20Fe film.

【0023】次に絶縁膜を6μm成膜した後、中間シー
ルドの膜厚が2.5μmとなるように研磨を行い(CM
P)、中間シールドを露出させた。レジストを塗布、露
光、現像し、メッキ用のフレームを形成し、上部磁極と
の接続部分(バックコンタクト)に45Ni55Fe膜を
5μmの厚みにメッキした。次に記録ギャップ8の絶縁
膜としてアルミナを0.2μm成膜した後、絶縁膜を形
成し、その上にらせん状の、薄膜コイルの第一層5ター
ンをフレームメッキで形成した。
Next, after forming an insulating film of 6 μm, polishing is performed so that the thickness of the intermediate shield becomes 2.5 μm (CM
P), the intermediate shield was exposed. A resist was applied, exposed and developed to form a plating frame, and a 45Ni55Fe film was plated to a thickness of 5 μm on a connection portion (back contact) with the upper magnetic pole. Next, 0.2 μm of alumina was formed as an insulating film for the recording gap 8, and then an insulating film was formed. On the insulating film, five turns of a first layer of a spiral thin film coil were formed by frame plating.

【0024】続けて、実施例2の要部の工程を図3およ
び図4で説明する。メッキ下地1a用に非磁性導電膜を
スパッタリング法で成膜した(図3、(1))。レジストを
塗布、露光、現像し、メッキ用のフレーム11a、11
bを形成した(図3、(2))。フレームの厚さは7μm、
フレーム間隔は3μmとした。アルゴンイオンの入射角
度がほぼ垂直の条件でイオンミリングを行い(図3、
(3))、フレーム間のメッキ下地膜1aを飛散させて、
レジストフレーム11a、11bの側面に再付着させた
(図3、(4))。入射角度を小さくして一方向を主体にイ
オンミリング工程を追加することで(図3、(5))、一方
の側面の再付着膜1dを除去した(図3、(6))。次に4
5Ni55Fe膜をメッキ法で0.6μm成膜し(図
4、(7))、上部磁極先端(メッキ磁性金属膜1)を形
成した。イオンミリングにより(図4、(8))、レジスト
上面の一部にメッキされた45Ni55Fe膜を削っ
て、メッキ磁性金属膜の断面を矩形に整えた(図4、
(9))。
Next, main steps of the second embodiment will be described with reference to FIGS. A non-magnetic conductive film was formed by a sputtering method for the plating base 1a (FIG. 3, (1)). The resist is applied, exposed, developed, and the plating frames 11a, 11
b was formed (FIG. 3, (2)). The thickness of the frame is 7 μm,
The frame interval was 3 μm. Ion milling was performed under conditions where the angle of incidence of argon ions was almost vertical (Fig. 3,
(3)), by scattering the plating base film 1a between the frames,
Re-attached to the sides of the resist frames 11a and 11b
(FIG. 3, (4)). By reducing the incident angle and adding an ion milling process mainly in one direction (FIG. 3, (5)), the redeposition film 1d on one side was removed (FIG. 3, (6)). Then 4
A 5Ni55Fe film was formed in a thickness of 0.6 μm by a plating method (FIG. 4, (7)) to form an upper magnetic pole tip (plated magnetic metal film 1). By ion milling (FIG. 4, (8)), the 45Ni55Fe film plated on a part of the upper surface of the resist was shaved, and the cross section of the plated magnetic metal film was adjusted to a rectangular shape (FIG. 4, (8)).
(9)).

【0025】レジスト11bを有機溶剤で除去し、メッ
キ下地膜1aとその再付着膜1cを選択エッチングで除
去した(図4、(10)。メッキ下地膜にはCrを用い、
エッチング液に、硝酸第2セリウムアンモン360gを
純粋2040gに溶かした液をもちいる事で選択エッチ
ングが可能である。薄膜コイルをレジストで保護した後
(図4には表示せず)、上部磁極先端1をマスクにしてイ
オンミリングによるトリミングを行った(図4、(1
1))。
The resist 11b was removed with an organic solvent, and the plating base film 1a and its redeposition film 1c were removed by selective etching (FIG. 4, (10).
Selective etching is possible by using a solution obtained by dissolving 360 g of ceric ammonium nitrate in 2040 g of pure etching solution. After protecting the thin film coil with resist
(Not shown in FIG. 4), the upper magnetic pole tip 1 was used as a mask to perform trimming by ion milling (FIG. 4, (1)
1)).

【0026】これ以降、実施例1と同じ条件でプロセス
を進め、MRヘッドを作製した。記録ギャップ長は0.
2μm、薄膜コイルは2層9ターンである。最終的に上
部磁極先端の記録トラック幅が0.5μm、上部磁極高
さが3.5μmを得た。実施例1と同じ条件で評価する
と、実施例2のMRヘッドのオーバーライトは−35d
Bと高い記録性能で動作し、狭記録トラック幅と高記録
特性を両立させた。
Thereafter, the process was carried out under the same conditions as in Example 1 to produce an MR head. The recording gap length is 0.
The 2 μm thin-film coil has 9 turns in two layers. Finally, the recording track width at the tip of the upper magnetic pole was 0.5 μm and the height of the upper magnetic pole was 3.5 μm. When evaluated under the same conditions as in Example 1, the overwrite of the MR head of Example 2 was −35 d.
B and high recording performance, and achieved both narrow recording track width and high recording characteristics.

【0027】実施例1の変形として実施例3を説明す
る。実施例3のMRヘッドは、実施例1の製造工程中、
図1(1)から図2(9)までの工程と、図5から図6
に至る工程を用い、図2(10)および(11)の工程
を削除して作製した。この構成の利点は、上部磁極先端
1の側面に非磁性金属膜1bを設けているため、図5に
おける絶縁膜23を被覆する工程で、アルミナをスパッ
タ形成する際の応力が大きくなっても、上部磁極先端1
が歪まないということにある。
A third embodiment will be described as a modification of the first embodiment. The MR head according to the third embodiment is manufactured during the manufacturing process according to the first embodiment.
1 (1) to 2 (9) and FIGS. 5 to 6
2 (10) and (11) were deleted. The advantage of this configuration is that, since the nonmagnetic metal film 1b is provided on the side surface of the upper magnetic pole tip 1, even if the stress when sputtering alumina is increased in the step of covering the insulating film 23 in FIG. Top pole tip 1
Is not distorted.

【0028】上記実施例3は中間シールドをトリミング
していないため、上部磁極先端の側面から中間シールド
にわずかに記録磁界が漏洩した。上部磁極先端の幅(記
録トラック幅)自体が従来技術に比べて狭いため、従来
のMRヘッドに比べれば漏洩する記録磁界の幅が小さ
く、記録性能は改善されているといえる。しかし、漏洩
磁界を十分抑制した実施例1または2に比べると、磁気
媒体に記録するデータビットの幅がわずかに増加した。
この点を改善し、実施例1または2に近い構成として実
施例4を説明する。
In the third embodiment, since the intermediate shield was not trimmed, the recording magnetic field leaked slightly from the side surface of the tip of the upper magnetic pole to the intermediate shield. Since the width of the top end of the upper pole (recording track width) itself is smaller than that of the conventional technology, the width of the leaked recording magnetic field is smaller than that of the conventional MR head, and it can be said that the recording performance is improved. However, the width of the data bit recorded on the magnetic medium was slightly increased as compared with the first or second embodiment in which the leakage magnetic field was sufficiently suppressed.
A fourth embodiment will be described as a configuration that improves this point and is similar to the first or second embodiment.

【0029】実施例4のMRヘッドは、実施例3の製造
工程中で図1の(1)や図3(1)に至る前に、中間シ
ールドの上面(記録ギャップ8を積層する側)をトリミ
ングした。即ち、中間シールドを形成した後に、上部磁
極先端を突合わせるべき位置に記録トラック幅と同等の
幅を有するレジスト部材を形成した。続けて、中間シー
ルドをイオンミリングでエッチングした。レジストで被
覆されている部分はエッチングされないために残存し、
中間シールドの上面には記録トラック幅に対応する凸形
状が形成された。続けて、アルミナ等の非磁性膜をスパ
ッタで積層し、イオンミリングでエッチングされた箇所
に充填させた。さらに凸形状の周囲で盛り上がっている
非磁性膜をイオンミリングでエッチングして、凸形状の
上面に一致する平面を形成した。この平面上にアルミナ
膜を成膜して記録ギャップ8とした。この後の工程は実
施例3と同様とした。
In the MR head according to the fourth embodiment, the upper surface of the intermediate shield (the side on which the recording gap 8 is laminated) is formed before the steps (1) and (1) of FIG. Trimmed. That is, after forming the intermediate shield, a resist member having a width equal to the recording track width was formed at a position where the tip of the upper magnetic pole should abut. Subsequently, the intermediate shield was etched by ion milling. The part covered with the resist remains because it is not etched,
A convex shape corresponding to the recording track width was formed on the upper surface of the intermediate shield. Subsequently, a non-magnetic film such as alumina was laminated by sputtering, and was filled in a portion etched by ion milling. Further, the non-magnetic film raised around the convex shape was etched by ion milling to form a plane corresponding to the upper surface of the convex shape. An alumina film was formed on this plane to form a recording gap 8. Subsequent steps were the same as in Example 3.

【0030】上記の本発明のMRヘッドにおいて、磁気
抵抗素子45には、磁気抵抗効果膜とスペーサとSAL
膜を備えるSALバイアス型MR素子、反強磁性膜を接
合した軟磁性膜と非磁性金属膜と軟磁性膜を備えるスピ
ンバルブ型MR素子、複数の軟磁性膜を積層した構成を
備えるGMR素子、2つの軟磁性膜で絶縁膜を挟む構成
を備えたトンネル接合型MR素子等を用いることができ
た。これらの素子の再生トラック幅は、MRヘッドの上
部磁極先端の幅(記録トラック幅)以下の大きさにする
ことが好ましい。
In the MR head according to the present invention, the magnetoresistive element 45 includes a magnetoresistive film, a spacer, and a SAL.
A SAL bias type MR element having a film, a spin valve type MR element having a soft magnetic film joined with an antiferromagnetic film, a non-magnetic metal film and a soft magnetic film, a GMR element having a configuration in which a plurality of soft magnetic films are stacked, A tunnel junction type MR element having a configuration in which an insulating film is interposed between two soft magnetic films could be used. It is preferable that the reproducing track width of these elements is smaller than the width (recording track width) of the tip of the upper magnetic pole of the MR head.

【0031】[0031]

【発明の効果】以上説明したように、本発明の構成を用
いることにより、狭記録トラック幅と高記録特性を両立
することができる。
As described above, by using the structure of the present invention, it is possible to achieve both a narrow recording track width and high recording characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のMRヘッドの製造工程を説明する断面
図。
FIG. 1 is a cross-sectional view illustrating a manufacturing process of an MR head according to the present invention.

【図2】本発明のMRヘッドの製造工程を説明する断面
図。
FIG. 2 is a cross-sectional view illustrating a manufacturing process of the MR head of the present invention.

【図3】本発明のMRヘッドの製造工程を説明する断面
図。
FIG. 3 is a sectional view for explaining a manufacturing process of the MR head of the present invention.

【図4】本発明のMRヘッドの製造工程を説明する断面
図。
FIG. 4 is a sectional view for explaining a manufacturing process of the MR head of the present invention.

【図5】本発明のMRヘッドの製造工程を説明する断面
図。
FIG. 5 is a sectional view for explaining a manufacturing process of the MR head of the present invention.

【図6】本発明のMRヘッドの断面図である。FIG. 6 is a sectional view of an MR head according to the present invention.

【図7】従来のMRヘッドの断面図。FIG. 7 is a sectional view of a conventional MR head.

【図8】従来のMRヘッドの斜視図。FIG. 8 is a perspective view of a conventional MR head.

【図9】従来のMRヘッドの製造工程を説明する断面
図。
FIG. 9 is a cross-sectional view illustrating a manufacturing process of a conventional MR head.

【符号の説明】[Explanation of symbols]

1 上部磁極先端(メッキ磁性金属膜)、1a メッキ
下地膜、1b 非磁性金属膜、1c 再付着膜、 1d
再付着膜、2 中間シールド、8 記録ギャップ、1
1 フレーム、11a フレーム、11b フレーム、
12 レジスト、22 絶縁層、23 絶縁層、24
薄膜コイル、25 薄膜コイル、26 絶縁層、27
保護膜、31 バックコンタクト、40 上部磁極、4
1 アルミナ−チタンカーバイド基板、42 非磁性絶
縁膜、43 下部シールド、44 非磁性絶縁膜、45
磁気抵抗素子、46 非磁性絶縁膜、47 導電膜、
101 上部磁極(メッキ磁性金属膜)、102 中間
シールド、103 電極膜、104 磁気抵抗素子、1
05 下部シールド、106 非磁性基板、107 コ
イル、108 記録ギャップ、109 再生ギャップ、
110 非磁性絶縁膜、101a メッキ下地膜、11
1 フレーム。
1 top magnetic pole tip (plated magnetic metal film), 1a plating base film, 1b non-magnetic metal film, 1c redeposition film, 1d
Redeposition film, 2 intermediate shield, 8 recording gap, 1
1 frame, 11a frame, 11b frame,
12 resist, 22 insulating layer, 23 insulating layer, 24
Thin film coil, 25 thin film coil, 26 insulating layer, 27
Protective film, 31 Back contact, 40 Upper magnetic pole, 4
1 Alumina-titanium carbide substrate, 42 non-magnetic insulating film, 43 lower shield, 44 non-magnetic insulating film, 45
Magneto-resistive element, 46 non-magnetic insulating film, 47 conductive film,
101 upper magnetic pole (plated magnetic metal film), 102 intermediate shield, 103 electrode film, 104 magnetoresistive element, 1
05 lower shield, 106 non-magnetic substrate, 107 coil, 108 recording gap, 109 reproduction gap,
110 non-magnetic insulating film, 101a plating base film, 11
One frame.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下部シールドと中間シールドおよび両シ
ールドの間の再生ギャップ内の磁気抵抗素子で構成され
る磁気抵抗型再生ヘッドと、前記中間シールドと上部磁
極の間にコイルを設けた誘導型記録ヘッドを具備するM
Rヘッドにおいて、記録トラック幅に対する浮上面に露
出する上部磁極の高さの比が6以上であることを特徴と
するMRヘッド。
1. A magnetoresistive read head comprising a lower shield, an intermediate shield, and a magnetoresistive element in a read gap between the two shields, and an inductive recording apparatus provided with a coil between the intermediate shield and an upper magnetic pole. M with head
The MR head according to claim 1, wherein the ratio of the height of the upper magnetic pole exposed on the air bearing surface to the recording track width is 6 or more.
【請求項2】 磁気抵抗型再生ヘッドと誘導型記録ヘッ
ドを具備するMRヘッドにおいて、上部磁極の浮上面近
傍の部分をメッキ法で作製し、メッキされた磁性膜の厚
さが記録トラック幅を規定することを特徴とするMRヘ
ッド。
2. An MR head having a magnetoresistive reproducing head and an inductive recording head, a portion near an air bearing surface of an upper magnetic pole is formed by a plating method, and a thickness of a plated magnetic film determines a recording track width. An MR head characterized in that it is specified.
【請求項3】 請求項2に記載のMRヘッドを製造する
方法であって、フレームメッキ法で作製した非磁性金属
膜をメッキ用電極として、前記メッキ用電極の少なくと
も側面に上部磁極の浮上面近傍の部分をメッキ法で作製
することを特徴とするMRヘッドの製造方法。
3. The method for manufacturing an MR head according to claim 2, wherein a nonmagnetic metal film formed by a frame plating method is used as a plating electrode, and an air bearing surface of an upper magnetic pole is provided on at least a side surface of the plating electrode. A method for manufacturing an MR head, comprising: manufacturing a portion in the vicinity by a plating method.
【請求項4】 請求項3に記載のMRヘッドの製造方法
において、前記上部磁極の浮上面近傍の部分を形成した
後に、フレームメッキ法で作製した非磁性金属膜を上部
磁極の浮上面近傍の部分の材料に対する選択エッチング
で除去することを特徴とするMRヘッドの製造方法。
4. The method of manufacturing an MR head according to claim 3, wherein a non-magnetic metal film formed by frame plating is formed near the air bearing surface of the upper magnetic pole after forming a portion near the air bearing surface of the upper magnetic pole. A method for manufacturing an MR head, wherein the material is partially removed by selective etching.
【請求項5】 請求項2に記載のMRヘッドを製造する
方法であって、金属膜を成膜した後にフレームレジスト
を形成し、その後、前記金属膜にイオンミリングを加え
ることでフレームレジスト側面に金属膜を再付着させ、
上部磁極メッキ用下地膜とすることを特徴とするMRヘ
ッドの製造方法。
5. The method of manufacturing an MR head according to claim 2, wherein a frame resist is formed after forming a metal film, and then ion milling is performed on the metal film to form a side surface of the frame resist. Re-attach the metal film,
A method for manufacturing an MR head, comprising a base film for upper pole plating.
JP03822199A 1999-02-17 1999-02-17 Method for manufacturing MR head Expired - Fee Related JP3842475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03822199A JP3842475B2 (en) 1999-02-17 1999-02-17 Method for manufacturing MR head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03822199A JP3842475B2 (en) 1999-02-17 1999-02-17 Method for manufacturing MR head

Publications (2)

Publication Number Publication Date
JP2000242910A true JP2000242910A (en) 2000-09-08
JP3842475B2 JP3842475B2 (en) 2006-11-08

Family

ID=12519259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03822199A Expired - Fee Related JP3842475B2 (en) 1999-02-17 1999-02-17 Method for manufacturing MR head

Country Status (1)

Country Link
JP (1) JP3842475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028399B2 (en) 2007-12-16 2011-10-04 Hitachi Global Storage Technologies Netherlands, B.V. Magnetic write pole fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028399B2 (en) 2007-12-16 2011-10-04 Hitachi Global Storage Technologies Netherlands, B.V. Magnetic write pole fabrication

Also Published As

Publication number Publication date
JP3842475B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US7312952B2 (en) Thin-film magnetic head for perpendicular magnetic recording
JP3503874B2 (en) Method for manufacturing thin-film magnetic head
US6697221B2 (en) Perpendicular magnetic recording head with inverted trapezoidal main magnetic pole layer
US6151193A (en) Thin film magnetic head
JP4803949B2 (en) Method for manufacturing composite thin film magnetic head
JP2006139898A (en) Thin-film magnetic head structure and method for manufacturing the same, and thin-film magnetic head
JP2002092821A (en) Single magnetic pole type magnetic head and magnetic disk device mounted with the same
US5774308A (en) Thin film inductive head and magnetic writing/reading drive including the same
JP3517208B2 (en) Thin film magnetic head and method of manufacturing the same
US6301084B1 (en) Protection of second pole tip during fabrication of write head
US7372667B2 (en) Thin-film magnetic head, head gimbal assembly with thin-film magnetic head, head arm assembly with head gimbal assembly, magnetic disk drive apparatus with head gimbal assembly and manufacturing method of thin-film magnetic head
US6477765B1 (en) Method of fabricating a magnetic write transducer
US6466415B1 (en) Thin film magnetic head including a first pole portion having a depressed portion for receiving a coil
US20010013992A1 (en) Thin film magnetic head with tip sub-magnetic pole and method of manufacturing the same
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JP3842475B2 (en) Method for manufacturing MR head
JPH09270105A (en) Thin film magnetic head and its production
JPH103617A (en) Magneto-resistive effect type magnetic head and its manufacture
US20010043445A1 (en) Thin film magnetic head with tip sub-magnetic pole and method of manufacturing the same
JP2000020914A (en) Formation of metallic film and formation of pole for thin-film magnetic head
JP3164050B2 (en) Manufacturing method of magnetoresistive composite head
US7065859B2 (en) Method for manufacturing a thin film magnetic head
JP4492418B2 (en) Thin film magnetic head and manufacturing method thereof
JP2002063702A (en) Thin film magnetic head and its manufacturing method
JP2002074611A (en) Thin film magnetic head and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees