JP2000240779A - Drive force controller for vehicle - Google Patents

Drive force controller for vehicle

Info

Publication number
JP2000240779A
JP2000240779A JP11045866A JP4586699A JP2000240779A JP 2000240779 A JP2000240779 A JP 2000240779A JP 11045866 A JP11045866 A JP 11045866A JP 4586699 A JP4586699 A JP 4586699A JP 2000240779 A JP2000240779 A JP 2000240779A
Authority
JP
Japan
Prior art keywords
resistance
driving force
increase
amount
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11045866A
Other languages
Japanese (ja)
Other versions
JP3508603B2 (en
Inventor
Shinsuke Higashikura
伸介 東倉
Hiroo Nishijima
寛朗 西島
Masayuki Yasuoka
正之 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP04586699A priority Critical patent/JP3508603B2/en
Publication of JP2000240779A publication Critical patent/JP2000240779A/en
Application granted granted Critical
Publication of JP3508603B2 publication Critical patent/JP3508603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the drive force without giving discomfort to a driver when the traveling resistance is enhanced. SOLUTION: This drive force controller is provided with a normal target drive force set means 1 which sets a target drive force for a flat road based on the stepping distance of an accelerator and a car speed VSP; each type increased resistance computation means 3 computing vehicle weight resistance increase quantity and gradient resistance increase quantity which are visually recognized or not recognized by a driver and TM loss resistance increase quantity and an auxiliary machine resistance increase quantity which are visually recognized or not recognized by a driver respectively; and a corrected target drive force computing means 2 computing the value obtained by adding increased traveling resistance to the normal target drive force, as a target drive force.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両などに採用さ
れる駆動力制御装置の改良に関し、特に、走行環境に応
じて車両の駆動力特性を適正に制御するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a driving force control device used in a vehicle or the like, and more particularly to appropriately controlling a driving force characteristic of a vehicle according to a traveling environment.

【0002】[0002]

【従来の技術】従来から車両に用いられる駆動力制御装
置としては、特開平9−242862号公報に開示され
るように、登坂走行時に路面の勾配に応じて変速比を補
正し、勾配によって加速度が低下するのを抑制するもの
が知られている。
2. Description of the Related Art Conventionally, as a driving force control device used for a vehicle, as disclosed in Japanese Patent Application Laid-Open No. 9-242862, a speed ratio is corrected in accordance with the gradient of a road surface during uphill traveling, and acceleration is determined by the gradient. Is known to suppress the decrease of the temperature.

【0003】また、特開平8−149612号公報に開
示されるように、電車の走行経路上の走行抵抗を予め設
定し、この走行抵抗に応じて駆動電流の補正を行うもの
が知られている。
Further, as disclosed in Japanese Patent Application Laid-Open No. 8-149612, there is known an apparatus in which a traveling resistance on a traveling route of a train is set in advance and a driving current is corrected in accordance with the traveling resistance. .

【0004】さらに、特開平8−277918号公報に
開示されるように、勾配抵抗に応じてエンジンの回転範
囲または変速比の範囲を設定し、勾配に応じた駆動力を
確保するものが知られている。
Further, as disclosed in Japanese Patent Application Laid-Open No. 8-277918, there has been known an apparatus in which a rotation range or a speed ratio range of an engine is set according to a gradient resistance to secure a driving force according to a gradient. ing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の駆動力制御装置においては、走行抵抗の増加分が全
て勾配抵抗の増加分となるように、目標駆動力に加算し
て補正するため、例えば、運転者が目で確認できる勾配
の増加、乗車人員の増加などによる車両重量の増加、あ
るいは、変速機のトルク伝達効率の低下などの走行抵抗
増加分を、全て目標駆動力に加算して補正してしまう。
However, in the above-mentioned conventional driving force control device, since it is added to the target driving force and corrected so that the increase in the traveling resistance is all the increase in the gradient resistance, for example, Any increase in vehicle resistance due to an increase in the slope that the driver can see visually, an increase in vehicle weight due to an increase in the number of passengers, or a decrease in the torque transmission efficiency of the transmission are all added to the target driving force and corrected. Resulting in.

【0006】一方、運転者は視認可能な走行抵抗(トル
ク)の増加に対しては、アクセルペダルの踏み込み量を
多めに操作することなどにより、駆動力を増大方向に補
正しようとするため、上記駆動力制御による目標駆動力
の増大に、運転操作による駆動力の増大が加わることに
なって、運転者が期待するよりも加速度または車速が過
大になって、違和感を与える場合があった。
On the other hand, the driver attempts to correct the driving force in the increasing direction by increasing the depression amount of the accelerator pedal, for example, to increase the visually recognized running resistance (torque). In addition to the increase in the target driving force due to the driving force control, the increase in the driving force due to the driving operation is added, and the acceleration or the vehicle speed becomes excessively higher than expected by the driver, which may give a sense of discomfort.

【0007】そこで本発明は上記問題点に鑑みてなされ
たもので、走行抵抗が増大した場合、運転者に違和感を
与えることなく駆動力を増大して円滑な駆動力制御を行
うことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to perform smooth driving force control by increasing the driving force without giving the driver a feeling of discomfort when running resistance increases. I do.

【0008】[0008]

【課題を解決するための手段】第1の発明は、アクセル
ペダルの踏み込み量を検出するアクセルペダル操作位置
検出手段と、車両の速度を検出する車速検出手段と、前
記アクセルペダルの踏み込み量と車速に基づいて、平坦
路相当の目標駆動力を設定する通常目標駆動力設定手段
と、前記平坦路相当の目標駆動力に対して増加した走行
抵抗を演算する増加抵抗演算手段と、前記平坦路相当の
目標駆動力に増加した走行抵抗を加算したものを目標駆
動力として演算する駆動力補正手段とを備えた車両の駆
動力制御装置において、前記増加抵抗演算手段は、運転
者が視認または認識可能な走行抵抗増加量を低減する。
According to a first aspect of the present invention, there is provided an accelerator pedal operation position detecting means for detecting an amount of depression of an accelerator pedal, a vehicle speed detecting means for detecting a speed of a vehicle, an amount of depression of the accelerator pedal and a vehicle speed. A normal target driving force setting means for setting a target driving force corresponding to a flat road, an increased resistance calculating means for calculating a running resistance increased with respect to the target driving force corresponding to the flat road, And a driving force correction means for calculating a value obtained by adding the increased running resistance to the target driving force as a target driving force. The running resistance increase.

【0009】また、第2の発明は、アクセルペダルの踏
み込み量を検出するアクセルペダル操作位置検出手段
と、車両の速度を検出する車速検出手段と、前記アクセ
ルペダルの踏み込み量と車速に基づいて、平坦路相当の
目標駆動力を設定する通常目標駆動力設定手段と、前記
平坦路相当の目標駆動力に対して増加した走行抵抗を演
算する増加抵抗演算手段と、前記平坦路相当の目標駆動
力に増加した走行抵抗を加算したものを目標駆動力とし
て演算する駆動力補正手段とを備えた車両の駆動力制御
装置において、前記増加抵抗演算手段は、運転者が視認
または認識可能な第1の走行抵抗増加量と、運転者が視
認または認識不能な第2の走行抵抗増加量をそれぞれ演
算するとともに、第1走行抵抗増加量を低減したものに
第2走行抵抗増加量を加算して走行抵抗増加量とする種
類別増加抵抗演算手段を設ける。
Further, a second invention is based on an accelerator pedal operation position detecting means for detecting an amount of depression of an accelerator pedal, a vehicle speed detecting means for detecting a speed of a vehicle, and based on the amount of depression of the accelerator pedal and the vehicle speed. A normal target driving force setting means for setting a target driving force corresponding to a flat road; an increasing resistance calculating means for calculating a running resistance increased with respect to the target driving force corresponding to the flat road; a target driving force corresponding to the flat road A driving force correction means for calculating a value obtained by adding the increased running resistance to a target driving force, the driving resistance correcting means calculating a target driving force. The running resistance increase amount and the second running resistance increase amount that the driver cannot visually recognize or recognize are calculated, and the second running resistance increase amount is reduced to the first running resistance increase amount. Adding to providing the Type increasing resistance calculating means for the running resistance increment amount.

【0010】また、第3の発明は、前記第2の発明にお
いて、前記種類別増加抵抗演算手段は、車両重量の増大
に伴う走行抵抗の増加量または道路勾配の増大に伴う走
行抵抗の増加量を前記第1走行抵抗増加量として演算す
るとともに、変速機の伝達トルクの損失量またはエンジ
ン補機の作動により増加する走行抵抗を前記第2走行抵
抗増加量として演算する。
In a third aspect based on the second aspect, the increase resistance calculating means for each type includes an increase amount of the running resistance with an increase in the vehicle weight or an increase amount of the running resistance with an increase in the road gradient. Is calculated as the first running resistance increase amount, and the transmission torque loss amount of the transmission or the running resistance increased by the operation of the engine accessory is calculated as the second running resistance increase amount.

【0011】また、第4の発明は、前記第3の発明にお
いて、前記種類別増加抵抗演算手段は、道路勾配の増大
に伴う走行抵抗増加量に予め設定した値を乗じて低減し
たものを第1走行抵抗増加量とする。
According to a fourth aspect of the present invention, in the third aspect, the type-specific increase resistance calculating means is configured to reduce the amount by increasing a running resistance increase amount with an increase in road gradient by a preset value. One increase in running resistance.

【0012】また、第5の発明は、前記第4の発明にお
いて、前記予め設定した値が、50%未満である。
In a fifth aspect based on the fourth aspect, the preset value is less than 50%.

【0013】また、第6の発明は、前記第3の発明にお
いて、前記種類別増加抵抗演算手段は、車両重量の増大
に伴う走行抵抗の増加量に予め設定した値を乗じて低減
したものを第1走行抵抗増加量とする。
According to a sixth aspect of the present invention, in the third aspect of the invention, the type-dependent increase resistance calculating means reduces the increase amount of the running resistance caused by the increase in the vehicle weight by multiplying the amount by a preset value. This is the first running resistance increase amount.

【0014】また、第7の発明は、前記第6の発明にお
いて、前記予め設定した値が、70%未満である。
In a seventh aspect based on the sixth aspect, the preset value is less than 70%.

【0015】また、第8の発明は、前記第3の発明にお
いて、前記種類別増加抵抗演算手段は、前記第2走行抵
抗増加量をそのまま平坦路相当の目標駆動力に加算して
補正する。
In an eighth aspect based on the third aspect, the increase resistance calculating means for each type corrects the second drive resistance increase by adding the second drive resistance increase directly to a target driving force corresponding to a flat road.

【0016】[0016]

【発明の効果】したがって、第1の発明は、平坦路相当
の目標駆動力に増加した走行抵抗を加算して目標駆動力
を補正する場合、運転者が視認または認識可能な走行抵
抗の増加量を低減することで、走行抵抗の増加に応じて
運転者のアクセルペダル踏み込み量が増大しても、補正
された目標駆動力が過大になることはなく、運転者に違
和感を与えることなく駆動力を増大して円滑な駆動力制
御を行うことが可能となる。
Accordingly, the first aspect of the present invention is to correct the target driving force by adding the increased driving resistance to the target driving force corresponding to a flat road, thereby increasing the driving resistance visually or recognizable by the driver. , The corrected target driving force does not become excessively large even if the driver depresses the accelerator pedal in accordance with the increase in the running resistance, and the driving force does not give the driver a sense of incongruity. And smooth driving force control can be performed.

【0017】また、第2の発明は、運転者が視認または
認識可能な第1走行抵抗増加量を低減することで、走行
抵抗の増加に応じて運転者のアクセルペダル踏み込み量
が増大しても、補正された目標駆動力が過大になること
はなく、運転者の期待に応じた加速度または車速を確保
することができ、さらに、運転者が視認または認識不能
な第2走行抵抗増加量を低減することなく補正するた
め、エンジン補機やエアコンディショナ等の運転操作に
係わらず作動する機器による走行抵抗の増大を補正する
ことができ、運転者に違和感を与えることなく円滑に駆
動力の補正を行うことが可能となる。
Further, the second invention reduces the first running resistance increase amount that can be visually recognized or recognized by the driver, so that the accelerator pedal depression amount of the driver increases according to the increase of the running resistance. Therefore, the corrected target driving force does not become excessive, the acceleration or the vehicle speed according to the driver's expectation can be secured, and the amount of increase in the second running resistance that cannot be visually recognized or recognized by the driver is reduced. Correction without the need to increase the running resistance caused by equipment that operates regardless of the driving operation, such as engine accessories and air conditioners, so that the driving force can be corrected smoothly without giving the driver a sense of incongruity. Can be performed.

【0018】また、第3の発明は、運転者が視認または
認識可能な第1走行抵抗増加量を、乗員数や積載量に応
じた車両重量の増大または道路勾配の増大とすること
で、これら第1走行抵抗増加量を低減して平坦路相当の
目標駆動力に加算すれば、運転者のアクセルペダル踏み
込み量が増大しても、目標駆動力が過大になるのを防止
でき、さらに、運転者が視認または認識不能な第2走行
抵抗増加量を、変速機の伝達トルクの損失量またはエン
ジン補機の作動により増加する走行抵抗とすることで、
運転操作に関係しない駆動力の不足を確実に補正するこ
とができる。
In the third invention, the first running resistance increase amount that can be visually recognized or recognized by the driver is defined as an increase in vehicle weight or an increase in road gradient in accordance with the number of occupants or the load capacity. If the amount of increase in the first running resistance is reduced and added to the target driving force corresponding to a flat road, the target driving force can be prevented from becoming excessive even if the driver depresses the accelerator pedal. By making the second running resistance increase amount that cannot be visually recognized or recognized by the user as the running torque that increases due to the loss amount of the transmission torque of the transmission or the operation of the engine accessory,
Insufficiency of the driving force unrelated to the driving operation can be reliably corrected.

【0019】また、第4の発明は、運転者が視認または
認識可能な道路勾配の増大に伴う走行抵抗増加量に、予
め設定した値を乗じることで低減することにより、運転
者のアクセルペダル踏み込み量を加味した目標駆動力を
得ることができる。
According to a fourth aspect of the present invention, the driver depresses the accelerator pedal by reducing the amount of increase in the running resistance caused by the increase in the road gradient that can be visually recognized or recognized by the driver by multiplying the amount by a preset value. The target driving force in consideration of the amount can be obtained.

【0020】また、第5の発明は、運転者が視認または
認識可能な道路勾配の増大に伴う走行抵抗増加量を50
%未満に低減することにより、道路勾配の増大に応じた
アクセルペダル踏み込み量の増大と目標駆動力の補正量
を適切な値に設定でき、目標駆動力が過大になるのを防
止できる。
Further, the fifth aspect of the present invention is to reduce the amount of increase in the running resistance caused by the increase of the road gradient which can be visually recognized or recognized by the driver by 50.
By reducing to less than%, the accelerator pedal depression amount and the correction amount of the target driving force can be set to appropriate values in accordance with the increase in the road gradient, and the target driving force can be prevented from becoming excessive.

【0021】また、第6の発明は、運転者が視認または
認識可能な車両重量の増大に伴う走行抵抗の増加量に、
予め設定した値を乗じることで低減することにより、運
転者のアクセルペダル踏み込み量を加味した目標駆動力
を得ることができる。
According to a sixth aspect of the present invention, the amount of running resistance that increases or increases the vehicle weight that can be visually recognized or recognized by the driver is defined as:
By reducing the value by multiplying the value by a preset value, it is possible to obtain a target driving force in consideration of the driver's depression amount of the accelerator pedal.

【0022】また、第7の発明は、運転者が視認または
認識可能な車両重量の増大に伴う走行抵抗の増加量を7
0%未満に低減することにより、車両重量の増大に応じ
たアクセルペダル踏み込み量の増大と目標駆動力の補正
量を適切な値に設定でき、目標駆動力が過大になるのを
防止できる。
The seventh aspect of the present invention is to reduce the amount of increase in running resistance caused by an increase in vehicle weight that can be visually recognized or recognized by a driver.
By reducing it to less than 0%, it is possible to set the accelerator pedal depression amount and the target driving force correction amount to an appropriate value in accordance with the increase in vehicle weight, and prevent the target driving force from becoming excessive.

【0023】また、第8の発明は、運転者が視認または
認識不能な第2走行抵抗増加量は、そのまま平坦路相当
の目標駆動力に加算して補正することにより、運転操作
に関係なく増大する走行抵抗増加量を確実に補正するこ
とができる。
According to an eighth aspect of the present invention, the second running resistance increase, which cannot be visually recognized or recognized by the driver, is added to the target driving force equivalent to a flat road and corrected as it is, thereby increasing the driving resistance regardless of the driving operation. It is possible to reliably correct the increase in the running resistance.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the accompanying drawings.

【0025】図1は、エンジン101にトルクコンバー
タを備えた自動変速機103を連結し、走行状態に応じ
て最適な駆動力となるようにエンジン101の出力と自
動変速機103の変速比を制御するパワートレイン・コ
ントロール・モジュール50(以下PCM50とする)
を備えた車両に本発明を適用した一例を示す。
FIG. 1 shows a configuration in which an automatic transmission 103 having a torque converter is connected to an engine 101, and the output of the engine 101 and the gear ratio of the automatic transmission 103 are controlled so as to obtain an optimum driving force according to the running state. Powertrain control module 50 (hereinafter referred to as PCM50)
1 shows an example in which the present invention is applied to a vehicle provided with.

【0026】このPCM50は、アクセルペダル開度セ
ンサ105(アクセルペダル操作位置検出手段)からの
アクセル踏み込み量APO(または、スロットル開度T
VO)、自動変速機103の変速レンジを切り換えるレ
ンジ選択レバー107(またはインヒビタスイッチ)か
らのセレクト信号、車速センサ11が検出した車速VS
Pなどが入力され、エンジン101の燃料噴射量や、点
火時期を制御したり、自動変速機103の変速比制御及
び油圧制御を行って車両の駆動力を制御する。
The PCM 50 is provided with an accelerator depression amount APO (or a throttle opening T) from an accelerator pedal opening sensor 105 (accelerator pedal operation position detecting means).
VO), a select signal from a range selection lever 107 (or an inhibitor switch) for switching the shift range of the automatic transmission 103, the vehicle speed VS detected by the vehicle speed sensor 11.
P and the like are input to control the fuel injection amount of the engine 101, the ignition timing, and the speed ratio control and the hydraulic control of the automatic transmission 103 to control the driving force of the vehicle.

【0027】このため、エンジン101の吸気通路には
アクチュエータによって開閉駆動される電子制御スロッ
トルバルブ102が介装されており、PCM50から送
られたスロットルバルブ開度信号に基づいて、スロット
ル・コントロール・モジュール51(以下TCM51と
する)が電子制御スロットルバルブ102の開度を制御
する。
For this purpose, an electronically controlled throttle valve 102, which is opened and closed by an actuator, is interposed in an intake passage of the engine 101, and a throttle control module based on a throttle valve opening signal sent from the PCM 50. 51 (hereinafter referred to as TCM 51) controls the opening of the electronically controlled throttle valve 102.

【0028】また、自動変速機103は、PCM50か
らの変速指令に応じて変速比を設定可能な無段変速機で
構成され、車速センサ11が検出した車速VSPに所定
の定数を乗じた値を出力軸回転数として演算し、入力軸
回転センサ12が検出した入力軸回転数IMPREVと
の比から求めた変速比RATIOが、PCM50からの
指令値と一致するように図示しない変速機構の制御を行
う。なお、自動変速機103には油圧ポンプなどの駆動
による損失抵抗(損失トルク、以下同様)を検出するた
め、図示しない油圧センサによってライン圧を検出して
PCM50へ送出している。
The automatic transmission 103 is constituted by a continuously variable transmission capable of setting a gear ratio according to a gear shift command from the PCM 50, and calculates a value obtained by multiplying a vehicle speed VSP detected by the vehicle speed sensor 11 by a predetermined constant. The transmission mechanism (not shown) is controlled so that the speed ratio RATIO calculated from the output shaft speed and the ratio with the input shaft speed IMPREV detected by the input shaft speed sensor 12 matches the command value from the PCM 50. . The automatic transmission 103 detects a line pressure by a hydraulic sensor (not shown) and sends it to the PCM 50 in order to detect a loss resistance (loss torque, the same applies hereinafter) caused by driving a hydraulic pump or the like.

【0029】そして、車両の走行環境を把握するため、
ナビゲーション装置としての位置情報処理装置54が配
設され、この位置情報処理装置54は、予め地理上の属
性などを組み込んだ地図情報をCD−ROMやDVD−
ROMなどを記録媒体として格納しており、この地図情
報とGPSアンテナ113から受信した時刻信号に基づ
いて、現在走行している自車の位置及び地域の情報など
をまとめて、前記外部環境情報処理モジュール52に送
信する。
Then, in order to grasp the driving environment of the vehicle,
A position information processing device 54 as a navigation device is provided. The position information processing device 54 stores map information incorporating geographical attributes and the like in advance on a CD-ROM or DVD-ROM.
A ROM or the like is stored as a recording medium, and based on the map information and the time signal received from the GPS antenna 113, information on the position and area of the vehicle currently traveling is collected and the external environment information processing is performed. Send to module 52.

【0030】前記外部環境情報処理モジュール52は、
位置情報処理装置54の地図情報と自車位置から、道路
勾配θを後述するように推定してPCM50へ送出す
る。
The external environment information processing module 52 includes:
The road gradient θ is estimated from the map information of the position information processing device 54 and the own vehicle position as described later, and is transmitted to the PCM 50.

【0031】また、エンジン101には補機として、エ
アコンディショナのコンプレッサ120やパワーステア
リング装置の油圧ポンプ121が連結される。
Further, a compressor 120 of an air conditioner and a hydraulic pump 121 of a power steering device are connected to the engine 101 as auxiliary equipment.

【0032】これら補機が消費するエンジン出力、すな
わち、走行抵抗を把握するため、コンプレッサ120等
に設けた液圧センサ(図示せず)が検出した冷媒の液圧
をPCM50へ送出するとともに、油圧ポンプ121等
に設けたパワーステアリング装置の油圧センサ(図示せ
ず)が検出した油圧をPCM50へ送出する。
In order to grasp the engine output consumed by these auxiliary devices, that is, the running resistance, the hydraulic pressure of the refrigerant detected by a hydraulic pressure sensor (not shown) provided in the compressor 120 and the like is sent to the PCM 50 and the hydraulic pressure is increased. The oil pressure detected by the oil pressure sensor (not shown) of the power steering device provided in the pump 121 or the like is sent to the PCM 50.

【0033】さらに、各車輪の荷重を検出するととも
に、これらを合算して車重を演算する車重検出装置13
0が設けられ、演算された車重MVはPCM50へ送出
される。この車重検出装置130は、例えば、停車時の
サスペンションのストローク等を検出することなどによ
り、各車輪に加わる荷重を推定演算するものである。
Further, a vehicle weight detecting device 13 which detects the load on each wheel and calculates the vehicle weight by adding them together.
0 is provided, and the calculated vehicle weight MV is sent to the PCM 50. The vehicle weight detection device 130 estimates and calculates the load applied to each wheel by detecting, for example, the stroke of the suspension when the vehicle is stopped.

【0034】ここで、図2はPCM50で行われる駆動
力制御の一例を示しており、アクセルペダル開度センサ
105からのアクセル踏み込み量APOと、車速センサ
11が検出した車速VSPに基づいて、予め設定したマ
ップより通常目標駆動力tTd_nを求める通常目標駆
動力演算手段1と、車両に加わる各種走行抵抗の増加量
と各抵抗係数(ただし、0≦抵抗係数≦1)をそれぞれ
検出または推定する種類別増加走行抵抗演算手段3と、
これら抵抗増加量と抵抗係数に基づいて通常目標駆動力
tTd_nを補正し、目標駆動力tFdを求める補正目
標駆動力演算手段2を備えている。なお、通常目標駆動
力tTd_nは、平坦路走行時における駆動力の目標値
である。
FIG. 2 shows an example of driving force control performed by the PCM 50. The driving force control is performed in advance based on the accelerator depression amount APO from the accelerator pedal opening sensor 105 and the vehicle speed VSP detected by the vehicle speed sensor 11. A normal target driving force calculation means 1 for obtaining a normal target driving force tTd_n from a set map, and a type for detecting or estimating an increase amount of various running resistances applied to the vehicle and each resistance coefficient (where 0 ≦ resistance coefficient ≦ 1). Another increased running resistance calculating means 3;
There is provided a corrected target driving force calculation means 2 for correcting the normal target driving force tTd_n based on the resistance increase amount and the resistance coefficient to obtain the target driving force tFd. Note that the normal target driving force tTd_n is a target value of the driving force when traveling on a flat road.

【0035】この補正目標駆動力演算手段2は、種類別
増加走行抵抗演算手段3で求めたこれら各種抵抗増加量
に各抵抗係数を乗じたものを合算し、駆動力補正量ΔR
FORCEとして演算する駆動力補正量演算手段21
と、この駆動力補正量ΔRFORCEを通常目標駆動力
tTd_nに加算して目標駆動力tTdを演算する加算
手段22から構成される。
The correction target driving force calculating means 2 adds the values obtained by multiplying the various resistance increasing amounts obtained by the type-specific increasing running resistance calculating means 3 by the respective resistance coefficients to obtain a driving force correction amount ΔR.
Driving force correction amount calculating means 21 for calculating as FORCE
And an adding means 22 for adding the driving force correction amount ΔRFORCE to the normal target driving force tTd_n to calculate the target driving force tTd.

【0036】そして、各種走行抵抗の増加量を求める種
類別増加走行抵抗演算手段3では、運転者が視認または
認識可能な走行抵抗の増大と、視認または認識不能な走
行抵抗の増大に分けて各抵抗係数を設定する。
The type-specific increased running resistance calculation means 3 for obtaining the increasing amounts of the running resistances is divided into an increase in the running resistance that can be visually recognized or recognized by the driver and an increase in the running resistance that cannot be visually recognized or recognized. Set the resistance coefficient.

【0037】本願出願人の実験などによれば、登坂路や
搭乗者または積載量の増大など、運転者が視認可能なも
のについては、運転者はこれらの増大を走行抵抗の増大
と認識して、アクセル踏み込み量APOを通常走行時よ
りも大きく踏み込むことが多く、通常目標駆動力演算手
段1のマップから求めた通常目標駆動力tTd_nに、
検出した走行抵抗の増加量を、そのまま加算すると、目
標駆動力tTdは、運転者が期待する駆動力よりも過大
になって、加速し過ぎることが判明した。
According to experiments conducted by the applicant of the present application, if the driver can visually recognize, for example, an uphill road, an increase in the number of passengers, or an increase in the load, the driver recognizes these increases as an increase in running resistance. In many cases, the accelerator pedal depression amount APO is depressed more than during normal traveling.
If the detected increase in the running resistance is added as it is, it has been found that the target driving force tTd becomes excessively larger than the driving force expected by the driver, and is accelerated too much.

【0038】一方、エアコンディショナやパワーステア
リング装置のポンプの負荷や自動変速機103の損失抵
抗は、運転者の運転意図に係わらず変動する。そして、
これら走行抵抗の増加量は運転者が視認することができ
ないため、これら視認または認識不能な走行抵抗の増加
に対して駆動力が不足することが判明した。
On the other hand, the load on the pump of the air conditioner or the power steering device and the loss resistance of the automatic transmission 103 vary regardless of the driver's driving intention. And
Since the amount of increase in the running resistance cannot be visually recognized by the driver, it has been found that the driving force is insufficient with respect to the increase in the running resistance that cannot be visually recognized or recognized.

【0039】そこで、視認可能な走行抵抗増加量とし
て、道路勾配と車重の抵抗増加量を検出し、視認不能な
走行抵抗増加量として自動変速機103の損失抵抗と補
機の抵抗増加量を検出する場合について、以下に説明す
る。
Therefore, a road gradient and an increase in the resistance of the vehicle weight are detected as the visible resistance increase, and the loss resistance of the automatic transmission 103 and the auxiliary equipment resistance increase as the invisible travel resistance increase are detected. The case of detection will be described below.

【0040】まず、視認不能な自動変速機103の損失
抵抗は、図3に示すように、図示しない油圧センサが検
出したライン圧LinePRSと、予め設定した関数またはマ
ップに基づいてポンプロスによる抵抗増加量TMLOS
S_Pを求める。
First, as shown in FIG. 3, the loss resistance of the invisible automatic transmission 103 is determined by the line pressure LinePRS detected by a hydraulic sensor (not shown) and the amount of resistance increase due to pump loss based on a preset function or map. TMLOS
Find S_P.

【0041】次に、入力軸回転センサ12が検出した入
力軸回転数IMPREVと、予め設定した関数またはマ
ップに基づいて、回転数に応じた抵抗増加量TMLOS
S_iを求める。
Next, based on the input shaft rotation speed IMPREV detected by the input shaft rotation sensor 12 and a preset function or map, the resistance increase amount TMLOS according to the rotation speed is determined.
Find S_i.

【0042】同様に、車速センサ11が検出した車速V
SPに所定の定数を乗じた出力軸回転数と入力軸回転数
IMPREVとの比から求めた変速比RATIOと、予
め設定した関数またはマップに基づいて、変速機構の抵
抗増加量TMLOSS_Rを求める。
Similarly, the vehicle speed V detected by the vehicle speed sensor 11
A resistance increase amount TMLOSS_R of the speed change mechanism is obtained based on a speed ratio RATIO obtained from a ratio between an output shaft speed IMPREV obtained by multiplying SP by a predetermined constant and a preset function or map.

【0043】そして、これら各損失量を合算し、ライン
圧(作動油供給圧)、入力軸回転数IMPREV、変速
比RATIOに応じてトルク伝達効率が変動する自動変
速機103のTM損失抵抗増加量TMLOSSTRQを
求める。
Then, the respective loss amounts are summed up, and the TM loss resistance increase amount of the automatic transmission 103 whose torque transmission efficiency fluctuates according to the line pressure (hydraulic oil supply pressure), the input shaft speed IMPREV, and the speed ratio RATIO. Find TMLOSTRRQ.

【0044】さらに、図4に示すように、このTM損失
抵抗増加量TMLOSSTRQに基づいて、予め設定し
た関数またはマップより、TM損失抵抗係数αtmを演算
する。
Further, as shown in FIG. 4, a TM loss resistance coefficient αtm is calculated from a predetermined function or map based on the TM loss resistance increase amount TMLOSTRRQ.

【0045】この図4は、TM損失抵抗係数αtmが基本
的に1となるように設定されて、自動変速機103の損
失抵抗増加量TMLOSSTRQを100%加算補正す
るように設定し、運転者が視認不能な自動変速機103
の損失抵抗を確実に加算補正する。
FIG. 4 shows that the TM loss resistance coefficient αtm is basically set to 1 and that the loss resistance increase amount TMLOSTRRQ of the automatic transmission 103 is set to be corrected by adding 100%. Automatic transmission 103 that cannot be seen
Additively correct the loss resistance of

【0046】ただし、損失抵抗増加量TMLOSSTR
Qが所定値を超えると、TM損失抵抗係数αtmが0にな
るように設定しているが、これは、例えば、自動変速機
103の損失抵抗TMLOSSTRQが実用上考えにく
い大きさとなった場合には、油圧回路や変速機構等の故
障が考えられるため、目標駆動力への加算補正によっ
て、自動変速機103の負担が増大するのを防ぐもの
で、自動変速機103の状態に応じて最適な駆動力補正
量を得ることができる。
However, the loss resistance increase amount TMLOSTR
When Q exceeds a predetermined value, the TM loss resistance coefficient αtm is set to be 0. This is, for example, when the loss resistance TMLOSTRRQ of the automatic transmission 103 becomes a size that is practically unthinkable. It is possible to prevent the load on the automatic transmission 103 from increasing by correcting the addition to the target driving force because a failure of the hydraulic circuit or the transmission mechanism may be considered. A force correction amount can be obtained.

【0047】次に、視認不能な補機類の損失抵抗は、図
5に示すように、コンプレッサ120等に設けた図示し
ない液圧センサが検出した冷媒の液圧Paと、予め設定
した関数またはマップに基づいてコンプレッサ120が
吸収したトルクによる抵抗増加量ACLOSSを求め
る。
Next, as shown in FIG. 5, the loss resistance of the invisible accessories is determined by the hydraulic pressure Pa of the refrigerant detected by a hydraulic pressure sensor (not shown) provided in the compressor 120 or the like, and a predetermined function or Based on the map, a resistance increase amount ACLOSS due to the torque absorbed by the compressor 120 is obtained.

【0048】また、パワーステアリング装置の油圧ポン
プ121等に設けた図示しない油圧センサが検出した油
圧Ppと、予め設定した関数またはマップに基づいて、
油圧ポンプ121が吸収したトルクに応じて抵抗増加量
PSLOSS_iを求める。
Further, based on a hydraulic pressure Pp detected by a hydraulic pressure sensor (not shown) provided in the hydraulic pump 121 or the like of the power steering device and a function or map set in advance,
The resistance increase amount PSLOSS_i is obtained according to the torque absorbed by the hydraulic pump 121.

【0049】そして、これら各損失量を合算したもの
に、上記変速比RATIOと、トルクコンバータ入出力
トルク比τRATIOを乗じて補機抵抗増加量ACLO
SSTRQを求める。
Then, the sum of the respective loss amounts is multiplied by the above-mentioned speed ratio RATIO and the torque converter input / output torque ratio τRATIO to obtain an auxiliary equipment resistance increase amount ACLO.
Find SSTRQ.

【0050】さらに、図6に示すように、この補機抵抗
増加量ACLOSSTRQに基づいて、予め設定した関
数またはマップより、補機抵抗係数αacを演算する。
Further, as shown in FIG. 6, an auxiliary equipment resistance coefficient αac is calculated from a function or a map set in advance based on the auxiliary resistance increase amount ACLOSTRQ.

【0051】この図6は、補機抵抗係数αacが基本的に
1となるように設定されて、補機類の損失抵抗増加量A
CLOSSTRQを100%加算補正するように設定
し、運転者が視認不能な補機類の損失抵抗を確実に加算
補正する。
FIG. 6 shows that the auxiliary resistance coefficient αac is basically set to 1 and the loss resistance increase A
CLOSSTRQ is set so as to perform 100% addition correction, and the addition and loss correction of the auxiliary equipment that is invisible to the driver is surely corrected.

【0052】ただし、補機抵抗増加量ACLOSSTR
Qが所定値を超えると、補機抵抗係数αacが0になるよ
うに設定しているが、これは、例えば、補機抵抗増加量
ACLOSSTRQが実用上考えにくい大きさとなった
場合には、コンプレッサ120や油圧ポンプ121等の
故障が考えられるため、目標駆動力への加算補正によっ
て、補機類の負担が増大するのを防ぐもので、補機類の
状態に応じて最適な駆動力補正量を得ることができる。
However, the auxiliary resistance increase amount ACLOSSTR
When Q exceeds a predetermined value, the accessory resistance coefficient αac is set to 0. This is because, for example, when the accessory resistance increase amount Since the failure of the hydraulic pump 120 or the hydraulic pump 121 is considered, the load on the auxiliary equipment is prevented from increasing due to the addition correction to the target driving force, and the optimal driving force correction amount is adjusted according to the state of the auxiliary equipment. Can be obtained.

【0053】一方、視認可能な車重の増大による損失抵
抗は、図7に示すように、上記車重検出装置130が検
出または推定した各車輪の荷重FRMS〜RLMSを合
算したものから、予め設定した基本車重fMSを差し引
き、この値に所定の重量抵抗力変換係数を乗じて車両重
量抵抗増加量MSLOSSTRQを求める。
On the other hand, as shown in FIG. 7, the loss resistance caused by the increase in the visible vehicle weight is set in advance from the sum of the load FRMS to RLMS of each wheel detected or estimated by the vehicle weight detection device 130. The calculated basic vehicle weight fMS is subtracted, and this value is multiplied by a predetermined weight resistance force conversion coefficient to obtain the vehicle weight resistance increase amount MSLOSTRRQ.

【0054】なお、重量抵抗力変換係数は、他の走行抵
抗増加量と次元を揃えるためのもので、例えば、各走行
抵抗が自動変速機103の出力軸トルクに統一する場合
では、タイヤの半径rTIREを乗算すればよい。
The weight resistance force conversion coefficient is used to make the dimension equal to that of other running resistance increases. For example, when each running resistance is unified with the output shaft torque of the automatic transmission 103, the tire radius What is necessary is just to multiply by rTIRE.

【0055】そして、図8に示すように車両重量抵抗増
加量MSLOSSTRQに基づいて、予め設定した関数
またはマップより、車両重量抵抗係数αmsを演算する。
Then, as shown in FIG. 8, the vehicle weight resistance coefficient αms is calculated from a predetermined function or map based on the vehicle weight resistance increase amount MSLOSTRRQ.

【0056】この図8は、車両重量抵抗係数αmsが基本
的に約0.7となるように設定されて、車両重量抵抗増
加量MSLOSSTRQのうち、おおよそ70%だけ加
算補正するように設定し、乗員数や積載量に応じて運転
者が認識したアクセル踏み込み量APOの踏み増し分を
考慮して、車両重量抵抗増加量MSLOSSTRQの加
算補正が過大とならないように補正する。
FIG. 8 shows that the vehicle weight resistance coefficient αms is basically set to about 0.7, and that the vehicle weight resistance increase amount MSLOSTRSTRQ is set to be added and corrected by approximately 70%. The addition of the vehicle weight resistance increase amount MSLOSTRRQ is corrected so as not to be excessive, in consideration of the increase in the accelerator depression amount APO recognized by the driver according to the number of occupants and the load amount.

【0057】また、図8では、車両重量抵抗増加量MS
LOSSTRQが所定値以下のときには、車両重量抵抗
係数αmsが0になるように設定し、車両重量の推定誤差
や乗員の体重のばらつきなどに応じて駆動力補正量が大
きく変動するのを防止する不感帯を設けた一例である。
In FIG. 8, the vehicle weight resistance increase amount MS is shown.
When the ROSSTRQ is equal to or less than a predetermined value, the vehicle weight resistance coefficient αms is set to be 0, and a dead zone for preventing the driving force correction amount from largely fluctuating according to an estimation error of the vehicle weight or a variation in the weight of the occupant. This is an example in which is provided.

【0058】次に、図9のブロック図及び図10のフロ
ーチャートは、視認可能な勾配による損失抵抗を求める
場合の一例を示し、位置情報処理装置54が検出した自
車位置と、標高を含んだ地図情報から路面の勾配を推定
するものである。
Next, the block diagram of FIG. 9 and the flowchart of FIG. 10 show an example in which a loss resistance due to a visually recognizable gradient is obtained, and includes the vehicle position detected by the position information processing device 54 and the altitude. This is to estimate the gradient of the road surface from the map information.

【0059】この例では、地図情報を図中X軸方向(東
西方向)と図中Y軸方向(南北方向)で格子状に分割
し、自車位置から至近の格子点(図中NW、NE、S
E、SW)に予め設定された標高データhtNW、ht
NE、htSE、htSWをそれぞれ読み込む(ステッ
プS1、S2)。なお、地図情報上では、各格子点には
メッシュ番号MESHNOが付されており、位置情報処
理装置54及び外部環境情報処理モジュール52は、そ
して、車両が走行中の格子点内において、X軸方向の平
均勾配を、 SUBG#E=(htSE−htSW+htNE−htNW)
/2LEN また、Y軸方向の平均勾配を SUBG#N=(htNW−htSW+htNE−htSE)
/2LEN として演算する(ステップS3)。なお、LENは格子
点間の距離を示す。
In this example, the map information is divided into grids in the X-axis direction (east-west direction) and the Y-axis direction (north-south direction) in the figure, and grid points (NW, NE in the figure) closest to the vehicle position are shown. , S
E, SW) altitude data htNW, ht
NE, htSE, and htSW are read (steps S1, S2). In the map information, each grid point is given a mesh number MESHNO, and the position information processing device 54 and the external environment information processing module 52 are arranged in the X-axis direction within the grid point where the vehicle is traveling. SUBG # E = (htSE−htSW + htNE−htNW)
/ 2LEN Further, the average gradient in the Y-axis direction is SUBG # N = (htNW−htSW + htNE−htSE)
/ 2LEN (step S3). LEN indicates the distance between lattice points.

【0060】ここで、車両の進行方向が、図中X軸に対
して角度ξにあるとすると、車両が走行中の道路勾配θ
は、 tanθ=(SUBG#E×cosξ)+(SUBG#N×sinξ) として推定演算する(ステップS4)。
Here, assuming that the traveling direction of the vehicle is at an angle に 対 し て with respect to the X axis in FIG.
Is estimated as tan θ = (SUBG # E × cosξ) + (SUBG # N × sinξ) (step S4).

【0061】さらに、勾配抵抗増加量GRLOSSTR
Qは、上記基本車重fMS、タイヤ半径rTIRE及び
道路勾配θより、 GRLOSSTRQ=fMS×sinθ×9.8×rTIRE として求めることができる(ステップS5)。
Further, the gradient resistance increase GRROSSTR
Q can be obtained from the basic vehicle weight fMS, the tire radius rTIRE and the road gradient θ as GRLOSTRRQ = fMS × sin θ × 9.8 × rTIRE (step S5).

【0062】そして、図11に示すように勾配抵抗増加
量GRLOSSTRQに基づいて、予め設定した関数ま
たはマップより、勾配抵抗係数αgrを演算する。
Then, as shown in FIG. 11, the gradient resistance coefficient αgr is calculated from a preset function or map based on the gradient resistance increase amount GRLOSTRRQ.

【0063】この図11は、勾配抵抗係数αgrが基本的
に約0.5となるように設定されて、勾配抵抗増加量G
RLOSSTRQのうちおおよそ50%だけ加算補正す
るように設定し、登坂路の傾斜に応じて運転者が認識し
たアクセル踏み込み量APOの踏み増し分を考慮して、
勾配抵抗増加量GRLOSSTRQの加算補正が過大と
ならないように補正する。
FIG. 11 shows that the gradient resistance coefficient αgr is basically set to about 0.5, and the gradient resistance increase G
RLOSTRQ is set so as to be corrected by approximately 50%, and taking into account the increase in the accelerator depression amount APO recognized by the driver according to the inclination of the uphill road,
The correction is made so that the addition correction of the gradient resistance increase amount GRLOSTRSTRQ does not become excessive.

【0064】また、図11では、勾配抵抗増加量GRL
OSSTRQが所定値以下となる道路勾配が小さいとき
には、勾配抵抗係数αgrが0になるように設定し、勾配
抵抗増加量GRLOSSTRQの推定誤差などに応じて
駆動力補正量が大きく変動するのを防止する不感帯を設
けた一例である。
In FIG. 11, the gradient resistance increase GRL is shown.
When the road gradient at which the OSSTRQ is equal to or less than the predetermined value is small, the gradient resistance coefficient αgr is set to be 0 to prevent the driving force correction amount from largely fluctuating according to an estimation error of the gradient resistance increase amount GRLOSTRSTRQ. This is an example in which a dead zone is provided.

【0065】さらに、図11では、勾配抵抗増加量GR
LOSSTRQが所定値を超えて増大すると、勾配抵抗
係数αgrも徐々に小さくなるように設定され、急な登坂
路など勾配抵抗が増大するほど、運転者は勾配を認識し
やすくなり、運転者が自分でアクセルを踏み増すことで
駆動力の補正を行う割合が大きくなるためで、このよう
な場合には、運転者の意図に応じてPCM50による補
正量を低減して目標駆動力tTdが過大になるのを防
ぎ、運転者に違和感を与えることなく円滑な駆動力制御
を行うことが可能となるのである。
Further, in FIG. 11, the gradient resistance increase GR
When ROSSTRQ increases beyond a predetermined value, the gradient resistance coefficient αgr is also set to gradually decrease, and as the gradient resistance increases, such as on a steep uphill road, the driver becomes easier to recognize the gradient, and the driver becomes aware of the gradient. In this case, the correction amount by the PCM 50 is reduced according to the driver's intention, and the target driving force tTd becomes excessive. This makes it possible to perform smooth driving force control without giving the driver an uncomfortable feeling.

【0066】次に、図12は、上記駆動力制御の一例を
示すフローチャートで、所定時間毎、例えば、10msec
毎に実行される。
Next, FIG. 12 is a flowchart showing an example of the above-mentioned driving force control.
It is executed every time.

【0067】図12では、まず、ステップS11で上記
したような各センサから車速VSPとアクセル踏み込み
量APOを読み込み、ステップS12では、図2示した
マップより、通常目標駆動力tTd_nを演算する。
In FIG. 12, first, at step S11, the vehicle speed VSP and the accelerator depression amount APO are read from each sensor as described above, and at step S12, the normal target driving force tTd_n is calculated from the map shown in FIG.

【0068】そして、ステップS13〜S16では、図
2の種類別増加走行抵抗演算手段3と同様にして、TM
損失抵抗増加量TMLOSSTRQ、補機抵抗増加量A
CLOSSTRQ、車両重量抵抗増加量MSLOSST
RQ、勾配抵抗増加量GRLOSSTRQを演算してか
ら、上記図4、図6、図8、図11と同様に、各抵抗増
加量に基づいてTM損失抵抗係数αtm、補機抵抗係数α
ac、車両重量抵抗係数αms、勾配抵抗係数αgrをそれぞ
れ求める。
Then, in steps S13 to S16, TM is set in the same manner as in the type-specific increased running resistance calculating means 3 in FIG.
Loss resistance increase TMLOSTRRQ, auxiliary resistance increase A
CLOSSTRQ, vehicle weight resistance increase MSLOSST
After calculating the RQ and the gradient resistance increase amount GRLOSTRSTRQ, the TM loss resistance coefficient αtm and the auxiliary equipment resistance coefficient α are calculated based on the respective resistance increase amounts in the same manner as in FIGS. 4, 6, 8, and 11 described above.
Ac, vehicle weight resistance coefficient αms, and gradient resistance coefficient αgr are obtained.

【0069】ステップS17では、各走行抵抗の増加量
に抵抗係数αを乗じたものを合算したものを、駆動力補
正量ΔRFORCEとして演算する。
In step S17, the sum of the increase of each running resistance multiplied by the resistance coefficient α is calculated as the driving force correction amount ΔRFORCE.

【0070】最後に、ステップS18では、上記ステッ
プS12で、求めた通常目標駆動力tTd_nに駆動力
補正量ΔRFORCEを加算して目標駆動力tTdを演
算するのである。
Finally, in step S18, the target driving force tTd is calculated by adding the driving force correction amount ΔRFORCE to the normal target driving force tTd_n obtained in step S12.

【0071】こうして、車両の走行抵抗増加量を、運転
者が視認または認識可能なものと、運転者が視認または
認識不能なものに分類し、運転者が視認または認識可能
な走行抵抗増加量には0.5ないし0.7の係数を乗じ
る一方、運転者が視認または認識不能な走行抵抗増加量
には1を乗じることで、認識した走行抵抗の増加量に応
じて運転者がアクセル踏み込み量APOを増大しても、
目標駆動力tTdが過大になるのを防ぎ、また、運転者
が認識不能な走行抵抗増加量についてはその全量を加算
補正することにより、円滑な駆動力制御を行うことが可
能となるのである。
In this way, the amount of increase in running resistance of the vehicle is classified into those that can be visually recognized or recognized by the driver and those that cannot be visually recognized or recognized by the driver. Is multiplied by a factor of 0.5 to 0.7, while the amount of travel resistance increase that the driver cannot visually recognize or recognize is multiplied by 1, so that the driver can depress the accelerator pedal in accordance with the recognized increase in travel resistance. Even if you increase APO,
By preventing the target driving force tTd from becoming excessively large, and by adding and correcting the total amount of the running resistance that cannot be recognized by the driver, smooth driving force control can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示し、駆動力を制御する
車両の概略構成図。
FIG. 1 is a schematic configuration diagram of a vehicle that controls a driving force according to an embodiment of the present invention.

【図2】パワートレイン・コントロール・モジュールで
行われる駆動力制御の一例を示すブロック図。
FIG. 2 is a block diagram illustrating an example of driving force control performed by a powertrain control module.

【図3】同じく、種類別増加走行抵抗演算手段のうちT
M損失抵抗増加量を演算するブロック図。
FIG. 3 is also a graph showing T among the types of increased running resistance calculating means.
The block diagram which calculates the M loss resistance increase amount.

【図4】同じく、TM損失抵抗係数を演算するブロック
図。
FIG. 4 is a block diagram for calculating a TM loss resistance coefficient.

【図5】同じく、種類別増加走行抵抗演算手段のうち補
機抵抗増加量を演算するブロック図。
FIG. 5 is a block diagram for calculating an auxiliary equipment resistance increase amount in the type-specific additional running resistance calculation means.

【図6】同じく、補機抵抗係数を演算するブロック図。FIG. 6 is a block diagram for calculating an accessory resistance coefficient.

【図7】同じく、種類別増加走行抵抗演算手段のうち車
両重量抵抗増加量を演算するブロック図。
FIG. 7 is a block diagram for calculating an increase in the vehicle weight resistance in the type-specific additional running resistance calculation means.

【図8】同じく、車両重量抵抗係数を演算するブロック
図。
FIG. 8 is a block diagram for calculating a vehicle weight resistance coefficient.

【図9】同じく、勾配抵抗増加量の演算内容を示す概念
図。
FIG. 9 is a conceptual diagram showing the details of calculation of the amount of increase in the gradient resistance.

【図10】同じく、勾配抵抗増加量の演算内容を示すフ
ローチャート。
FIG. 10 is a flowchart showing the contents of a calculation of the amount of increase in gradient resistance.

【図11】同じく、勾配抵抗係数を演算するブロック
図。
FIG. 11 is a block diagram for calculating a gradient resistance coefficient.

【図12】パワートレイン・コントロール・モジュール
で行われる駆動力制御の一例を示すフローチャート。
FIG. 12 is a flowchart illustrating an example of driving force control performed by the powertrain control module.

【符号の説明】[Explanation of symbols]

11 車速センサ 12 入力軸回転センサ 50 パワートレイン・コントロール・モジュール(P
CM) 51 スロットル・コントロール・モジュール(TC
M) 54 位置情報処理装置 101 エンジン 102 電子制御スロットル 103 自動変速機 105 アクセルペダル開度センサ 120 コンプレッサ 121 油圧ポンプ 130 車重検出装置
11 Vehicle speed sensor 12 Input shaft rotation sensor 50 Powertrain control module (P
CM) 51 Throttle control module (TC
M) 54 Position information processing device 101 Engine 102 Electronic control throttle 103 Automatic transmission 105 Accelerator pedal opening sensor 120 Compressor 121 Hydraulic pump 130 Vehicle weight detection device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // F16H 59:18 59:44 59:52 59:66 (72)発明者 安岡 正之 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3D037 FA13 FB01 3G084 BA02 DA05 DA11 DA15 EA12 EB08 EB12 EC04 FA00 FA04 FA05 FA06 FA10 FA18 3G093 AA05 DA06 DB00 DB01 DB05 DB07 DB11 DB18 DB25 DB27 EB07 FA10 FA11 FB07 3J052 AA02 AA04 CA22 FA01 FA07 FB33 GC13 GC46 GC62 GD05 LA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // F16H 59:18 59:44 59:52 59:66 (72) Inventor Masayuki Yasuoka Kanagawa, Yokohama, Kanagawa 2F, Takara-cho, Nissan Motor Co., Ltd. F-term (reference) CA22 FA01 FA07 FB33 GC13 GC46 GC62 GD05 LA01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 アクセルペダルの踏み込み量を検出する
アクセルペダル操作位置検出手段と、 車両の速度を検出する車速検出手段と、 前記アクセルペダルの踏み込み量と車速に基づいて、平
坦路相当の目標駆動力を設定する通常目標駆動力設定手
段と、 前記平坦路相当の目標駆動力に対して増加した走行抵抗
を演算する増加抵抗演算手段と、 前記平坦路相当の目標駆動力に増加した走行抵抗を加算
したものを目標駆動力として演算する駆動力補正手段と
を備えた車両の駆動力制御装置において、 前記増加抵抗演算手段は、運転者が視認または認識可能
な走行抵抗増加量を低減することを特徴とする車両の駆
動力制御装置。
1. An accelerator pedal operation position detecting means for detecting an accelerator pedal depression amount, a vehicle speed detecting means for detecting a vehicle speed, and a target drive corresponding to a flat road based on the accelerator pedal depression amount and the vehicle speed. A normal target driving force setting means for setting a force, an increasing resistance calculating means for calculating a running resistance increased with respect to the target driving force corresponding to the flat road, and a running resistance increased to the target driving force corresponding to the flat road. A driving force control device for a vehicle, comprising: a driving force correction unit that calculates the added value as a target driving force; wherein the increase resistance calculation unit reduces a running resistance increase amount that can be visually recognized or recognized by a driver. A vehicle driving force control device characterized by the following.
【請求項2】 アクセルペダルの踏み込み量を検出する
アクセルペダル操作位置検出手段と、 車両の速度を検出する車速検出手段と、 前記アクセルペダルの踏み込み量と車速に基づいて、平
坦路相当の目標駆動力を設定する通常目標駆動力設定手
段と、 前記平坦路相当の目標駆動力に対して増加した走行抵抗
を演算する増加抵抗演算手段と、 前記平坦路相当の目標駆動力に増加した走行抵抗を加算
したものを目標駆動力として演算する駆動力補正手段と
を備えた車両の駆動力制御装置において、 前記増加抵抗演算手段は、運転者が視認または認識可能
な第1の走行抵抗増加量と、運転者が視認または認識不
能な第2の走行抵抗増加量をそれぞれ演算するととも
に、第1走行抵抗増加量を低減したものに第2走行抵抗
増加量を加算して走行抵抗増加量とする種類別増加抵抗
演算手段を設けたことを特徴とする車両の駆動力制御装
置。
2. An accelerator pedal operation position detecting means for detecting an amount of depression of an accelerator pedal, a vehicle speed detecting means for detecting a speed of a vehicle, and a target drive corresponding to a flat road based on the amount of depression of the accelerator pedal and the vehicle speed. A normal target driving force setting means for setting a force, an increasing resistance calculating means for calculating a running resistance increased with respect to the target driving force corresponding to the flat road, and a running resistance increased to the target driving force corresponding to the flat road. A driving force control device for a vehicle, comprising: a driving force correction unit that calculates the sum as a target driving force. The driving resistance control unit includes: a first driving resistance increase amount that can be visually recognized or recognized by a driver; The second travel resistance increase amount that the driver cannot visually recognize or recognize is calculated, and the second travel resistance increase amount is added to the reduced first travel resistance increase amount. Driving force control apparatus for a vehicle, characterized in that a Type increasing resistance calculating means to increment.
【請求項3】 前記種類別増加抵抗演算手段は、車両重
量の増大に伴う走行抵抗の増加量または道路勾配の増大
に伴う走行抵抗の増加量を前記第1走行抵抗増加量とし
て演算するとともに、変速機の伝達トルクの損失量また
はエンジン補機の作動により増加する走行抵抗を前記第
2走行抵抗増加量として演算することを特徴とする請求
項2に記載の車両の駆動力制御装置。
3. The type-dependent increase resistance calculating means calculates, as the first increase in travel resistance, an amount of increase in travel resistance due to an increase in vehicle weight or an increase in travel resistance due to an increase in road gradient. 3. The driving force control device for a vehicle according to claim 2, wherein a loss of transmission torque of a transmission or a running resistance that increases due to an operation of an engine accessory is calculated as the second running resistance increase.
【請求項4】 前記種類別増加抵抗演算手段は、道路勾
配の増大に伴う走行抵抗増加量に予め設定した値を乗じ
て低減したものを第1走行抵抗増加量とすることを特徴
とする請求項3に記載の車両の駆動力制御装置。
4. The method according to claim 1, wherein the increase resistance calculating means for each type sets a value obtained by multiplying the increase amount of the running resistance caused by the increase of the road gradient by a preset value and reducing the amount as a first increasing amount of the running resistance. Item 4. The vehicle driving force control device according to item 3.
【請求項5】 前記予め設定した値が、50%未満であ
ることを特徴とする請求項4に記載の車両の駆動力制御
装置。
5. The driving force control apparatus for a vehicle according to claim 4, wherein the preset value is less than 50%.
【請求項6】 前記種類別増加抵抗演算手段は、車両重
量の増大に伴う走行抵抗の増加量に予め設定した値を乗
じて低減したものを第1走行抵抗増加量とすることを特
徴とする請求項3に記載の車両の駆動力制御装置。
6. The method according to claim 1, wherein the increase resistance calculating means for each type sets a value obtained by multiplying an increase amount of the running resistance accompanying an increase in the vehicle weight by a predetermined value as a first increasing amount of the running resistance. The driving force control device for a vehicle according to claim 3.
【請求項7】 前記予め設定した値が、70%未満であ
ることを特徴とする請求項6に記載の車両の駆動力制御
装置。
7. The vehicle driving force control device according to claim 6, wherein the preset value is less than 70%.
【請求項8】 前記種類別増加抵抗演算手段は、前記第
2走行抵抗増加量をそのまま平坦路相当の目標駆動力に
加算して補正することを特徴とする請求項3に記載の車
両の駆動力制御装置。
8. The vehicle driving system according to claim 3, wherein the increase resistance calculating means for each type corrects the second running resistance by directly adding the second running resistance increase amount to a target driving force corresponding to a flat road. Power control device.
JP04586699A 1999-02-24 1999-02-24 Vehicle driving force control device Expired - Fee Related JP3508603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04586699A JP3508603B2 (en) 1999-02-24 1999-02-24 Vehicle driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04586699A JP3508603B2 (en) 1999-02-24 1999-02-24 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JP2000240779A true JP2000240779A (en) 2000-09-05
JP3508603B2 JP3508603B2 (en) 2004-03-22

Family

ID=12731139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04586699A Expired - Fee Related JP3508603B2 (en) 1999-02-24 1999-02-24 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP3508603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180127572A (en) * 2017-05-18 2018-11-29 콘티넨탈 오토모티브 시스템 주식회사 Target slip amount determination apparatus and method of lockup clutch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3061995B8 (en) * 2013-10-24 2018-03-21 Jatco Ltd Oil pressure control device for belt-type continuously variable transmission

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149424A (en) * 1991-11-28 1993-06-15 Honda Motor Co Ltd Control device of automatic transmission for vehicle
JPH06201523A (en) * 1993-01-08 1994-07-19 Hitachi Ltd Torque etimating device for output shaft of automobile and weight calculating device for vehicle
JPH08136572A (en) * 1994-11-07 1996-05-31 Toyota Motor Corp Accelerometer apparatus in vehicle
JPH09240322A (en) * 1996-03-08 1997-09-16 Nissan Motor Co Ltd Controller for vehicular power train
JPH10169765A (en) * 1996-12-04 1998-06-26 Toyota Motor Corp Driving direction judging device
JPH10213220A (en) * 1997-01-28 1998-08-11 Unisia Jecs Corp Shift control device for vehicular automatic transmission
JPH11182665A (en) * 1997-12-18 1999-07-06 Fuji Heavy Ind Ltd Gear shift control device of continuously variable transmission
JP2000211407A (en) * 1999-01-27 2000-08-02 Hitachi Ltd Vehicle control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149424A (en) * 1991-11-28 1993-06-15 Honda Motor Co Ltd Control device of automatic transmission for vehicle
JPH06201523A (en) * 1993-01-08 1994-07-19 Hitachi Ltd Torque etimating device for output shaft of automobile and weight calculating device for vehicle
JPH08136572A (en) * 1994-11-07 1996-05-31 Toyota Motor Corp Accelerometer apparatus in vehicle
JPH09240322A (en) * 1996-03-08 1997-09-16 Nissan Motor Co Ltd Controller for vehicular power train
JPH10169765A (en) * 1996-12-04 1998-06-26 Toyota Motor Corp Driving direction judging device
JPH10213220A (en) * 1997-01-28 1998-08-11 Unisia Jecs Corp Shift control device for vehicular automatic transmission
JPH11182665A (en) * 1997-12-18 1999-07-06 Fuji Heavy Ind Ltd Gear shift control device of continuously variable transmission
JP2000211407A (en) * 1999-01-27 2000-08-02 Hitachi Ltd Vehicle control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180127572A (en) * 2017-05-18 2018-11-29 콘티넨탈 오토모티브 시스템 주식회사 Target slip amount determination apparatus and method of lockup clutch
KR101978350B1 (en) 2017-05-18 2019-05-15 콘티넨탈 오토모티브 시스템 주식회사 Target slip amount determination apparatus and method of lockup clutch

Also Published As

Publication number Publication date
JP3508603B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
JP3815111B2 (en) Vehicle driving force control device
EP2467288B1 (en) Control device for vehicle
JP3395708B2 (en) Hybrid vehicle
US6626797B2 (en) Vehicular control apparatus and method for controlling automatic gear change
JP3767244B2 (en) Vehicle driving force control device
JPH0921457A (en) Controller for automatic transmission for vehicle
US20070173995A1 (en) Front and rear wheel drive vehicle
JP3397523B2 (en) Shift control device for automatic transmission for vehicle
JP3353711B2 (en) Vehicle driving force control device
JP3601347B2 (en) Vehicle control device and measuring method of running resistance
CN101048291B (en) Automobile
JP3356066B2 (en) Vehicle driving force control device
EP0730110B1 (en) Speed change control unit for an automatic transmission
JP3508603B2 (en) Vehicle driving force control device
JP3203602B2 (en) Automobile and its power control method and device
JP3551772B2 (en) Vehicle driving force control device
JP3409249B2 (en) Hybrid vehicle
JPH08128344A (en) Driving force control device and control method
JP2002142304A (en) Motor torque controller for electric vehicle, and motor torque controller for hybrid vehicle
JP2004197647A (en) Automobile controlled through comparison between recommended and executed accelerator openings
JPS60143132A (en) Gear-shift controlling method of electronically controlled transmission
JP3463566B2 (en) Vehicle driving force control device
JP4483646B2 (en) Engine control device
JP2929396B2 (en) Automatic transmission control device for vehicles
JP4557589B2 (en) Vehicle deceleration control device and vehicle

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees