JP2000240049A - Estimating method for finished shape of natural ground improved body - Google Patents

Estimating method for finished shape of natural ground improved body

Info

Publication number
JP2000240049A
JP2000240049A JP4011099A JP4011099A JP2000240049A JP 2000240049 A JP2000240049 A JP 2000240049A JP 4011099 A JP4011099 A JP 4011099A JP 4011099 A JP4011099 A JP 4011099A JP 2000240049 A JP2000240049 A JP 2000240049A
Authority
JP
Japan
Prior art keywords
improved body
ground
diameter
simulated
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4011099A
Other languages
Japanese (ja)
Other versions
JP3567775B2 (en
Inventor
Tadashi Ninomiya
正 二宮
Tetsuji Yasuoka
哲治 保岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP04011099A priority Critical patent/JP3567775B2/en
Publication of JP2000240049A publication Critical patent/JP2000240049A/en
Application granted granted Critical
Publication of JP3567775B2 publication Critical patent/JP3567775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high-reliability estimated information about the finished shape of an improved body. SOLUTION: An electrode fitting body 14 is installed for estimating a diameter DX. The fitting body 14 is provided with current electrodes PI and potential electrodes PV. An arithmetic means 20 determines the measured resistance value Rreal per unit length of an improved body 12 from the potential difference V when a current I flows between the current electrodes PI. The relation between the resistance value R and diameter D per unit length of a simulated improved body is obtained based on the specific resistances ρ1 of improved bodies of multiple kinds and the specific resistance ρ2 of the natural ground by the two-dimensional axisymmetric finite element method with the ratio between the specific resistances ρ1, ρ2 used as a factor. When the measured specific resistance ρ1 real of the improved body 12 and the measured specific resistance ρ2 real of the natural ground 10 are obtained, the factor which is the ratio between the specific resistances ρ1, ρ2 is selected from the ratio between them, thereby the relation between the resistance value R and diameter D of the simulated improved body is specified, and the diameter DX can be estimated by collating the measured resistance value Rreal with this relation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、地山中に造成さ
れた改良体の出来上り形状を推定する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a finished shape of an improved body formed in the ground.

【0002】[0002]

【従来の技術】地山改良やトンネル先受けなどを目的と
して、地山中に改良体を造成することがある。この種の
地山改良体は、例えば、軟弱地山を改良する地山改良工
法においては、噴射ノズルを回転させながら、セメント
ミルクなどの硬化剤を地山中に高圧噴射することによ
り、硬化剤を地山中に注入するとともに、その噴射エネ
ルギーで地山の切削並びに地山との混合攪拌を行う高圧
噴射攪拌工法により造成される。
2. Description of the Related Art In some cases, an improved body is formed in the ground for the purpose of improving the ground or receiving a tunnel. This type of ground improvement body is, for example, in the ground improvement method of improving soft ground, while rotating the injection nozzle, high-pressure injection of a hardening agent such as cement milk into the ground, the hardening agent Injection into the ground is performed, and the injection energy is used to cut the ground and mix with the ground to create a high-pressure injection stirring method.

【0003】このような工法によれば、硬化剤を硬化さ
せることにより、軟弱地山中にパイル状の地山改良体を
造成することができる。また、山岳トンネル工法におい
ては、トンネルの掘削に先立って、掘削すべきトンネル
外周にアーチ状に地山改良体を造成するトンネル先受け
工法(フォアパイリング工法)が知られており、かかる工
法によれば、パイル状の地山改良体により、切羽前方の
地山を補強することが可能になる。
According to such a method, a pile-shaped ground improvement body can be formed in a soft ground by hardening a hardening agent. Also, in the mountain tunnel construction method, prior to the excavation of the tunnel, a tunnel front receiving method (fore piling method) in which a ground improvement body is formed in an arch shape around the tunnel to be excavated, is known. For example, the pile-shaped ground improvement body can reinforce the ground in front of the face.

【0004】ところで、このような工法により地山ない
しは地山の改良を行った後に、造成された改良体の出来
上り形状を推定ないしは確認することは、工事の成否を
判断する上で極めて重要な管理事項である。
[0004] Incidentally, after improving the ground or the ground by such a construction method, estimating or confirming the completed shape of the formed improved body is a very important management for judging the success or failure of the construction. Matters.

【0005】ところが、このような方法として、従来
は、実際の工事に先立って、試験工事を行い、この試験
工事で造成された改良体を掘り起こして、その出来上り
形状を確認して、実際の工事における改良体の出来上り
形状を推定していた。
[0005] However, conventionally, as such a method, prior to actual construction, a test construction is performed, an improved body formed by the test construction is dug up, the completed shape is confirmed, and the actual construction is confirmed. The finished shape of the improved body in was estimated.

【0006】しかしながら、このような改良体の出来上
り形状の推定方法には、以下に説明する技術的な課題が
あった。
However, the method for estimating the finished shape of such an improved body has the following technical problems.

【0007】[0007]

【発明が解決しようとする課題】すなわち、前述した試
験工事に基づく改良体の出来上り形状の推定方法では、
弾性波,超音波などを用いた現場測定方法よりも、出来
上り形状の信頼性が高いが、試験工事を行うために、工
期や工費の面で不利になるという問題があった。
That is, in the above-described method for estimating the finished shape of the improved body based on the test work,
Although the reliability of the completed shape is higher than the on-site measurement method using an elastic wave, an ultrasonic wave, or the like, there is a problem that the test work is disadvantageous in terms of a construction period and a construction cost.

【0008】また、施工現場に余裕がなく、試験工事が
現場で行えない場合には、試験工事の個所と施工現場と
の地質とが一致するとは限らないので、精度の低い推定
しか行うことができなかった。
[0008] Further, when there is not enough room at the construction site and the test construction cannot be performed at the construction site, the geology at the test construction site and the construction site do not always match, so that only low-precision estimation can be performed. could not.

【0009】本発明は、このような従来の問題点に鑑み
てなされたものであって、その目的とするところは、試
験工事を行うことなく、信頼性の高い推定情報が得られ
る地山改良体の出来上り形状の推定方法を提供すること
にある。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a ground improvement method capable of obtaining highly reliable estimated information without performing test work. It is an object of the present invention to provide a method for estimating a finished shape of a body.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、地山中に造成された改良体の長手方向に
沿って設置される電極取付体と、前記電極取付体の長手
方向に沿って所定の間隔を隔てて取付けられた一対の電
流電極と、この電流電極間に所定の間隔を隔てて設置さ
れた一対の電位電極と、前記電流電極間に所定の電流を
流したときに、前記電位電極間の電位差を検出して、前
記改良体の単位長さ当たりの実測抵抗値を求める演算手
段とを備え、複数種の地山および模擬改良体のそれぞれ
の比抵抗に基づいて、二次元軸対称有限要素法により、
前記比抵抗の比をファクターとして、前記模擬改良体の
単位長さ当たりの抵抗値と直径との関係を予め求め、前
記地山および改良体の実測比抵抗から前記ファクターを
選定し、前記実測抵抗値を、前記模擬改良体の単位長さ
当たりの抵抗値と直径との関係に照合することにより、
造成された前記改良体の直径を推定するようにした。こ
のように構成した地山改良体の出来上り形状の推定方法
によれば、後述する原理説明や実証実験などから明らか
なように、試験工事を行うことなく、信頼性の高い情報
が得られる。本発明の推定方法においては、前記改良体
は、その長さと直径との比が、0.07〜0.16の範
囲内にあることが望ましい。改良体の形状がこのような
範囲内にあると、所定の電流を電流電極間に流す電極が
免状でなくても、電流密度が一様になると考えられるの
で、高精度の推定が可能になる。また、本発明の推定方
法においては、前記地山および改良体の比抵抗の比が、
50倍以上あることが望ましい。地山の比抵抗と改良体
の比抵抗とが、このように大きく異なると、後述する説
明から明らかなように、高精度の推定が可能になる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an electrode mounting body installed along the longitudinal direction of an improved body formed in the ground, and a longitudinal direction of the electrode mounting body. When a predetermined current flows between a pair of current electrodes attached at a predetermined interval along the pair, a pair of potential electrodes installed at a predetermined interval between the current electrodes, and the current electrode Further comprising calculating means for detecting a potential difference between the potential electrodes and obtaining an actually measured resistance value per unit length of the improved body, based on the specific resistance of each of the plurality of types of ground and the simulated improved body. , By the two-dimensional axisymmetric finite element method,
Using the ratio of the specific resistance as a factor, the relationship between the resistance value per unit length and the diameter of the simulated improved body is determined in advance, the factor is selected from the measured specific resistance of the ground and the improved body, and the measured resistance is selected. By comparing the value with the relationship between the resistance value per unit length and the diameter of the simulated improved body,
The diameter of the improved body was estimated. According to the method for estimating the completed shape of the ground improvement body thus configured, highly reliable information can be obtained without performing test work, as is clear from the principle explanation and the verification experiment described later. In the estimation method of the present invention, it is preferable that the ratio between the length and the diameter of the improved body is in the range of 0.07 to 0.16. If the shape of the improved body is within such a range, the current density is considered to be uniform even if the electrode for passing the predetermined current between the current electrodes is not a diploma, so that highly accurate estimation becomes possible. . Further, in the estimation method of the present invention, the ratio of the specific resistance of the ground and the improved body is:
Desirably, it is 50 times or more. If the specific resistance of the ground and the specific resistance of the improved body greatly differ from each other in this manner, highly accurate estimation becomes possible, as will be apparent from the following description.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適な実施の形態
について、添付図面に基づいて詳細に説明する。図1お
よび図2は、本発明にかかる地山改良体の出来上り形状
の推定方法の一実施例を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1 and 2 show an embodiment of a method for estimating a finished shape of a mountain improved body according to the present invention.

【0012】同図に示した推定方法は、トンネル先受け
を目的に、切羽前方の地山10中にあって、斜め上方を
指向するようにして、ほぼ円筒状に形成された改良体1
2(フォアパイル造成体)の直径Dxを推定する際に適用
した場合を例示している。
The estimating method shown in FIG. 1 is an improved body 1 which is located in the ground 10 in front of a face and is formed in a substantially cylindrical shape so as to be directed obliquely upward for the purpose of receiving a tunnel.
2 illustrates an example in which the present invention is applied when estimating the diameter Dx of a fore-pile structure.

【0013】改良体12の直径Dxを推定する際には、
改良体12が硬化する前に、電極取付体14をその内部
に挿入設置する。この電極取付体14は、図2にその詳
細を示すように、棒状の本体14aと、この本体14a
の長手方向に沿って、所定の間隔を隔てて設置された一
対の電流電極PIと、この電流電極PI間にあって、本体
14aの長手方向に沿って、所定の間隔Lを隔てて設置
された一対の電位電極PVとを備えている。
When estimating the diameter Dx of the improved body 12,
Before the improved body 12 is cured, the electrode mounting body 14 is inserted and installed therein. As shown in detail in FIG. 2, the electrode mounting body 14 has a rod-shaped main body 14a and a main body 14a.
Along the longitudinal direction, a pair of current electrodes P I placed at a predetermined interval, in time for the current electrode P I, along the longitudinal direction of the main body 14a, is disposed at a predetermined interval L a pair of and a potential electrode P V were.

【0014】本体14aは、内部が中空な塩化ビニール
パイプなどの電気絶縁体で構成され、その外周に環状の
金属リングなどからなる電流電極PIと電位電極PVとが
固設されている。
[0014] body 14a is internally configured with an electrical insulator, such as hollow PVC pipe, and a current electrode P I and the potential electrodes P V made of an annular metal ring which is fixed to the outer periphery thereof.

【0015】電流電極PIと電位電極PVとには、それぞ
れリード線の一端側が接続されていて、電流電極PI
のリード線の他端は、直流電源16に接続され、電位電
極PV側のリード線の他端は、電圧計18にそれぞれ接
続されている。
One end of a lead wire is connected to each of the current electrode P I and the potential electrode P V, and the other end of the lead wire on the current electrode P I side is connected to a DC power supply 16. The other end of the V- side lead wire is connected to the voltmeter 18.

【0016】直流電源16,電圧計18は、マイコンな
どで構成された演算手段20によりその作動がコントロ
ールされ、演算手段20は、直流電源16を介して、電
流電極PI間に所定の電流Iを流したときの、電位電極
V間の電位差Vを電圧計18から読み取り、V/(I×
L)の演算を行い、改良体12の単位長さ当たりの実測
抵抗値Rreal(Ω/m)を求める。
[0016] DC power supply 16, a voltmeter 18, its operation is controlled by the computing means 20 constituted by a microcomputer or the like, the calculating means 20, via a DC power source 16, current electrode P I given current I between when a current of, reads the potential difference V between the potential electrode P V from the voltmeter 18, V / (I ×
L) is calculated, and the measured resistance value Rreal (Ω / m) per unit length of the improved body 12 is obtained.

【0017】一方、本発明の推定方法では、予め、複数
種の模擬改良体の比抵抗ρ1と、複数種の地山の比抵抗
ρ2とが選定され、二次元軸対称有限要素法により、こ
れらの比抵抗ρ12の比をファクターとして、模擬改
良体の単位長さ当たりの抵抗値Rと直径Dとの関係が求
められる。この関係は、例えば、演算手段20のメモリ
にテーブルとして記憶しておくことができる。
Meanwhile, the estimation method of the present invention, in advance, the specific resistance [rho 1 of a plurality of types of simulation improved body, and resistivity [rho 2 of a plurality of types of natural ground is selected, by a two-dimensional axisymmetric finite element method The relationship between the resistance value R per unit length and the diameter D of the simulated improved body is determined using the ratio of these specific resistances ρ 1 and ρ 2 as a factor. This relationship can be stored as a table in the memory of the arithmetic unit 20, for example.

【0018】そして、実際に形成する改良体12の実測
比抵抗ρ1realと、地山10の実測比抵抗ρ2realとが、
後述する電気ポテンシャル測定法やウェンナー法などに
より測定される。
The measured specific resistance ρ 1 real of the improved body 12 actually formed and the measured specific resistance ρ 2 real of the ground 10 are
It is measured by an electric potential measurement method, a Wenner method, or the like described later.

【0019】そして、実測比抵抗ρ1realと、地山10
の実測比抵抗ρ2realとが得られると、これらの比を演
算して、まず、二次元軸対称有限要素法で求めた関係の
比抵抗ρ12の比であるファクターが選定される。
Then, the measured specific resistance ρ 1 real and the ground 10
Once the measured specific resistance ρ 2 real is obtained, these ratios are calculated.First, a factor that is the ratio of the specific resistances ρ 1 and ρ 2 of the relationship obtained by the two-dimensional axisymmetric finite element method is selected. You.

【0020】このファクターが選定されると、模擬改良
体の単位長さ当たりの抵抗値Rと直径Dとの関係が特定
されるので、この関係に、実測抵抗値Rreal(Ω/m)
を照合すると、改良体12の直径Dxを推定することが
できる。
When this factor is selected, the relationship between the resistance value R per unit length and the diameter D of the simulated improved body is specified, and the measured resistance value Rreal (Ω / m)
Can be estimated, the diameter Dx of the improved body 12 can be estimated.

【0021】このようにして行われる本発明の推定方法
の推定原理やその有効性を確認するために行った実証実
験などにより、以下に本発明の内容をより詳細に説明す
る。
The contents of the present invention will be described in more detail below based on the estimation principle of the estimation method of the present invention performed as described above, and a verification experiment conducted to confirm its effectiveness.

【0022】本発明の推定方法における基礎原理 本発明にかかる推定方法では、電気ポテンシャル法をそ
の基礎的な原理としている。一般に、地下媒質などに電
流を流した場合、媒質中の電流密度が一様でないときで
も、オームの法則を一般化した基本的な以下の関係(拡
張されたオームの法則)が成り立つことが知られてい
る。
Basic Principle of the Estimating Method of the Present Invention The estimating method of the present invention uses the electric potential method as its basic principle. In general, when an electric current is applied to an underground medium, it is known that the following generalized Ohm's law (extended Ohm's law) holds even when the current density in the medium is not uniform. Have been.

【0023】 E=ρi (1) ここで、 E:電界の強さで荷電粒子が受ける力の方向の単位長さ
当りの電位差に等しい i:電界方向の電流密度 ρ:比抵抗(物質固有の抵抗)
E = ρi (1) where, E: Equivalent to the potential difference per unit length in the direction of the force applied to the charged particles by the strength of the electric field, i: Current density in the direction of the electric field, ρ: Specific resistance (specific to the material) resistance)

【0024】無限媒体内の微少な立方体dxdydzを考え、
立方体に入る電流のx、y、z方向の電流密度を各々ix、i
y、izとし、電位をV、x、y、z方向の電界の強さを
x、E y、Ezとすると式(1)より、 Ex=−(∂V/∂x)=ρxixy=−(∂V/∂y)=ρyiyz=−(∂V/∂z)=ρziz (2) となり、流出する電流密度ix'、iy'、iz'は各々つぎの
ようになる。
Consider a tiny cube dxdydz in an infinite medium,
The current density in the x, y and z directions of the current entering the cube is ix, I
y, IzAnd the electric potential is V, x, y, z
Ex, E y, EzFrom equation (1), Ex=-(∂V / ∂x) = ρxix Ey= − (∂V / ∂y) = ρyiy Ez= − (∂V / ∂z) = ρziz (2) and the outgoing current density ix', Iy', Iz'Is the next
Become like

【0025】 ix'=ix+(∂ix/∂x)dx iy'=iy+(∂iy/∂y)dy iz'=iz+(∂iz/∂z)dz (3)[0025] i x '= i x + ( ∂i x / ∂x) dx i y' = i y + (∂i y / ∂y) dy i z '= i z + (∂i z / ∂z) dz (3)

【0026】従って、各々の方向における電流の差、Δ
ix、Δiy、Δizは、 Δix=ix'dydz−ixdydz=(∂ix/∂x)dxdydz Δiy=(∂iy/∂y)dxdydz Δiz=(∂iz/∂z)dxdydz (4) となる。ここで、立方体に流入する電流と流出する電流は等しいので、 Δix+Δiy+Δiz=0 (5)
Thus, the difference in current in each direction, Δ
i x, Δi y, Δi z is, Δi x = i x 'dydz -i x dydz = (∂i x / ∂x) dxdydz Δi y = (∂i y / ∂y) dxdydz Δi z = (∂i z / ∂z) dxdydz (4). Here, since the current flowing into the cube and the current flowing out are equal, Δi x + Δi y + Δi z = 0 (5)

【0027】したがって、 (∂ix/∂x)+(∂iy/∂y)+(∂iz/∂z)=0 (6) となる。比抵抗ρx、ρy、ρzが一様でρに等しい場
合、すなわち等方性均質媒質では、式(2)を式(6)に
代入することによって、式(7)が得られる。 (∂2V/∂x2)+(∂2V/∂y2)+(∂2V/∂z2)=0 (7)
[0027] Therefore, (∂i x / ∂x) + ( ∂i y / ∂y) + (∂i z / ∂z) = 0 (6). When the specific resistances ρ x , ρ y , and ρ z are uniform and equal to ρ, that is, in an isotropic homogeneous medium, equation (7) is obtained by substituting equation (2) into equation (6). (∂ 2 V / ∂x 2) + (∂ 2 V / ∂y 2) + (∂ 2 V / ∂z 2) = 0 (7)

【0028】この関係式が地下媒質などの構造を解析す
る電気ポテンシャル法の基礎となる方程式で、電位Vに
関するラプラスの方程式となり、実際の問題では与えら
れた境界条件を満足するように式(7)を解くことにな
る。 物質の比抵抗
This relational expression is an equation serving as a basis of the electric potential method for analyzing the structure of an underground medium or the like, and is a Laplace's equation relating to the potential V. In an actual problem, the equation (7) is set so as to satisfy the given boundary condition. ). Specific resistance of the substance

【0029】地山(地山)を構成する物質の比抵抗値は、
広範囲にわたり、良導体(ρ<10-5Ω・m)、半導体(10
-5≦ρ≦107Ω・m)及び不良導体(絶縁体)(ρ>107Ω・
m)に大別される。
The specific resistance value of the material constituting the ground (ground) is
A wide range of good conductors (ρ <10 −5 Ω · m), semiconductors (10
-5 ≦ ρ ≦ 10 7 Ω · m) and defective conductor (insulator) (ρ> 10 7 Ω · m)
m).

【0030】代表的な造岩鉱物である石英や長石の結晶
は絶縁物であるが、これら絶縁物の粒子で構成されてい
る岩石や砂の比抵抗は、鉱物粒子間の結合物質や亀裂や
間隙に存在している水分などによって低下する。
Quartz and feldspar crystals, which are typical rock-forming minerals, are insulators. The specific resistance of rocks and sands composed of these insulator particles is determined by the bonding material, cracks and cracks between the mineral particles. It is lowered by moisture existing in the gap.

【0031】通常、岩石等の比抵抗は図3に示すような
値であるが、岩石中の亀裂や間隙が多くなるにつれて比
抵抗は低下してくる。また、地下水の比抵抗は、周りの
物質にくらべて低く、海水は0.3Ω・mとして扱われてい
る。
Normally, the specific resistance of a rock or the like has a value as shown in FIG. 3, but the specific resistance decreases as the number of cracks and gaps in the rock increases. The resistivity of groundwater is lower than that of surrounding materials, and seawater is treated as 0.3Ω · m.

【0032】ここで、図4に示すように、断面積S
(m2)、長さL(m)の物質を考え、その電流密度iを一様
とし、その物質の両端の電位差をV(V)、印加電流をI
(A)とすると、 E=V/L (8) i=I/S (9) とが成り立ち、 V=(ρL/S)I=RI (10) となる。ここで、Rは抵抗(Ω)で、ρは単位体積当り
の物質の抵抗に相当し、単位はΩ・mとなる。
Here, as shown in FIG.
(m 2 ), a material having a length L (m) is considered, the current density i is made uniform, the potential difference between both ends of the material is V (V), and the applied current is I
Assuming (A), E = V / L (8) i = I / S (9) holds, and V = (ρL / S) I = RI (10) holds. Here, R is resistance (Ω), ρ corresponds to the resistance of the substance per unit volume, and the unit is Ω · m.

【0033】式(10)より、周囲が絶縁体である場合に
は、 R=ρL/S (11) が成り立ち、物質のρが一定であると次式より、物質の
抵抗を測定して、その勾配を求めることにより物質の断
面積が得られることになる。 S=ρ/(R/L) (12)
From equation (10), when the surrounding is an insulator, R = ρL / S (11) holds, and if ρ of the substance is constant, the resistance of the substance is measured by the following equation, and By determining the gradient, the cross-sectional area of the substance can be obtained. S = ρ / (R / L) (12)

【0034】施工中の改良体の比抵抗と地山の比抵抗 電流密度が一定な場合、つまり電流源が面である場合に
は、式(12)により、物質の断面積を求めることがで
き、円筒形であれば直径を求めることができる。
When the specific resistance of the improved body during construction and the specific resistance of the ground are constant, that is, when the current source is a plane, the cross-sectional area of the substance can be obtained by equation (12). If it is cylindrical, the diameter can be determined.

【0035】しかしながら、図1,2示したように、施工
中のフォアパイル造成体などの改良体12の場合は、改
良体12の周囲地山10が絶縁体ではないため、改良体
12の端部近傍を電流源として測定したときに、地山1
0側に流出する電流があり、改良体12の出来上がり形
状改良(断面積)は、改良体12の混合物(硬化材と土
砂)の比抵抗ρ1、周辺地山10の比抵抗ρ2および抵抗
の勾配R/Lの関数と考える必要がある。
However, as shown in FIGS. 1 and 2, in the case of the improved body 12 such as a fore-pile structure during construction, since the surrounding ground 10 around the improved body 12 is not an insulator, the end of the improved body 12 When the vicinity of the part is measured as a current source,
There is a current flowing to the zero side, and the finished shape of the improved body 12 (cross-sectional area) is improved by the specific resistance ρ 1 of the mixture (hardened material and earth and sand) of the improved body 12, the specific resistance ρ 2 of the surrounding ground 10 and the resistance. Must be considered as a function of the gradient R / L.

【0036】したがって、改良体(硬化材と土砂)12
の比抵抗ρ1realと地山10の比抵抗ρ2realを測定する
必要があり、改良体12の比抵抗ρ1realは、後述の実
験装置(図6)により測定した電位から式(11)を用い
て求めることとなる。
Therefore, the improved body (hardening material and earth and sand) 12
The need to measure the specific resistance [rho 2 real specific resistance [rho 1 real and natural ground 10, the specific resistance [rho 1 real improvement body 12, wherein the potential measured by the experimental apparatus described later (FIG. 6) (11 ).

【0037】一方、地山10の比抵抗ρ2realは、図3
に一部が示してあるように、同種地山10でも比抵抗値
の分布範囲は広いので、実際の周辺地山10を採取して
実際に測定する必要がある。
On the other hand, the specific resistance ρ 2 real of the ground 10 is shown in FIG.
As shown partially in FIG. 2, since the distribution range of the specific resistance value is wide even in the same type of ground 10, it is necessary to actually measure the surrounding ground 10 and actually measure it.

【0038】地山10の比抵抗ρ2realを測定する方法
は、例えば、地山10の比抵抗ρ2realは、現地の地表
面で測定する方法があって、図5に示す電流電極(C1,
2)と、電位電極(P1,2)を、測定位置を中心にして、
C1,P1間、P1,2間、P2,C2間の電極間隔が等
しくaとなるように対称に配置するウェンナー法により
求めることができる。このときの地山10の比抵抗ρ2r
ealは、次式で表される。 ρ2real=G(V/I) (13) ここで、G=2πaである。
The method for measuring the specific resistance [rho 2 real of natural ground 10 is, for example, the specific resistance [rho 2 real of natural ground 10, there is a method of measuring the land surface of the field, the current shown in FIG. 5 electrodes ( C1,
2) and the potential electrodes (P1, 2),
It can be obtained by the Wenner method of symmetrically arranging such that the electrode intervals between C1, P1, P1, 2 and P2, C2 are equal to a. The specific resistance ρ 2 r of the ground 10 at this time
eal is represented by the following equation. ρ 2 real = G (V / I) (13) Here, G = 2πa.

【0039】電流源が面状でなく、周囲が絶縁されて
いる場合の室内実験 (1)概要 壁面が絶縁された円筒に水を満たし、それを模擬フォア
パイルとみなして図に示した実験装置を用いて、各電極
間の電気ポテンシャルを測定した。
Laboratory experiment in which the current source is not planar and the surroundings are insulated (1) Outline An experimental apparatus shown in the figure, in which a cylinder whose wall is insulated is filled with water, and this is regarded as a simulated fore pile Was used to measure the electric potential between the electrodes.

【0040】このとき、電流源が面状とならないため、
図のように、電極間に流れる電流密度は、各断面におい
て一様とならない。したがって、式(12)がそのまま成
立するとは考えられない。そこで、この方法により測定
される比抵抗を見掛けの比抵抗ρ'1と考え、以下の式
(14)が成り立つかどうか確認した。 (R/L)・S=ρ'1(一定)
At this time, since the current source is not planar,
As shown, the current density flowing between the electrodes is not uniform in each cross section. Therefore, it is not considered that equation (12) holds as it is. Therefore, it considered that the specific resistance [rho '1 the apparent resistivity measured by this method, it was confirmed whether the formula (14) below is established. (R / L) · S = ρ ′ 1 (constant)

【0041】(2)実験方法と手順 実験は、図6に示した装置を用い、以下の手順で実施し
た。 a)塩化ビニルの円筒を準備し、一端を水がもれないよ
うに塞ぎ、内部に水を充填して模擬改良体とした。 b)電極(電流電極C1,C2、電圧電極P1,P2)が、図のよう
に配置された電極棒を円筒の中に入れ、電流電極C1から
同C2に1mAの直流電流を流した。 c)電気ポテンシャル測定用の電位電極P1,P2により電
極間の電気ポテンシャル(電位差)を測定した。なお、
電位電極P1,P2の間隔は5cmとした。また、水の深さを6
0cmとした場合には、円筒直径を4cm、5cmおよび6.5cmと
し、水の深さを40cmとした場合には、円筒直径を5cm、
6.5cmおよび34cmとした。
(2) Experimental Method and Procedure The experiment was performed using the apparatus shown in FIG. 6 according to the following procedure. a) A vinyl chloride cylinder was prepared, one end was closed so that water did not leak, and the inside was filled with water to obtain a simulated improved body. b) The electrodes (current electrodes C 1 , C 2 , voltage electrodes P 1 , P 2 ) are placed in a cylinder with the electrode rods arranged as shown in the figure, and a DC current of 1 mA is applied from the current electrode C 1 to the same C 2. Electric current was applied. c) The electric potential (potential difference) between the electrodes was measured using the potential electrodes P 1 and P 2 for measuring the electric potential. In addition,
The interval between the potential electrodes P 1 and P 2 was 5 cm. Also, set the water depth to 6
When 0 cm, the cylinder diameter is 4 cm, 5 cm and 6.5 cm, and when the water depth is 40 cm, the cylinder diameter is 5 cm,
6.5 cm and 34 cm.

【0042】(3)実験結果 測定した抵抗の単位長さ当りの値と模擬フォアパイル長
手方向の電気ポテンシャル測定位置との関係を図8,9
に示す。なお、各図において、縦軸は、単位長さ当りの
抵抗(Ω/m)、横軸は、電極C1からの測定位置までの距
離(m)を表している。
(3) Experimental Results FIGS. 8 and 9 show the relationship between the measured resistance value per unit length and the electric potential measurement position in the longitudinal direction of the simulated fore pile.
Shown in In the drawings, the vertical axis represents the resistance per unit length (Ω / m), the horizontal axis represents the distance to the measuring position from the electrode C 1 to (m).

【0043】図8,9から、単位長さ当りの抵抗は、測
定位置つまりC1からの距離に関係なくほぼ一定であるこ
とが分かる。また、円筒の直径(模擬改良体の直径)が
大きくなるほど単位長さ当りの抵抗は小さくなってい
る。
[0043] From FIGS. 8 and 9, the unit resistance per length is found to be substantially constant regardless of the distance from the measurement position that is C 1. Also, the resistance per unit length decreases as the diameter of the cylinder (diameter of the simulated improved body) increases.

【0044】ここで、単位長さ当りの抵抗R/Lと円筒
(模擬改良体)の断面積Sの積として得られる見掛けの
比抵抗ρ'1が円筒の直径によってどのように変化するか
調べた。
Here, how the apparent specific resistance ρ ′ 1 obtained as the product of the resistance R / L per unit length and the cross-sectional area S of the cylinder (simulated improved body) changes with the diameter of the cylinder will be examined. Was.

【0045】その結果を図10,11に示している。同
図では、縦軸が単位長さ当りの抵抗R/L(Ω・m)×円筒
(模擬改良体)の断面積Sを、横軸は円筒の直径(cm)を
表している。
The results are shown in FIGS. In the figure, the vertical axis represents the resistance per unit length R / L (Ω · m) × the cross-sectional area S of the cylinder (simulated improved body), and the horizontal axis represents the diameter (cm) of the cylinder.

【0046】図から分かるように、水深60cm(電極C1
電極C2の間隔が60cm)の場合と水深40cm(電極C1と電極
C2の間隔が40cm)で円筒直径5cmおよび6.5cmの場合で
は、単位長さ当りの抵抗R/Lと円筒(模擬改良体)の
断面積Sとの積、つまり見掛けの比抵抗ρ'1は、ほぼ一
定となっている。一方、水深40cmで円筒直径34cmの場合
には、見掛け比抵抗ρ'1が極端に大きくなっている。
[0046] As can be seen, when the depth 60cm (distance between the electrodes C 1 and the electrode C 2 is 60cm) and depth 40 cm (electrode C 1 and the electrode
In the case where the distance between C 2 is 40 cm) and the cylinder diameter is 5 cm or 6.5 cm, the product of the resistance R / L per unit length and the cross-sectional area S of the cylinder (simulated improved body), that is, the apparent specific resistance ρ ′ 1 Is almost constant. On the other hand, when the water depth is 40 cm and the cylinder diameter is 34 cm, the apparent specific resistance ρ ′ 1 is extremely large.

【0047】このときの円筒の直径Dと水深(電極C1
電極C2の間隔)Hの比を考えると、前者の場合は、D/
H=0.07〜0.16、後者の場合はD/H=0.88となってい
る。
[0047] Considering the ratio of the cylinder of diameter D and depth (distance between the electrodes C 1 and the electrode C 2) H at this time, in the former case, D /
H = 0.07 to 0.16, and in the latter case, D / H = 0.88.

【0048】後者の場合、直径が極端に大きくなると、
点電流源の状態となり、電流密度が円筒状の模擬フォア
パイルの中で大きく異なると同時に、外側に回り込む電
流が小さくなるため抵抗Rが大きく測定されたものと考
えられる。
In the latter case, when the diameter becomes extremely large,
It is considered that the point R was in the state of the point current source, the current density was largely different in the simulated fore pile having a cylindrical shape, and at the same time, the current flowing to the outside was small, so that the resistance R was large.

【0049】以上の実験結果より、周囲が絶縁体の場合
には、電流源が面状でなくても電流密度がほぼ一様にな
ると考えられる範囲、つまり、前述のD/H=0.07〜0.
16が満足される状態においては、式(14)は、成立し、
見掛け比抵抗ρ'1は、比抵抗ρ1に一致し、電気ポテン
シャルの測定から得られる抵抗値Rと測定電極間隔Lお
よび改良体12を構成する硬化材と土砂との混合物の比
抵抗ρ1realより円筒形の改良体12の直径Dxが推定
可能であることが分かる。
From the above experimental results, when the periphery is an insulator, the current density is considered to be substantially uniform even if the current source is not planar, that is, D / H = 0.07 to 0. .
In a state where 16 is satisfied, equation (14) holds,
Apparent resistivity [rho '1 is consistent with the specific resistance [rho 1, the resistivity of the mixture of hardeners and the sediment constituting the resistance value R obtained from the measurement of the electric potential measuring electrode interval L and improved body 12 [rho 1 It can be seen from real that the diameter Dx of the cylindrical improved body 12 can be estimated.

【0050】軸対称有限要素法による電気ポテンシャ
ル解析 (1)はじめに 改良体12の周囲が絶縁体である場合には、式(14)か
ら円筒形の改良体12の直径Dxが推定可能である。し
かしながら、実際の改良体12の周辺地山10は、絶縁
体でないため、改良体12の出来上がり形状は、改良体
12中の混合物(硬化材と土砂)の比抵抗ρ1real、周
辺地山10の比抵抗ρ2realおよび抵抗の勾配R/Lに
影響をうける以下の関数と考える必要がある。 S=F(R/L,ρ2/ρ1) (15)
Electric Potential Analysis by Axisymmetric Finite Element Method (1) Introduction When the periphery of the improved body 12 is an insulator, the diameter Dx of the cylindrical improved body 12 can be estimated from the equation (14). However, since the surrounding ground 10 of the actual improved body 12 is not an insulator, the finished shape of the improved body 12 has a specific resistance ρ 1 real of the mixture (hardening material and earth and sand) in the improved body 12 and the surrounding ground 10 It is necessary to consider the following function affected by the specific resistance ρ 2 real and the resistance gradient R / L. S = F (R / L, ρ 2 / ρ 1) (15)

【0051】そこで、本発明では、改良体12を半無限
媒体中に鉛直に埋められた円柱としてモデル化し、二次
元軸対称有限要素法による数値解析を行い、その関係を
調べた。
Therefore, in the present invention, the improved body 12 was modeled as a cylinder vertically buried in a semi-infinite medium, and a numerical analysis was performed by a two-dimensional axisymmetric finite element method to investigate the relationship.

【0052】(2)軸対称有限要素法解析 静電界のポテンシャル場を扱う場合、その支配方程式
は、境界面(z軸および地表面)において、 1/ρ(∂2V/∂x2+∂2V/∂y2)=−i (16) と与えられ、スカラーポテンシャルVに対するポアソン
方程式を解くことになる。なお、軸対称解析の場合、式
(16)は、以下のポアソン方程式となる。 1/ρ(∂2V/∂r2+1/r∂V/∂r+∂2V/∂z2)+i=0 (17) ここで、ρは比抵抗、Vは電位(スカラーポテンシャ
ル)、iは電流密度である。
(2) Axisymmetric Finite Element Method Analysis When dealing with a potential field of an electrostatic field, the governing equation is 1 / ρ (∂ 2 V / ∂x 2 + ∂) at the boundary surface (z axis and ground surface). 2 V / ∂y 2 ) = − i (16), and the Poisson equation for the scalar potential V is solved. In the case of the axially symmetric analysis, the equation (16) becomes the following Poisson equation. 1 / ρ (∂ 2 V / ∂r 2 + 1 / r∂V / ∂r + ∂ 2 V / ∂z 2 ) + i = 0 (17) where ρ is a specific resistance, V is a potential (scalar potential), i Is the current density.

【0053】有限要素法を用いて式(17)を数値解析す
るときの電位Vに関する境界条件は、 ∂V/∂n=0 (6.18) となり、このときnは境界面の単位法線ベクトルであ
る。
The boundary condition regarding the potential V when numerically analyzing the equation (17) using the finite element method is as follows: ∂V / ∂n = 0 (6.18), where n is a unit normal vector of the boundary surface. is there.

【0054】(3)シュミレーションモデルと数値解析 図12に示すシュミレーションモデルを考え、軸対称の
解析面で図13に示すように要素分割をし、有限要素法
により、電位(電位ポテンシャル)分布を求めた。
(3) Simulation Model and Numerical Analysis Considering the simulation model shown in FIG. 12, an element is divided as shown in FIG. 13 on an axisymmetric analysis plane, and a potential (potential potential) distribution is obtained by a finite element method. Was.

【0055】ここで、ρ1は、模擬改良体の比抵抗、ρ2
は、周辺地山の比抵抗、rpは、電極の半径、rmは、模
擬改良体の半径、rrは、周辺地山の半径である。
Here, ρ 1 is the specific resistance of the simulated improved body, ρ 2
The specific resistance of the surrounding natural ground, r p is the radius of the electrode, r m is the radius of the simulated improvement body, r r is the radius of the peripheral natural ground.

【0056】解析は、図12に示すように、周辺地山に
模擬改良体が鉛直に造成されている状態を想定して行っ
た。
As shown in FIG. 12, the analysis was performed on the assumption that a simulated improved body was formed vertically in the surrounding ground.

【0057】このとき、模擬改良体の比抵抗は、1Ω・m
とし、周辺地山の比抵抗を10、20、50、100、∞Ω・mと変化
させた。電流は、1mAとし模擬改良体の底部の電極から
地表部の電極に流し、その間に配置した電位測定電極で
電位差を求めることとした。なお、模擬改良体の電流電
極間の間隔は、1.2mとした。
At this time, the specific resistance of the simulated improved body was 1 Ω · m
The resistivity of the surrounding ground was changed to 10, 20, 50, 100, and ∞Ω · m. The current was set to 1 mA, the current was passed from the bottom electrode of the simulated improved body to the ground surface electrode, and the potential difference was determined by a potential measurement electrode arranged therebetween. The interval between the current electrodes of the simulated improved body was 1.2 m.

【0058】(4)数値解析結果 図14は、横軸に模擬改良体の直径Dm(m)を、縦軸に
単位長さ当りの抵抗(Ω/m)をとり、模擬改良体と周辺地
山の比抵抗比ρ12をパラメータとしてプロットした
ものである。
(4) Results of Numerical Analysis FIG. 14 shows the diameter Dm (m) of the simulated improved body on the horizontal axis and the resistance per unit length (Ω / m) on the vertical axis. This is a plot in which the specific resistance ratios ρ 1 and ρ 2 of the mountain are used as parameters.

【0059】同図から、模擬改良体の比抵抗ρ1にくら
べ周辺地山の比抵抗ρ2が大きければ大きいほど単位長
さ当りの抵抗(抵抗の勾配)の値が大きくなっているの
が分かる。
From the figure, it can be seen that the larger the specific resistance ρ 2 of the surrounding ground is, the larger the value of the resistance per unit length (resistance gradient) is, compared to the specific resistance ρ 1 of the simulated improved body. I understand.

【0060】このことから、周辺地山の比抵抗値とフォ
アパイルの比抵抗値が大きく異なるほど、改良体12の
出来上がり形状がより正確に推定することができるもの
と考えられる。
From this, it can be considered that the more the resistivity of the surrounding ground and the resistivity of the fore pile greatly differ, the more accurately the finished shape of the improved body 12 can be estimated.

【0061】以上の室内実験および数値解析結果から、
予め模擬改良体の比抵抗ρ1と地山の比抵抗ρ2とに基づ
いて、二次元軸対称有限要素法により、これらの比抵抗
ρ12の比をファクターとして、図14に示すよう
な、模擬改良体の単位長さ当たりの抵抗値Rと直径Dと
の関係を求めておき、改良体12の実測比抵抗ρ1real、
周辺地山10の実測比抵抗ρ2realおよび改良体12の
単位長さ当たりの実測抵抗値Rreal(Ω/m)をそれぞ
れ測定し、実測比抵抗ρ1realと実測比抵抗ρ2realとの
比から、図14のファクターを選定して、いずれかの曲
線を特定し、実測抵抗値Rreal(Ω/m)をこの曲線の
縦軸に当てはめ、横軸の部分を参照すると、改良体12
の断面積(直径Dx )の推定ができることが判る。
From the results of the above laboratory experiments and numerical analysis,
Based on the resistivity ρ 1 of the simulated improved body and the resistivity ρ 2 of the ground in advance, the ratio of these resistivity ρ 1 and ρ 2 is used as a factor by a two-dimensional axisymmetric finite element method as shown in FIG. The relationship between the resistance value R per unit length and the diameter D of the simulated improved body is determined in advance, and the measured specific resistance ρ 1 real of the improved body 12 is obtained.
The measured specific resistance ρ 2 real of the surrounding ground 10 and the measured resistance value R real (Ω / m) per unit length of the improved body 12 were measured, and the measured specific resistance ρ 1 real and the measured specific resistance ρ 2 real were calculated. From the ratio, the factor in FIG. 14 is selected, one of the curves is specified, the measured resistance value Rreal (Ω / m) is applied to the vertical axis of the curve, and the horizontal axis indicates the improved body 12.
It can be understood that the cross-sectional area (diameter Dx) can be estimated.

【0062】このような推定によれば、試験工事を行う
ことなく、信頼性の高い情報が得られる。
According to such estimation, highly reliable information can be obtained without performing test work.

【0063】このとき、改良体12は、その長さと直径
との比が、0.07〜0.16の範囲内にあることが望
ましい。改良体12の形状がこのような範囲内にある
と、所定の電流Iを流す電流電極PIが面状でなくて
も、電流密度が一様になると考えられるので、高精度の
推定が可能になる。
At this time, the ratio of the length to the diameter of the improved body 12 is preferably in the range of 0.07 to 0.16. If the shape of the improved body 12 is in such a range, the current density is considered to be uniform even if the current electrode P I through which the predetermined current I flows is not planar, so that highly accurate estimation is possible. become.

【0064】また、地山10および改良体12の実測比
抵抗ρ1real、ρ2realの比が、50倍以上あることが望
ましい。実測比抵抗ρ1realと実測比抵抗ρ2realとが、
このように大きく異なると、高精度の推定が可能にな
る。
It is desirable that the ratio of the measured specific resistances ρ 1 real and ρ 2 real of the ground 10 and the improved body 12 be 50 times or more. The measured resistivity ρ 1 real and the measured resistivity ρ 2 real are
Such a large difference enables highly accurate estimation.

【0065】すなわち、図14で模擬改良体の直径が40
cmの場合と、60cmの場合を比較すると、後者ではρ2/ρ1
の値が変化しても単位長さ当りの抵抗値がほとんど変化
せず、実際的に改良体12の直径が60cmを超えると、単
位長さ当りの抵抗値Rrealから改良体12の直径Dx を
推定することが困難となる。
That is, in FIG. 14, the diameter of the simulated improved body is 40
When comparing the case of cm and the case of 60 cm, in the latter case, ρ 2 / ρ 1
When the diameter of the improved body 12 actually exceeds 60 cm, the diameter Dx of the improved body 12 can be calculated from the resistance value per unit length Rreal even if the value of It is difficult to estimate.

【0066】また、ρ2/ρ1=10の場合で分かるよう
に、模擬改良体の比抵抗ρ1と周辺地山の比抵抗ρ2があ
まり違わない場合には、模擬改良体の直径が変化しても
単位長さ当りの比抵抗の変化が小さくなり、改良体12
の直径Dx を精度よく測定することはできなくなる。
[0066] Also, as can be seen in the case of ρ 2 / ρ 1 = 10, when the specific resistance [rho 2 of the resistivity [rho 1 and the peripheral natural ground simulated improvement body is not much different, the diameter of simulated improved body Even if it changes, the change in specific resistance per unit length becomes small,
Cannot be measured accurately.

【0067】従って、この電流電極間距離1.2mでの数
値解析結果からは、改良体12の直径Dxが50cm以下、ρ
2/ρ1=50以上であれば有効な測定ができるといえる。
Therefore, from the result of the numerical analysis at the distance between the current electrodes of 1.2 m, the diameter Dx of the improved body 12 is 50 cm or less, ρ
If 2 / ρ 1 = 50 or more, it can be said that effective measurement can be performed.

【0068】このことから、改良体12の直径Dxが、
電流電極PI間の距離の2/5程度以下で、 ρ2/ρ1=50
以上であれば、この方法で改良体12の出来上がり形状
を推定するとこができ、実証実験において測定された水
と、模擬改良体の比抵抗比が60以上あることを考えれ
ば、周りの地山が水で飽和されている場合でも施工上の
実用的な直径の同定は可能といえる。
From this, the diameter Dx of the improved body 12 is
At about 2/5 or less of the distance between the current electrodes P I , ρ 2 / ρ 1 = 50
In the above, the completed shape of the improved body 12 can be estimated by this method. Considering that the specific resistance ratio of the water measured in the demonstration experiment and the simulated improved body is 60 or more, the surrounding ground It can be said that a practical diameter for construction can be identified even when is saturated with water.

【0069】本発明の推定方法の有効性の実証実験 (1)実証実験の概要 a)実証実験日時 1998年4月23日、24日 b)実証実験場所 神戸市長田区蓮池町1−1、阪神
高速長田トンネル工事 c)実証実験方法
Demonstration experiment of effectiveness of estimation method of the present invention (1) Outline of demonstration experiment a) Date of demonstration experiment April 23 and 24, 1998 b) Location of demonstration experiment 1-1, Hasuikecho, Nagata-ku, Kobe-shi Hanshin Expressway Nagata tunnel construction c) Demonstration experiment method

【0070】模擬フォアパイルの実測比抵抗ρ1real
は、地山に削孔した深さ約1.5mの孔に絶縁体である塩
化ビニルの管(内径:14.5、24cm)を挿入し、管内部に
現場で施工中のフォアパイルから排出されるスライムを
充填して測定した。
The measured resistivity ρ 1 real of the simulated fore pile
Is a slime discharged from a fore pile currently being constructed on site by inserting a vinyl chloride pipe (inner diameter: 14.5, 24 cm) as an insulator into a hole about 1.5 m deep drilled in the ground Was measured.

【0071】測定方法は、図6に示した方法と同様で、
C2から電流を流し、管内部の電位を電極棒の各電極で測
定することとした。なお、C1、P2は、測定孔の実際の深
さにより変化させた。また、地山の実測比抵抗ρ2real
は、前述したウェンナー法により求めた。
The measuring method is the same as the method shown in FIG.
Current flows from the C 2, it was decided to measure the potential of the tube portion at each electrode of the electrode rod. C 1 and P 2 were changed according to the actual depth of the measurement hole. In addition, the actual resistivity ρ 2 real
Was determined by the Wenner method described above.

【0072】実証実験は、地山に呼び径で20cmと30cmの
孔を削孔し、その孔に前述のスライムを充填して模擬フ
ォアパイルとし、模擬フォアパイル内部の電位を、図
1,2に示した方法と同様の方法で測定した。
In the demonstration experiment, holes with nominal diameters of 20 cm and 30 cm were drilled in the ground, and the holes were filled with the above-mentioned slime to form a simulated fore pile. The potential inside the simulated fore pile was measured as shown in FIGS. The measurement was carried out in the same manner as described above.

【0073】シュミレーションは、前述した軸対称有限
要素法により実施し、地山の比抵抗をパラメータとして
単位長さ当りの抵抗と模擬フォアパイルの直径との関係
を求めるた。
The simulation was performed by the axisymmetric finite element method described above, and the relationship between the resistance per unit length and the diameter of the simulated fore pile was determined using the resistivity of the ground as a parameter.

【0074】電気ポテンシャルの測定とシュミレーショ
ン結果との対比から得られる模擬フォアパイルの直径
と、硬化後に掘り出した模擬フォアパイルの出来上がり
形状(直径)との比較から、電気ポテンシャル法を応用
した出来上がり形状の推定方法の妥当性を検証した。
From the comparison between the diameter of the simulated fore pile obtained from the measurement of the electric potential and the simulation result and the completed shape (diameter) of the simulated fore pile dug out after curing, the shape of the completed shape using the electric potential method was determined. The validity of the estimation method was verified.

【0075】(2)実証実験結果 a)模擬フォアパイルの比抵抗と地山の比抵抗 模擬フォアパイルの比抵抗は、管の直径と電流を変えて
測定した電位測定結果から式(11)を用いて求め、ρ1
=0.9Ω・mであった。
(2) Results of Demonstration Test a) Specific Resistance of Simulated Fore Pile and Specific Resistance of Ground The specific resistance of the simulated fore pile is calculated by using the equation (11) from the potential measurement result measured by changing the tube diameter and current. Ρ 1
= 0.9Ω · m.

【0076】一方、地山の実測比抵抗は、前述のウェン
ナー法の電極間隔aを0.5cmおよび0.55mとして測定した
結果、ρ2=58Ω・mであった。 b)模擬フォアパイルの電気ポテンシャル(電位)測定
結果
On the other hand, the measured specific resistance of the ground was ρ 2 = 58 Ω · m as a result of measuring the electrode spacing a by the Wener method described above with 0.5 cm and 0.55 m. b) Measurement result of electric potential (potential) of simulated fore pile

【0077】模擬フォアパイルの実証測定は、削孔の呼
び径が20cmと30cmの場合について実施し、その結果得ら
れた単位長さ当りの抵抗値は、呼び径20cmで14.8Ω/m、
呼び径30cmで9Ω/mとなった。
Demonstration measurement of the simulated fore pile was carried out for the nominal diameters of the drilled holes of 20 cm and 30 cm, and the resulting resistance value per unit length was 14.8 Ω / m at the nominal diameter of 20 cm.
It became 9 Ω / m at the nominal diameter of 30 cm.

【0078】c)シュミレーション結果 軸対称モデルでの有限要素法によるシュミレーション
は、地山の比抵抗をパラメータとして、模擬フォアパイ
ルの直径20cm、30cmおよび40cmの各場合について行っ
た。表1に結果を示すが、このとき模擬フォアパイルの
比抵抗は前述の測定より得られた値、ρ1=0.9Ω・mを用
いた。また、電流は1mAとした。
C) Simulation Results The simulation by the finite element method using the axisymmetric model was performed for each of the simulated fore pile diameters of 20 cm, 30 cm and 40 cm using the resistivity of the ground as a parameter. Table 1 shows the results. At this time, the specific resistance of the simulated fore pile was a value obtained from the above measurement, ρ 1 = 0.9Ω · m. The current was 1 mA.

【0079】この結果を、地山の比抵抗58Ω・m、300Ω・
mおよび∞Ω・mの場合についてフォアパイル直径と単位
長さ当りの抵抗との関係を各々プロットすると、図15
に示すようになる。
The results were obtained by comparing the ground resistivity of 58 Ω · m and 300 Ω · m.
When the relationship between the fore pile diameter and the resistance per unit length is plotted for each of m and ∞Ω · m, FIG.
It becomes as shown in.

【0080】[0080]

【表1】 [Table 1]

【0081】d)模擬フォアパイル掘り出し結果 模擬フォアパイルを硬化後に掘り出し、実際の出来上が
り形状を計測した。ここで、呼び径20cmで削孔して造っ
た模擬フォアパイルであるが、電位計測後硬化までの間
に口元付近で崩落しており、出来上がり形状の計測の結
果をシュミレーション結果と比較することは不適当と判
断した。
D) Result of Excavation of Simulated Fore Pile The simulated fore pile was excavated after curing, and the actual completed shape was measured. Here, it is a simulated fore pile made by drilling with a nominal diameter of 20 cm, but it has collapsed near the mouth between potential measurement and hardening, and it is not possible to compare the result of measurement of the completed shape with the simulation result It was judged inappropriate.

【0082】呼び径30cmの2本の模擬フォアパイルの出
来形計測結果は、各々表2,3に示しているが、電位計
測時から掘り出し時までの間に崩落の可能性がない(電
位計測時の出来形と掘り出し時の出来上がり形状が一致
する)と考えられる粘土質の地山部分での直径(出来
形)は、28〜33cmとなっている。
The results of the measurement of the shape of the two simulated fore piles having a nominal diameter of 30 cm are shown in Tables 2 and 3, respectively, but there is no possibility of collapse between the time of potential measurement and the time of excavation (potential measurement). (The shape of the clay at the time of excavation coincides with the shape at the time of excavation).

【0083】[0083]

【表2】 [Table 2]

【0084】[0084]

【表3】 [Table 3]

【0085】以上の実証実験結果より、地山の比抵抗を
実際の測定値である58Ω・mとしたシュミレーション結果
に、電気ポテンシャル測定から得られた呼び径30cmの模
擬フォアパイルの単位長さ当りの抵抗値9Ω/mを当ては
めると、図15より模擬フォアパイルの直径は、約28cm
となる。
From the results of the above-mentioned demonstration experiments, simulation results in which the resistivity of the ground was 58 Ω · m, which is the actual measurement value, were obtained, and the unit length of the simulated fore pile with a nominal diameter of 30 cm obtained from the electric potential measurement was obtained. When the resistance value of 9 Ω / m is applied, the diameter of the simulated fore pile is approximately 28 cm from FIG.
Becomes

【0086】一方、掘り出して実測した模擬フォアパイ
ルの直径は、前述したように信頼できる部分での値とし
て28〜33cmであった。
On the other hand, the diameter of the simulated fore pile that was dug out and measured was 28 to 33 cm as a value at a reliable portion as described above.

【0087】この実証実験結果から明らかなように、フ
ォアパイルの比抵抗値および地山の比抵抗値から式(1
5)を考慮して行った軸対称有限要素法によるシュミレ
ーション結果に、フォアパイルの電位計測結果から得ら
れた単位長さ当りの抵抗値を対比させることにより改良
体の出来上り形状を推定するとこは、実際の改良体の形
状とほぼ一致しており、本発明の推定方法が有効である
といえる。
As is clear from the results of this demonstration experiment, the specific resistance value of the fore pile and the specific resistance value of the ground are expressed by the following equation (1).
It is possible to estimate the finished shape of the improved body by comparing the resistance per unit length obtained from the measurement results of the fore pile potential with the simulation result by the axisymmetric finite element method performed in consideration of 5). , Which almost coincides with the actual shape of the improved body, and it can be said that the estimation method of the present invention is effective.

【0088】[0088]

【発明の効果】以上、実施例で詳細に説明したように、
本発明にかかる地山改良体の出来上り形状の推定方法に
よれば、試験工事を行うことなく、信頼性の高い推定情
報が得られる。
As described above in detail in the embodiments,
ADVANTAGE OF THE INVENTION According to the estimation method of the completed shape of a ground improvement body concerning this invention, highly reliable estimation information is obtained without performing a test construction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる地山改良体の出来上り形状の推
定方法が適用される改良体の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of an improved body to which a method for estimating a completed shape of a ground improvement body according to the present invention is applied.

【図2】図1の要部拡大図である。FIG. 2 is an enlarged view of a main part of FIG.

【図3】岩石などの比抵抗値を示したグラフである。FIG. 3 is a graph showing a specific resistance value of a rock or the like.

【図4】電流が物質中を電流密度が均一になるように流
れる場合の説明図である。
FIG. 4 is a diagram illustrating a case where a current flows through a substance so that a current density becomes uniform.

【図5】ウインナー法により比抵抗を測定する際の説明
図である。
FIG. 5 is an explanatory diagram when measuring a specific resistance by the Wiener method.

【図6】電気ポテンシャル法により比抵抗を測定する際
の説明図である。
FIG. 6 is an explanatory diagram when measuring a specific resistance by an electric potential method.

【図7】電流が物質中を電流密度が不均一になるように
流れる場合の説明図である。
FIG. 7 is an explanatory diagram of a case where a current flows through a substance so that a current density becomes non-uniform.

【図8】図6の測定結果を示すグラフである。FIG. 8 is a graph showing the measurement results of FIG.

【図9】図6の測定結果を示すグラフである。FIG. 9 is a graph showing the measurement results of FIG.

【図10】図6の測定結果を示すグラフである。FIG. 10 is a graph showing the measurement results of FIG.

【図11】図6の測定結果を示すグラフである。FIG. 11 is a graph showing the measurement results of FIG.

【図12】二次元軸対称有限要素法のシュミレーション
モデルの説明図である。
FIG. 12 is an explanatory diagram of a simulation model of a two-dimensional axisymmetric finite element method.

【図13】図12の展開図である。FIG. 13 is a development view of FIG.

【図14】図12に示したモデルの二次元軸対称有限要
素法による解析結果を示すグラフである。
14 is a graph showing an analysis result of the model shown in FIG. 12 by a two-dimensional axisymmetric finite element method.

【図15】本発明の実証実験における二次元軸対称有限
要素法による解析結果を示すグラフである。
FIG. 15 is a graph showing an analysis result by a two-dimensional axisymmetric finite element method in a demonstration experiment of the present invention.

【符号の説明】[Explanation of symbols]

10 地山 12 改良体 14 電極取付体 14a 本体 16 直流電源 18 電圧計 20 演算手段 PI 電流電極 PV 電位電極10 natural ground 12 improved 14 electrode mounting member 14a body 16 DC power supply 18 voltmeter 20 calculating unit P I current electrode P V potential electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2D040 AB03 AC05 BB09 BD05 CA01 CB03 GA02 2F063 AA19 AA41 BA30 DA05 FA10 KA01 2G060 AA14 AE40 AF02 AF07 AG11 EA06 EA07 HA01 HC10 KA09 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2D040 AB03 AC05 BB09 BD05 CA01 CB03 GA02 2F063 AA19 AA41 BA30 DA05 FA10 KA01 2G060 AA14 AE40 AF02 AF07 AG11 EA06 EA07 HA01 HC10 KA09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 地山中に造成された改良体の長手方向に
沿って設置される電極取付体と、前記電極取付体の長手
方向に沿って所定の間隔を隔てて取付けられた一対の電
流電極と、この電流電極間に所定の間隔を隔てて設置さ
れた一対の電位電極と、前記電流電極間に所定の電流を
流したときに、前記電位電極間の電位差を検出して、前
記改良体の単位長さ当たりの実測抵抗値を求める演算手
段とを備え、 複数種の地山および模擬改良体のそれぞれの比抵抗に基
づいて、二次元軸対称有限要素法により、前記比抵抗の
比をファクターとして、前記模擬改良体の単位長さ当た
りの抵抗値と直径との関係を予め求め、 前記地山および改良体の実測比抵抗から前記ファクター
を選定し、前記実測抵抗値を、前記模擬改良体の単位長
さ当たりの抵抗値と直径との関係に照合することによ
り、造成された前記改良体の直径を推定することを特徴
とする地山改良体の出来上り形状の推定方法。
1. An electrode mounting body installed along the longitudinal direction of an improved body formed in the ground, and a pair of current electrodes mounted at a predetermined interval along the longitudinal direction of the electrode mounting body. And a pair of potential electrodes provided at a predetermined interval between the current electrodes, and when a predetermined current flows between the current electrodes, a potential difference between the potential electrodes is detected, and the improved body is detected. Calculating means for obtaining an actual measured resistance value per unit length of, based on the specific resistance of each of the plurality of types of ground and the simulated improved body, the two-dimensional axisymmetric finite element method, the ratio of the specific resistance As a factor, the relationship between the resistance value per unit length and the diameter of the simulated improved body is determined in advance, the factor is selected from the measured resistivity of the ground and the improved body, and the measured resistance value is calculated by the simulated improvement. The resistance per unit length of the body and By matching the relationship between the diameter, the method of estimating the finished shape of the natural ground improvement body characterized by estimating the diameter of Construction has been the improved body.
【請求項2】 前記改良体の長さと直径との比が、0.
07〜0.16の範囲内にあることを特徴とする請求項
1記載の地山改良体の出来上り形状の推定方法。
2. The improvement according to claim 1, wherein the ratio between the length and the diameter of the improved body is 0.
The method for estimating the finished shape of a ground improvement body according to claim 1, wherein the estimated shape is in the range of 07 to 0.16.
【請求項3】 前記地山および改良体の比抵抗の比が、
50倍以上あることを特徴とする請求項1記載の地山改
良体の出来上り形状の推定方法。
3. The specific resistance ratio between the ground and the improved body is as follows:
2. The method for estimating the completed shape of a ground improvement body according to claim 1, wherein the number is 50 times or more.
JP04011099A 1999-02-18 1999-02-18 Estimation method of completed shape of ground improvement body Expired - Fee Related JP3567775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04011099A JP3567775B2 (en) 1999-02-18 1999-02-18 Estimation method of completed shape of ground improvement body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04011099A JP3567775B2 (en) 1999-02-18 1999-02-18 Estimation method of completed shape of ground improvement body

Publications (2)

Publication Number Publication Date
JP2000240049A true JP2000240049A (en) 2000-09-05
JP3567775B2 JP3567775B2 (en) 2004-09-22

Family

ID=12571729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04011099A Expired - Fee Related JP3567775B2 (en) 1999-02-18 1999-02-18 Estimation method of completed shape of ground improvement body

Country Status (1)

Country Link
JP (1) JP3567775B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200529A (en) * 1999-12-14 2001-07-27 Sol Cie Method for monitoring diameter of column formed by injection
JP2019190004A (en) * 2018-04-18 2019-10-31 日本コンクリート工業株式会社 Excavated shape confirmation device and excavated shape confirming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200529A (en) * 1999-12-14 2001-07-27 Sol Cie Method for monitoring diameter of column formed by injection
JP2019190004A (en) * 2018-04-18 2019-10-31 日本コンクリート工業株式会社 Excavated shape confirmation device and excavated shape confirming method
JP2021169766A (en) * 2018-04-18 2021-10-28 日本コンクリート工業株式会社 Excavated shape confirmation device and excavated shape confirmation method

Also Published As

Publication number Publication date
JP3567775B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP4876185B2 (en) Ground reinforcement effect judgment method by 4-D electrical resistivity monitoring
US7788049B2 (en) Remotely reconfigurable system for mapping subsurface geological anomalies
CN101263404A (en) High resolution resistivity earth imager
CN108802824A (en) A kind of physical analog test apparatus and method for geophysical exploration
RU2248019C2 (en) Method of measuring column diameter
KR100944096B1 (en) System for streamer electrical resistivity survey and method for analysis of underground structure below a riverbed
JP5520351B2 (en) Non-polarized probe and borehole inductive polarization logging instrument including the same
Bearce et al. Electrical resistivity imaging of laboratory soilcrete column geometry
JP3567775B2 (en) Estimation method of completed shape of ground improvement body
CN109392305B (en) Method for predicting size of steel tower foundation
JP2007285729A (en) Method for measuring resistivity in stratum
CN216767359U (en) Fracturing monitoring experiment device
KR100745798B1 (en) an electrode divining rod and electrical resistivity survey methods for inquiring borehole thereof
CN110865243B (en) Detection system and method for piezoelectric part of fracture electric field
Mooney et al. Assessment of jet grout column diameter during construction using electrical resistivity imaging
JP2011133301A (en) Method for surveying bottom depth of underground base structure
KR100284123B1 (en) Electrical resistivity exploration method for boreholes at various angles and device
Amini et al. Diameter Measurement of Jet-Grouting Column Using Geo-Electrical Probe: Construction and Field Testing
Obiadi et al. Imaging subsurface fracture characteristics using 2D electrical resistivity tomography
KR102403250B1 (en) Data collection device for electric resistivity exploration and its method
JPH1060935A (en) Method of investigating health of underground concrete structure
KR20160031323A (en) method for detection of underground structure through measurement of electrical resistivity
JPH09297115A (en) Method of probing ground, and ground probing electrode
US11808797B1 (en) Hemispherical dome electrode configuration and method of use
KR20230049873A (en) A method for predicting complex ground conditions in front of the excavation surface of a tunnel, and the method for excavating a tunnel using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040607

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees