JP2000235830A - Field emission tip - Google Patents

Field emission tip

Info

Publication number
JP2000235830A
JP2000235830A JP2000027501A JP2000027501A JP2000235830A JP 2000235830 A JP2000235830 A JP 2000235830A JP 2000027501 A JP2000027501 A JP 2000027501A JP 2000027501 A JP2000027501 A JP 2000027501A JP 2000235830 A JP2000235830 A JP 2000235830A
Authority
JP
Japan
Prior art keywords
tip
field emission
carbon
nano tube
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000027501A
Other languages
Japanese (ja)
Other versions
JP3488411B2 (en
Inventor
Iimu Jisuun
ジスーン・イーム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2000235830A publication Critical patent/JP2000235830A/en
Application granted granted Critical
Publication of JP3488411B2 publication Critical patent/JP3488411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/02Electrodes other than control electrodes
    • H01J2329/04Cathode electrodes
    • H01J2329/0407Field emission cathodes
    • H01J2329/0439Field emission cathodes characterised by the emitter material
    • H01J2329/0444Carbon types
    • H01J2329/0455Carbon nanotubes (CNTs)

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable emission of much electron even when the applying voltage is low while optimizing the atom structure of a tip part by obliquely cutting a tip of a carbon nano tube in relation to a vertical axis. SOLUTION: A tip of a carbon nano tube is obliquely cut in relation to the axis thereof on purpose so as to obtain the zigzag chain-shaped structure of carbon atom to be exposed at the tip. The same structure with the arrangement structure of the carbon atom to be generated in the periphery of a (n, 0) nano tube ((n) means an integer) is thereby obtained. In the case of multiple carbon nano tubes, tips thereof are obliquely cut. In this case, even if carbon for communicating adjacent layers with each other is adhered to the tip, the same effect is obtained and when electric field is applied, potential energy at the tip of the nano tube is raised, and the work function is lowered. consequently, energy barrier is lowered, and electron emitting probability is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は一般には表示装置を
含む各種素子のための電界放出チップに関するもので、
より詳しくは各種素子で、電子を放出するチップとして
使用される炭素ナノチューブ(carbon nanotube)に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a field emission chip for various devices including a display device.
More particularly, the present invention relates to a carbon nanotube used as a chip for emitting electrons in various devices.

【0002】[0002]

【従来の技術】電界放出型表示素子(FED;Field Em
ission Display)は既に1986年にそのアイディアが
提示され、現在にはテレビジョンの画面など、各種ディ
スプレーにおいて、従来の陰極線管(CRT)、又は最
近脚光を浴びている薄膜トランジスター液晶素子(TF
T−LCD)以降世代の新たな表示素子として絶え間な
く研究発展されている。
2. Description of the Related Art A field emission display device (FED; Field Em
has been proposed in 1986. At present, various displays such as television screens use a conventional cathode ray tube (CRT) or a thin film transistor liquid crystal device (TF) which has recently been in the limelight.
T-LCD) has been continuously researched and developed as a new display element of the next generation.

【0003】このような電界放出型表示素子において、
最も核心的な部品は従来のCRTの電子銃を代替する電
界放出チップ(あるいは電界放出子(field emitter)
又は電子放出チップ(electron emission tip)と呼ば
れる)であるが、これまでは、電界放出チップとして、
金属、半導体又はダイアモンドが使用されている。19
95年頃には炭素ナノチューブを電界放出チップとして
使用しようという提案がなされた以降、これに対する研
究が持続的に進行されて、その中間成果が続々と報告さ
れている。
In such a field emission display device,
The most important component is a field emission chip (or field emitter) which replaces the conventional CRT electron gun.
Or an electron emission tip), but until now, as a field emission tip,
Metals, semiconductors or diamonds have been used. 19
Since the proposal to use carbon nanotubes as field emission chips was made around 1995, research on this has been ongoing and interim results have been reported one after another.

【0004】炭素ナノチューブをチップとして使用する
と、その大きさが従来のチップよりずっと小さい反面、
とても多くのチップが存在して、冗長度が大きくて安定
性が高いことが利点である。
When a carbon nanotube is used as a chip, its size is much smaller than that of a conventional chip,
The advantage is that there are so many chips, that the redundancy is high and the stability is high.

【0005】これまで提案された炭素ナノチューブの製
造技術としてはつぎのようなものがある。
The following have been proposed as techniques for producing carbon nanotubes.

【0006】一番目に、プラズマを用いる化学的蒸着法
(PECVD)を使用して、ニッケルのような触媒が覆
われたガラス基板上に、炭化水素、時には炭化水素とア
ンモニアガスを加えることで、炭素ナノチューブを基板
上に垂直に成長させる技術が提案された。
[0006] First, by using a plasma enhanced chemical vapor deposition (PECVD) method to add hydrocarbons, and sometimes hydrocarbons and ammonia gas, onto a glass substrate coated with a catalyst such as nickel. A technique for vertically growing carbon nanotubes on a substrate has been proposed.

【0007】二番目に、陽極アルミニウム酸化膜に微細
孔が開いた構造に炭化水素を通過させて、数多い平行な
炭素ナノチューブの集合を作る技術が提案された。
Second, a technique has been proposed in which hydrocarbons are passed through a structure in which micropores are formed in the anode aluminum oxide film to form a large number of parallel carbon nanotube aggregates.

【0008】三番目に、従来から使用されているアーク
放電又はレーザー切断法で炭素ナノチューブを生成し、
次いで、ほかの接着剤又は電気的な力を用いて整列させ
る技術が提案された。
Third, carbon nanotubes are produced by a conventional arc discharge or laser cutting method,
Then, a technique of aligning using another adhesive or electric force was proposed.

【0009】そのほかにも、これらと類似した技術が多
く提案された。このような炭素ナノチューブの研究開発
の努力にもかかわらず、未だ、印加された電界下で電子
が実際に放出される炭素ナノチューブの端部の原子構造
が正確に知られていない。また、どのような構造を有す
るとき、電子の放出が最適化されるかについては、殆ど
知られていない。したがって、これまで知られた研究結
果報告からは、実際の使用に当たっての適正な各種パラ
メーター、例えば、電流密度、FEDを作動させるに必
要なスレッシュホールド電圧を導き出すには程遠い。
In addition, many similar techniques have been proposed. Despite such research and development efforts on carbon nanotubes, the exact atomic structure of the ends of carbon nanotubes from which electrons are actually emitted under an applied electric field is not yet known. Also, little is known about what structure the electron emission is optimized when. Therefore, it is far from the known research results reports to derive various parameters appropriate for actual use, such as current density and threshold voltage required for operating the FED.

【0010】電界放出チップとして使用される炭素ナノ
チューブは通電性金属でなければならないので、いわゆ
る(n、n)ナノチューブと呼ばれるものが主として使
用されている(ここで、nは大きさを示す整数であ
る)。しかし、炭素ナノチューブの先端部の構造がどん
な形態を有するものが有利であるかをよく知らなかった
ので、特に考慮しなかったままで使用している。
Since carbon nanotubes used as field emission chips must be conductive metals, so-called (n, n) nanotubes are mainly used (where n is an integer indicating the size). is there). However, since it was not well known what form the tip structure of the carbon nanotube had, it was used without particular consideration.

【0011】殆どの場合、先端部がドーム形状(図1a
及び図1b参照)であるか、又は先端部の断面がナノチ
ューブの軸に垂直に切断された形状(図2a及び図2b
参照)であると推測された。ここでは、ナノチューブが
一重(single-wall nanotube)である場合を図面に示し
たが、多重(multi-wall nanotube)である場面も同様
であった。
In most cases, the tip is dome shaped (FIG. 1a).
And FIG. 1b) or a shape in which the cross section of the tip is cut perpendicular to the nanotube axis (FIGS. 2a and 2b).
See). Here, the case where the nanotubes are single-wall nanotubes is shown in the drawings, but the same applies to the case where the nanotubes are multi-wall nanotubes.

【0012】[0012]

【発明が解決しようとする課題】したがって、本発明の
目的は、炭素ナノチューブチップの先端部の原子構造を
最適化させて、低い印加電圧でも多くの電子が放出され
るようにすることにより、低電圧高電流の電界放出型素
子の製造を可能にした電界放出チップを提供することに
ある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to optimize the atomic structure of the tip of a carbon nanotube tip so that many electrons are emitted even at a low applied voltage, thereby reducing the number of electrons. An object of the present invention is to provide a field emission chip capable of manufacturing a field emission device having a high voltage and a high current.

【0013】[0013]

【課題を解決するための手段】本発明の目的を達成する
ための表示素子の電界放出チップとして炭素ナノチュー
ブを用いることは従来技術と同一である。本発明の特徴
は、既に従来技術を説明するときに言及したように、ガ
ラス基板にナノチューブを垂直に成長させる技法で多く
の炭素ナノチューブを作る第1方法又はその他の方法で
炭素ナノチューブを配列させた後、電界放出チップとし
て使用するため、炭素ナノチューブの先端部を、炭素ナ
ノチューブの軸に対して垂直ではなく、斜めな方法に切
断したことにある。
The use of carbon nanotubes as a field emission chip of a display device to achieve the object of the present invention is the same as in the prior art. A feature of the present invention is that, as already mentioned in the description of the prior art, the carbon nanotubes are arranged by the first method of making many carbon nanotubes by a technique of vertically growing the nanotubes on a glass substrate or other methods. Later, the tip of the carbon nanotube is cut not obliquely but perpendicularly to the axis of the carbon nanotube for use as a field emission chip.

【0014】[0014]

【発明の実施の形態】以下、本発明による表示素子の電
界放出チップについて添付図面を参照して詳細に説明す
る。
Hereinafter, a field emission chip of a display device according to the present invention will be described in detail with reference to the accompanying drawings.

【0015】図3aは本発明による電界放出チップの一
実施例を示す側面図であり、図3bは図3aの平面図で
ある。実際の素子においては、このようなチップが多く
集まっているが、ここでは一つのみを示し、ほかの図面
でも同様である。
FIG. 3A is a side view showing an embodiment of the field emission chip according to the present invention, and FIG. 3B is a plan view of FIG. 3A. Although many such chips are gathered in an actual element, only one is shown here, and the same applies to other drawings.

【0016】ここでは、いわゆる(5,5)ナノチュー
ブを例として図示したが、大きさの異なるほかの金属性
ナノチューブであっても結果は同一である。図面に示す
ように、炭素ナノチューブの先端部が意図的にその軸に
対して斜めな方向に切断されている。したがって、先端
部に露出される炭素原子の構造がジグザグ形のチェーン
形状となる。これにより、学術用語で(n、0)ナノチ
ューブ(ただし、nは整数)の周囲に生ずる炭素原子の
配置構造と同じになる。
Here, a so-called (5,5) nanotube is shown as an example, but the result is the same even with other metallic nanotubes having different sizes. As shown in the drawing, the tip of the carbon nanotube is intentionally cut in a direction oblique to its axis. Therefore, the structure of the carbon atoms exposed at the tip becomes a zigzag chain shape. This is the same as the arrangement structure of carbon atoms generated around the (n, 0) nanotube (n is an integer) in a technical term.

【0017】炭素ナノチューブ胴体部の基本構造はキラ
リティー(chirality)ともいうが、図のような(n、
n)構造でない場合にも、仮に、先端部の配列構造がジ
グザグチェーン形状となると、わざわざ斜めに切断しな
くても、図に示す場合のような効果を奏する。
The basic structure of the carbon nanotube body is also called chirality, but (n,
n) Even if it is not the structure, if the arrangement structure of the tip portion has a zigzag chain shape, the effect shown in FIG.

【0018】そして、炭素ナノチューブが多重である場
合(multi-wall nanotube)にも、同様に、図3に示す
ように、先端部を斜めに切断した形状となるようにす
る。この場合、隣接層間を連絡する炭素が先端部に付い
てもその結果にはあまり差がない。
In the case where the carbon nanotubes are multi-wall nanotubes, similarly, as shown in FIG. 3, the shape of the tip is cut obliquely. In this case, even if carbon which connects adjacent layers is attached to the tip, the result is not so different.

【0019】本発明において、炭素ナノチューブの先端
部を斜めに加工することは比較的簡単な工程によって可
能である。
In the present invention, it is possible to process the tip of the carbon nanotube obliquely by a relatively simple process.

【0020】すなわち、高さの均一な先端開放チューブ
となるように切断する過程で、等方的でない方法、つま
り異方的方法により切断すると、斜めに切断されたチッ
プ構造を得ることができる。具体的に、エッチング用化
学物質又は反応性の強いガスを一方向に加えるか、又
は、細くて曲がり得るナノチューブの場合、一方に力を
加えると、斜めに切断されるものである。
That is, when the tube is cut by a non-isotropic method, that is, an anisotropic method in the process of cutting into a tube having an open end having a uniform height, an obliquely cut chip structure can be obtained. Specifically, when a chemical substance for etching or a highly reactive gas is applied in one direction, or in the case of a thin and bendable nanotube, a force is applied to one of the nanotubes, whereby the nanotube is cut obliquely.

【0021】このような構造の炭素ナノチューブは、電
界をかけると、ナノチューブの先端部に電子がよりよく
集まり、この結果、先端部でのポテンシャルエネルギー
が高くなって仕事関数が小さくなる。従って、つまりエ
ネルギー障壁が低くなり、電子放出確率が高くなる。
In a carbon nanotube having such a structure, when an electric field is applied, electrons are better collected at the tip of the nanotube, and as a result, the potential energy at the tip is increased and the work function is reduced. Therefore, that is, the energy barrier decreases, and the electron emission probability increases.

【0022】このような結果は、精密な量子力学的方法
での計算により確認された。すなわち、固体物理学的電
子構造計算でよく知られている第1原理的シュードポテ
ンシャル(ab initio pseudopotential)方法により、各
場合(図1、図2、図3)の電界による電子構造の変化
を計算し、この際に、電気場(電界)を遮る(screenin
g)ために蓄積された電子によるポテンシャルの上昇を
究めることが確認された。図1及び図2の場合に比べ
て、図3の場合、それぞれ0.8Vと1.1Vほどポテ
ンシャルが上昇した結果を得た。
Such a result was confirmed by calculation using a precise quantum mechanical method. That is, the change in the electronic structure due to the electric field in each case (FIGS. 1, 2 and 3) is calculated by the first principle pseudo-potential (ab initio pseudopotential) method well known in solid-state physical structure calculation. At this time, the electric field (electric field) is blocked (screenin
g) It was confirmed that the potential increase due to the accumulated electrons was determined. Compared with the case of FIGS. 1 and 2, in the case of FIG. 3, the result that the potential was increased by 0.8 V and 1.1 V, respectively, was obtained.

【0023】炭素ナノチューブの先端部に局所化(loca
lized)した電子は、前記計算によると、比較的低い電
気場(電界)中でも、0.5電子ボルト(eV)程度移
動して、いわゆるフェルミ準位にかかって、常温又はそ
れ以下の温度でも電気場(電界)による電子放出に直接
寄与することになる。このような電子は、その波動関数
の特性上、非局所化(delocalized)した、いわゆるパ
イ(π)波動関数と比較するとき、陽極(anode)側の
波動関数と重なる量(overlap integral)が数倍大きく
なって、その結果、電流密度が大きく増加する。
Localization at the tip of the carbon nanotube (loca
According to the above calculation, the lized) electrons move by about 0.5 electron volts (eV) even in a relatively low electric field (electric field), are subjected to a so-called Fermi level, and are charged at room temperature or lower. This directly contributes to electron emission by the field (electric field). Due to the characteristics of such an electron, the number of overlap integrals of the electron with the wave function on the anode side when compared with the so-called pi (π) wave function, which is delocalized, is small. Times, resulting in a large increase in current density.

【0024】図3aに明らかに示すように、炭素ナノチ
ューブの先端部の曲率半径が小さくて、その部分の電気
場強度が避雷針効果により増加するので、電子がトンネ
リングして流れる確率の増加に寄与することになる。
As clearly shown in FIG. 3A, the radius of curvature at the tip of the carbon nanotube is small, and the electric field strength at that portion increases due to the lightning rod effect, thereby contributing to an increase in the probability that electrons flow through by tunneling. Will be.

【0025】図4は本発明による電界放出チップのほか
の実施例を示す側面図である。同図に示すように、炭素
ナノチューブの先端部を2面以上の傾斜面となるように
切断したものであり、この場合にも図3a及び図3bに
示す炭素ナノチューブと同一の効果が期待される。図4
に示す傾斜断面構造は多重のナノチュープ(multi-wall
nanotube)である。この場合も一重(single-wall)の
ナノチューブの場合と効果には差がない。また、チップ
先端部に水素と酸素などが付いた場合にもその結果は根
本的に同一である。
FIG. 4 is a side view showing another embodiment of the field emission chip according to the present invention. As shown in the figure, the tip of the carbon nanotube is cut so as to have two or more inclined surfaces. In this case, the same effect as that of the carbon nanotube shown in FIGS. 3A and 3B is expected. . FIG.
The inclined cross-sectional structure shown in the figure is a multi-wall
nanotube). In this case, the effect is not different from that of the single-wall nanotube. The result is basically the same when hydrogen and oxygen are attached to the tip of the chip.

【0026】本発明の実施例について説明したが、使用
した学術用語は説明のためであり、本発明を限定するた
めではない。本発明の多くの改良、変更は上述した技術
の下で可能であり、それ故、特許請求の範囲内で、本発
明は上述した実施例の他に実施できる点を理解すべきで
ある。
Although the embodiments of the present invention have been described, the technical terms used are for explanation, not for limiting the present invention. It should be understood that many modifications and variations of the present invention are possible in light of the above teachings, and thus, within the scope of the appended claims, the present invention may be practiced other than in the embodiments described above.

【0027】[0027]

【発明の効果】以上説明したように、本発明による各種
素子の電界放出チップは、炭素ナノチューブチップの先
端部を、その軸に対して斜めに切断することにより、低
い印加電圧でも電子の放出が増加するので、低電圧、高
電流の表示素子を製造し得る効果がある。
As described above, in the field emission chip of various devices according to the present invention, electrons are emitted even at a low applied voltage by cutting the tip of the carbon nanotube chip obliquely with respect to its axis. This increases the effect of producing a low-voltage, high-current display element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1aは従来技術による電界放出チップの側面
図である。図1bは図1aの平面図である。
FIG. 1a is a side view of a conventional field emission chip. FIG. 1b is a plan view of FIG. 1a.

【図2】図2aは従来技術による電界放出チップのほか
の例を示す側面図である。図2bは図2aの平面図であ
る。
FIG. 2a is a side view showing another example of a conventional field emission chip. FIG. 2b is a plan view of FIG. 2a.

【図3】図3aは本発明による電界放出チップの一実施
例を示す側面図である。図3bは図3aの平面図であ
る。
FIG. 3a is a side view showing one embodiment of a field emission chip according to the present invention. FIG. 3b is a plan view of FIG. 3a.

【図4】本発明による電界放出チップのほかの実施例を
示す側面図である。
FIG. 4 is a side view showing another embodiment of the field emission chip according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 各種素子の電界放出チップにおいて、炭
素ナノチューブの先端部を垂直軸に対して斜めに切断し
たことを特徴とする電界放出チップ。
1. A field emission chip for various devices, wherein a tip of a carbon nanotube is cut obliquely to a vertical axis.
【請求項2】 炭素ナノチュープの先端部に、互いに交
叉する多数の面を有することを特徴とする請求項1記載
の電界放出チップ。
2. The field emission chip according to claim 1, wherein the tip portion of the carbon nanotube has a plurality of surfaces crossing each other.
【請求項3】 各種素子の電界放出チップにおいて、炭
素ナノチューブの先端部にジグザグチェーン構造が現れ
るように制作して、請求項1の炭素ナノチューブの先端
部の構造と同じ原子配列構造を有するようにしたことを
特徴とする電界放出チップ。
3. The field emission chips of various devices are manufactured so that a zigzag chain structure appears at the tip of the carbon nanotube, and have the same atomic arrangement structure as the structure of the tip of the carbon nanotube of claim 1. A field emission chip characterized in that:
JP2000027501A 1999-02-05 2000-02-04 Field emission chip Expired - Lifetime JP3488411B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-1999-0003851 1999-02-05
KR1019990003851A KR20000055300A (en) 1999-02-05 1999-02-05 Field emission tip

Publications (2)

Publication Number Publication Date
JP2000235830A true JP2000235830A (en) 2000-08-29
JP3488411B2 JP3488411B2 (en) 2004-01-19

Family

ID=19573425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027501A Expired - Lifetime JP3488411B2 (en) 1999-02-05 2000-02-04 Field emission chip

Country Status (2)

Country Link
JP (1) JP3488411B2 (en)
KR (1) KR20000055300A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078306A1 (en) * 2002-03-20 2003-09-25 Zhongshan University An orientation coating method of the top of micro tip.
JP2005238388A (en) * 2004-02-26 2005-09-08 Nagoya Institute Of Technology Carbon nano structure, its manufacturing method, its cutting method, probe having this structure and electric field electron emitting source
JP2009109411A (en) * 2007-10-31 2009-05-21 Hitachi Kenki Fine Tech Co Ltd Probe, its manufacturing method, and probe microscope of scanning type

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699800B1 (en) * 2004-12-01 2007-03-27 나노퍼시픽(주) Field emission display and method of fabricating the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078306A1 (en) * 2002-03-20 2003-09-25 Zhongshan University An orientation coating method of the top of micro tip.
JP2005238388A (en) * 2004-02-26 2005-09-08 Nagoya Institute Of Technology Carbon nano structure, its manufacturing method, its cutting method, probe having this structure and electric field electron emitting source
JP4539817B2 (en) * 2004-02-26 2010-09-08 国立大学法人 名古屋工業大学 Method for producing carbon nanostructure
JP2009109411A (en) * 2007-10-31 2009-05-21 Hitachi Kenki Fine Tech Co Ltd Probe, its manufacturing method, and probe microscope of scanning type

Also Published As

Publication number Publication date
KR20000055300A (en) 2000-09-05
JP3488411B2 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
Han et al. Role of the localized states in field emission of carbon nanotubes
EP1511058B1 (en) Carbon-nano tube structure, method of manufacturing the same, and field emitter and display device each adopting the same
US6062931A (en) Carbon nanotube emitter with triode structure
US8339022B2 (en) Field emission electron source having carbon nanotubes
KR100682863B1 (en) Carbon nanotube structure and fabricating method thereof, and field emission device using the carbon nanotube structure and fabricating method thereof
US20020076846A1 (en) Field emission emitter
JP2007123280A (en) CARBON NANOTUBE HAVING ZnO PROTRUSION
KR101040536B1 (en) gate-focusing electrodes integrated electrodes structure for X-ray tube based on nano-structured material
TWI427665B (en) X-ray generation device and cathode thereof
EP1102298A1 (en) Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
US8070929B2 (en) Catalyst particles on a tip
US8029328B2 (en) Method for manufacturing field emission electron source having carbon nanotubes
US9099272B2 (en) Field emission devices and methods for making the same
US6806629B2 (en) Amorphous diamond materials and associated methods for the use and manufacture thereof
KR19990073592A (en) Fabrication of carbon nanotube field-emitting device using lift-off process.
JP3488411B2 (en) Field emission chip
JP2002093305A (en) Electron emitting negative electrode
KR100445419B1 (en) Cold cathode emission source
KR100668332B1 (en) Fabrication method of device comprising carbide and nitride nano electron emitters
EP1455376B1 (en) Electron-emitting device, electron source, and image display apparatus
KR100762590B1 (en) FED using carbon nanotube and manufacturing method thereof
JP2006210162A (en) Electron beam source
JP2000208026A (en) Electron emitting element
Dong Field emission based sensors using carbon nanotubes
Milne et al. Optimisation of CNTs and ZnO nanostructures for electron sources

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3488411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term