JP2000235082A - Apparatus for detecting thundercloud electric field - Google Patents

Apparatus for detecting thundercloud electric field

Info

Publication number
JP2000235082A
JP2000235082A JP11037256A JP3725699A JP2000235082A JP 2000235082 A JP2000235082 A JP 2000235082A JP 11037256 A JP11037256 A JP 11037256A JP 3725699 A JP3725699 A JP 3725699A JP 2000235082 A JP2000235082 A JP 2000235082A
Authority
JP
Japan
Prior art keywords
electric field
thundercloud
measuring device
change
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11037256A
Other languages
Japanese (ja)
Inventor
Hirohiko Yasuda
裕彦 安田
Yuji Ishikubo
雄二 石窪
Mikio Adachi
幹雄 足立
Shigeaki Uchida
成明 内田
Yoshinori Shimada
義則 島田
Tatsuhiko Yamanaka
龍彦 山中
Chiyoe Yamanaka
千代衛 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Institute for Laser Technology
Original Assignee
Kansai Electric Power Co Inc
Institute for Laser Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Institute for Laser Technology filed Critical Kansai Electric Power Co Inc
Priority to JP11037256A priority Critical patent/JP2000235082A/en
Publication of JP2000235082A publication Critical patent/JP2000235082A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect an electric field of a thundercloud to determine the possibility of the falling of a thunderbolt, so as to conduct a laser thunder-guiding operation and protection for various electric facilities against an influence of the falling, when the thundercloud gets close to generate the possibility of discharge caused by the falling of the thunderbolt in a specified area. SOLUTION: Detected signals of a wide area electric field change measuring apparatus 1 and a probe end corona current measuring apparatus 2, and a detected signal of an electrostatic field measuring apparatus 3 as an interlock signal are fed to a detecting part 5 respectively to release interlock by getting- close of thundercloud, and electric field is measured by each of the measuring apparatus 1 r 2 or both of them, a shot signal is fed to control part 4 when the change of the electric field exceeds a prescribed threshold value in a detection result measured hereinbefore, and laser thunder-guiding control is operated to conduct dielectric processing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、レーザ誘雷装置
や落雷による影響から保護すべき各種システムの保護装
置に雷雲の電界検出信号を送るための雷雲電界検出装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thundercloud electric field detection device for transmitting a thundercloud electric field detection signal to a laser lightning device or a protection device of various systems to be protected from the effects of lightning.

【0002】[0002]

【従来の技術】自然雷には雲から大地に向かって初期放
電が進行する雲−大地放電と、地上から雲に向かって放
電が延びる大地−雲放電があり、又雷には夏に起こる雷
と冬の日本海側で頻繁に起こる冬季雷とがある。雷放電
の初期現象(プレリミナリーブレークダウンと呼ばれる
弱い放電の発生)から落雷に至るまでの時間は雷雲の高
度にもよるが、百分の1秒のオーダ程かかる。雲−大地
放電は夏季雷、冬季雷の両方で起こり、大地−雲放電は
日本では日本海沿岸で起こる特異な雷放電現象である。
2. Description of the Related Art Natural lightning includes a cloud-ground discharge in which an initial discharge progresses from a cloud to the ground, and a ground-cloud discharge in which a discharge extends from the ground to a cloud. And winter thunder that frequently occurs on the Sea of Japan side in winter. The time from the initial phenomenon of lightning discharge (the generation of a weak discharge called preliminary breakdown) to the lightning strike is about one hundredth of a second, depending on the altitude of the thundercloud. Cloud-ground discharge occurs in both summer and winter lightning, and ground-cloud discharge is a peculiar lightning phenomenon occurring in Japan along the coast of the Sea of Japan.

【0003】日本海側、特に北陸地方の冬季雷は雲底の
高度が低く(1〜3km)、雷雲と地上との電界分布が
比較的高いため、高い構造物の先端からリーダが上空に
向かって進む上向きリーダが観測される。このことは、
レーザ誘雷にとって好都合な条件であり、レーザ誘雷の
研究は冬季雷をターゲットとして現在盛んに行われてい
る。
[0003] Winter lightning on the Sea of Japan side, particularly in the Hokuriku region, has a low cloud base (1 to 3 km) and a relatively high electric field distribution between the thundercloud and the ground, so that the leader faces the sky from the tip of a high structure. An upward leader is observed. This means
This is a favorable condition for laser lightning, and research on laser lightning is currently being actively conducted for winter lightning.

【0004】レーザ誘雷の概念は、図6に示すように、
落雷を防止したい鉄塔、送電線から所定の位置に誘雷塔
を設置し、この誘雷塔の周辺に設置した強力な例えばC
2レーザのレーザ光を集光ミラーにより誘雷塔先端付
近に集光し、誘雷塔先端にレーザによるプラズマチャン
ネルを生成してレーザプラズマ中から上向きリーダを生
成して誘雷を行うというものである。高い誘雷塔の先端
では電界が集中し、高電界が存在するためにレーザプラ
ズマ中から上向きリーダが生成される。リーダはレーザ
プラズマに沿って地上から上空に進展し、地上と雷雲を
短絡して雷の電荷を中和する。
The concept of laser lightning strike is as shown in FIG.
Install a lightning tower at a predetermined position from the tower and transmission line that you want to prevent lightning, and install a strong, for example, C
Laser light of O 2 laser is condensed near the tip of the lightning tower by a condensing mirror, a plasma channel is generated by the laser at the tip of the lightning tower, an upward reader is generated from the laser plasma, and lightning is triggered. It is. The electric field concentrates at the tip of the high lightning tower, and the presence of the high electric field generates an upward reader from the laser plasma. The reader extends from the ground to the sky along the laser plasma, shorting the ground and the thundercloud, and neutralizing the lightning charge.

【0005】このような基本概念に沿ったレーザ誘雷装
置について特開平5−180954号公報など多数の特
許公報により開示されている。
[0005] A number of patent publications, such as Japanese Patent Laid-Open No. 5-180954, disclose a laser lightning arrester conforming to such a basic concept.

【0006】[0006]

【発明が解決しようとする課題】ところで、雷の予知は
上記レーザ誘雷装置による誘雷の実施、あるいは変電所
設備や無線局などの保護のため保護設備を動作させるな
ど予め落雷の可能性が高い状態が分かればその予知情報
を種々の用途に役立てることができる。雷雲が特定地域
に近づいていることは雨雲をレーダで観測し、所定範囲
内では雷雲の電界を測定することにより知ることができ
る。
By the way, the lightning can be predicted in advance by the lightning strike by the laser lightning device or by operating the protection equipment to protect the substation equipment and the radio station in advance. If a high state is known, the prediction information can be used for various purposes. The fact that a thundercloud is approaching a specific area can be known by observing a rain cloud with a radar and measuring the electric field of the thundercloud within a predetermined range.

【0007】しかし、雷雲が特定地域の所定範囲内に進
んで来たとしても、その雷雲から実際に建物などに落雷
する可能性が高く、レーザ誘雷装置を作動させて誘雷を
実施できるか、又その時は保護設備を作動させるべきで
あるかの状態を検知することは単に雷雲の電界をモニタ
するだけでは知ることができない。特にレーザ誘雷を実
施する場合、レーザの照射はタイミングを決定する要素
として雷雲の成長度合い、地上電界の上昇、コロナ電流
の増加などが挙げられる。
[0007] However, even if the thundercloud advances within a predetermined area of a specific area, there is a high possibility that the thundercloud will actually strike a building or the like. At that time, it is not possible to detect whether the protective equipment should be activated by simply monitoring the electric field of the thundercloud. In particular, when laser lightning is performed, factors that determine the timing of laser irradiation include a thundercloud growth degree, an increase in ground electric field, and an increase in corona current.

【0008】しかし、従来はこれらの要素をオペレータ
がこれらの要素の数値をモニタしながら経験的に照射タ
イミングを決定していたため、客観的に確実に誘雷の実
施及び保護装置の作動のためのタイミングを知ることが
できず、雷雲の状態が急激に変化した場合は適格に対応
できなかった。又、上述した各種の特許公報に提案され
ているレーザ誘雷方法及び装置は、レーザ誘雷を如何に
確実に実現できるかについての基本構成の改良について
記述しているに過ぎない。
However, conventionally, since the irradiation timing of these elements is empirically determined by an operator while monitoring the numerical values of these elements, it is possible to objectively and reliably perform lightning strike and operate the protection device. The timing could not be known, and it was not possible to respond properly if the state of the thundercloud changed suddenly. Further, the laser lightning method and apparatus proposed in the various patent publications described above merely describe an improvement in the basic configuration of how to reliably realize laser lightning.

【0009】この発明は、上記種々の問題点に留意し
て、特定地域に雷雲が接近したときに落雷の可能性につ
いて雷雲の電界変化による閾値を設けてその可能性を検
出し、レーザ誘雷や各種電気設備の保護のためのタイミ
ング信号を得ることができる雷雲電界検出装置を提供す
ることを課題とする。
SUMMARY OF THE INVENTION In view of the above-mentioned various problems, the present invention sets a threshold value based on a change in the electric field of a thundercloud when a thundercloud approaches a specific area, detects the possibility of the thundercloud, and performs laser-induced lightning. It is an object of the present invention to provide a thundercloud electric field detection device capable of obtaining a timing signal for protection of various electric facilities.

【0010】[0010]

【課題を解決するための手段】この発明は、上記課題を
解決する手段として、雷雲の前駆放電により放出される
電磁波の電界の変化を測定する電界変化測定器と、この
測定器の測定信号から所定値以上の電界を検出して信号
を出力する検出部とを備え、上記測定器はμ秒単位以下
の時間分解能で電界の変化を測定する測定器とし、この
測定器の測定信号から検出部で数m秒乃至数拾m秒単位
の時間間隔内に電界値が所定の電界閾値を越える変化を
複数回検出すると出力信号を出力するようにして成る雷
雲電界検出装置としたのである。
According to the present invention, there is provided an electric field change measuring device for measuring a change in an electric field of an electromagnetic wave emitted by a thundercloud predischarge, and a measuring signal from the measuring device. A detection unit for detecting an electric field of a predetermined value or more and outputting a signal, wherein the measuring device is a measuring device for measuring a change in the electric field with a time resolution of a unit of microsecond or less, and Thus, a thundercloud electric field detecting device is configured to output an output signal when a change in the electric field value exceeding a predetermined electric field threshold is detected a plurality of times within a time interval of several milliseconds to several milliseconds.

【0011】上課題を解決する手段として、雷雲の前駆
放電により放出される電磁波の電界を測定する電界測定
器と、この測定器の測定信号から所定値以上の雷雲を検
出して信号を出力する検出部とを備え、上記測定器はm
秒単位の時間分解能で電界の変化を測定する測定器と
し、測定中の任意の時間に検出信号が所定の閾値を越え
たことを検出部で検出すると出力信号を出力するように
して成る雷雲電界検出装置とすることもできる。
As means for solving the above problems, an electric field measuring device for measuring an electric field of an electromagnetic wave emitted by a precursor discharge of a thundercloud, and a thundercloud having a predetermined value or more is detected from a measurement signal of the measuring device to output a signal. And a detector, wherein the measuring device is m
A thundercloud field measuring device that measures changes in electric field with a time resolution of seconds, and outputs an output signal when the detector detects that the detection signal has exceeded a predetermined threshold at any time during the measurement. It can also be a detection device.

【0012】あるいは、雷雲の前駆放電により放出され
る電磁波の電界の変化を測定する電界変化測定器と、こ
の測定器の測定信号から所定値以上の電界の雷雲を検出
して信号を出力する検出部とを備え、上記検出センサは
μ秒単位以下の時間分解能で電界の変化を検出する第1
電界変化測定器と、m秒単位の時間分解能で電界の変化
を検出する第2電界変化測定器とし、これら測定器の測
定値からそれぞれの検出部で数m秒乃至数拾m秒単位の
時間間隔内に電界値が所定の電界閾値を越える変化を複
数回検出するか、又は測定の任意の時間に電界値が所定
の閾値を越えたことを検出するかのいずれか又は両方を
検出すると出力信号を出力するようにして成る雷雲電界
検出装置としてもよい。
Alternatively, an electric field change measuring device for measuring a change in an electric field of an electromagnetic wave emitted by a precursor discharge of a thundercloud, and a detecting device for detecting a thundercloud having an electric field of a predetermined value or more from a measurement signal of the measuring device and outputting a signal. A first unit for detecting a change in an electric field with a time resolution of a unit of μ seconds or less.
An electric field change measuring device and a second electric field change measuring device for detecting a change in an electric field with a time resolution of a unit of milliseconds. Output when detecting either multiple changes of the electric field value exceeding the predetermined electric field threshold value within the interval, or detecting that the electric field value exceeds the predetermined threshold value at any time of measurement, or both. A thundercloud electric field detection device configured to output a signal may be used.

【0013】上記3つの発明のいずれの検出装置も雷雲
が接近するとその電界変化を検出してショット信号を出
力する。第1の発明は、雷雲が発達しながら電界状態が
急激に変動している場合に落雷の可能性があり、所定の
限界値を越えたかどうかの検出をする。このような雷雲
からPB(Preliminany Breakdown )放電が繰り返し放
出されるため、その電界変化によってその可能性を判断
する。電界変化測定器は、μ秒単位以下の時間分解能で
作動するから、m秒乃至数拾m秒の測定時間内でそのよ
うな微小な分解能で検出した電界値が閾値を複数回越え
たことが検出できれば、これによって落雷の可能性が判
断できる。
Any of the detection devices of the above three inventions detects a change in the electric field when a thundercloud approaches, and outputs a shot signal. The first invention detects whether there is a possibility of a lightning strike when the electric field condition fluctuates rapidly while a thundercloud develops, and detects whether or not a predetermined limit value has been exceeded. Since a PB (Preliminany Breakdown) discharge is repeatedly emitted from such a thundercloud, the possibility is judged by the electric field change. Since the electric field change measuring device operates with a time resolution of the order of microseconds or less, the electric field value detected with such a minute resolution may exceed the threshold value several times within the measurement time of m seconds to several milliseconds. If it can be detected, the possibility of a lightning strike can be determined.

【0014】第2の発明も落雷の可能性を検出する装置
であり、この場合は電界変化測定器はm秒単位の時間分
解能であるため、第1の発明の測定器よりゆっくりと雷
雲の電界が変化する場合を測定するのに適している。
The second invention is also a device for detecting the possibility of a lightning strike. In this case, since the electric field change measuring device has a time resolution of the order of milliseconds, the electric field of the thundercloud is slower than the measuring device of the first invention. It is suitable for measuring the case where changes occur.

【0015】第3の発明では、第1の発明と第2の発明
の異なる種類の特性を有する電界変化測定器を両方とも
設けて、そのいずれか又は両方の検出によって出力信号
を出力するようにしている。
According to a third aspect of the present invention, both of the first and second aspects of the present invention are provided with electric field change measuring devices having different types of characteristics, and an output signal is output by detecting one or both of them. ing.

【0016】[0016]

【実施の形態】以下、この発明の実施の形態について図
面を参照して説明する。図1は実施形態の雷雲電界検出
装置Aをレーザ誘雷装置Bに接続した例の全体概略図で
ある。1は広帯域電界変化測定器(スローアンテナ)、
2は針端コロナ電流測定器、3は静電界測定器(フィー
ルドミル)、4はレーザ制御部である。雷雲電界検出装
置Aのブロック図を図2に示す。検出部5は各測定器の
測定信号から電界変化又は静電界値を検出する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall schematic diagram of an example in which a thundercloud electric field detection device A of the embodiment is connected to a laser lightning device B. 1 is a broadband electric field change measuring instrument (slow antenna),
2 is a needle end corona current measuring device, 3 is an electrostatic field measuring device (field mill), and 4 is a laser controller. FIG. 2 shows a block diagram of the thundercloud electric field detection device A. The detector 5 detects an electric field change or an electrostatic field value from a measurement signal of each measuring instrument.

【0017】電界変化測定器1は金属円盤製電界アンテ
ナ部1aとその測定信号を増幅する増幅器1bとから成
り、雷雲によって平板上に誘起される電荷を測定するこ
とにより地上電界の鉛直成分の強度に比例した出力が得
られる。この測定器1はμ秒単位の時間分解能を有す
る。検出部5は、測定器1の測定信号に対し測定時間間
隔10m秒の間電界変化を検出し、その測定時間内に閾
値レベル(地上電界値)1.0kV/mを越える電界変
化が3回カウントされるとショット信号を出力する電界
変化検出部5aを含む。
The electric field change measuring device 1 comprises an electric field antenna section 1a made of a metal disk and an amplifier 1b for amplifying the measurement signal, and measures the electric charge induced on a flat plate by a thundercloud to obtain the intensity of the vertical component of the ground electric field. Is obtained in proportion to. This measuring instrument 1 has a time resolution of μ second unit. The detecting unit 5 detects an electric field change for a measurement signal of the measuring device 1 for a measurement time interval of 10 ms, and three electric field changes exceeding a threshold level (ground electric field value) 1.0 kV / m within the measurement time. An electric field change detector 5a that outputs a shot signal when counted is included.

【0018】コロナ電流測定器2は、針状電極部2a
と、この電極部に流れるコロナ電流を増幅する増幅器2
bとから成り、雷雲によって針状電極部2aに誘起され
るコロナ電流を測定して雷雲の対地間電界を測定するも
のである。この測定器2はm秒単位の時間分解能を有す
る。検出部5は、測定器2の測定信号に対し時間幅やカ
ウント数の設定を設けず、測定中の任意の時間に電流値
が所定の閾値20μA以上になるとショット信号を出力
する電界変化検出部5bを含む。
The corona current measuring device 2 has a needle-like electrode portion 2a.
And an amplifier 2 for amplifying the corona current flowing through this electrode section
b) to measure the corona current induced in the needle-shaped electrode portion 2a by the thundercloud to measure the electric field between the thundercloud and the ground. This measuring device 2 has a time resolution of the order of milliseconds. The detecting unit 5 does not provide the setting of the time width or the number of counts with respect to the measurement signal of the measuring device 2, and outputs the shot signal when the current value becomes equal to or more than the predetermined threshold value 20 μA at any time during the measurement. 5b.

【0019】静電界測定器3は、雷雲の接近を検出する
ためのものであり、ポッケルス素子を用いたもの又は干
渉計型のものであれその形式を問わず静電界を測定でき
るものであればよい。検出部5は、測定器3に対し測定
された静電界値が閾値である15kV/mを越えるとシ
ョット信号を出力する静電界検出部5cを含む。
The electrostatic field measuring device 3 is for detecting the approach of a thundercloud, and is not limited to a device using a Pockels element or an interferometer as long as it can measure an electrostatic field regardless of its type. Good. The detection unit 5 includes an electrostatic field detection unit 5c that outputs a shot signal when an electrostatic field value measured by the measuring device 3 exceeds a threshold value of 15 kV / m.

【0020】検出部5へは上記3つの測定器1〜3の測
定信号がそれぞれ入力されるが、測定器3からの信号は
2つの測定器1、2のいずれかの誤動作をインターロッ
クする信号として入力されており、この測定器3からの
信号が入力されていない限り測定器1と2のいずれか又
は両方の信号が入力されても検出部5は出力信号を出力
しないようになっている。検出部5からのショット信号
はレーザ制御部4へ入力され、この制御部4によりレー
ザ誘雷装置Bが駆動される。
The measuring signals of the above three measuring instruments 1 to 3 are respectively inputted to the detecting section 5, and the signal from the measuring instrument 3 is a signal interlocking any malfunction of the two measuring instruments 1 and 2. As long as the signal from the measuring device 3 is not input, the detection unit 5 does not output the output signal even if one or both signals of the measuring devices 1 and 2 are input. . The shot signal from the detection unit 5 is input to the laser control unit 4, and the control unit 4 drives the laser lightning device B.

【0021】図1に示すレーザ誘雷装置Bは、レーザ発
生装置11からのレーザ光を集光ミラー12で垂直方向
に直線状に反射、集光し、雷雲からの落雷を地上にアー
スするための誘雷塔13の頂部に設けた絶縁ターゲット
14に上記集光されたレーザ光を照射して連続プラズマ
チャンネルを生成し、そのレーザプラズマから成長した
リーダにより雷雲を誘雷塔13に導くようになってい
る。
The laser lightning striker B shown in FIG. 1 is for reflecting and condensing the laser light from the laser generator 11 linearly and vertically in the vertical direction by the condenser mirror 12, and grounding the lightning strike from the thundercloud to the ground. The insulated target 14 provided on the top of the lightning tower 13 is irradiated with the condensed laser light to generate a continuous plasma channel, and a leader grown from the laser plasma guides the thundercloud to the lightning tower 13. Has become.

【0022】なお、レーザ誘雷装置Bは上記例では誘雷
塔13の上部に絶縁ターゲットを設けたものを示した
が、従来のレーザ誘雷装置のように誘雷塔13の上部に
何ら固体ターゲットを設けずに上部空間にレーザ光を集
光して空間プラズマを生成する方式のものであってもよ
い。但し、このような従来のレーザ誘雷装置は空間プラ
ズマの発生効率が悪く、リーダが雷雲まで達しないもの
が多いが、それらのうちリーダが雷雲まで達してレーザ
誘雷を確実に実現できるものとする。
In the above example, the laser lightning arrester B has an insulating target provided above the lightning arrester 13. However, unlike the conventional laser lightning arrester, there is no solid object above the lightning arrester 13. A method of generating a spatial plasma by condensing a laser beam in an upper space without providing a target may be used. However, such conventional laser lightning strikers have poor spatial plasma generation efficiency, and in many cases, the reader does not reach the thundercloud. I do.

【0023】以上のように構成した雷雲電界検出装置A
をレーザ誘雷装置Bに備えた実施形態の作用は次の通り
である。
The thundercloud electric field detecting device A configured as described above
The operation of the embodiment provided with the laser lightning device B is as follows.

【0024】雷雲Kが特定地域に接近しているかどうか
は、従来と同様にレーダで雨雲の移動をモニタする。そ
の結果雷雲Kが近づいて来た時は上記装置A、Bの電源
を投入して雷雲の電界状態の測定を開始する。
Whether or not the thundercloud K is approaching a specific area is monitored by a radar in the same manner as in the prior art. As a result, when the thundercloud K approaches, the power of the devices A and B is turned on to start measuring the electric field state of the thundercloud.

【0025】電界状態の測定は、まず静電界測定器3に
より雷雲Kの静電界が所定の閾値レベル15kV/mを
越えているかについて行なわれ、それ以下ではたとえ広
帯域電界変化測定器1や針端コロナ電流測定器2が誤動
作によりショット信号を出力したとしても検出部5から
出力信号は出力されない。
The measurement of the electric field state is first performed by the electrostatic field measuring device 3 to determine whether the electrostatic field of the thundercloud K exceeds a predetermined threshold level of 15 kV / m. Even if the corona current measuring device 2 outputs a shot signal due to a malfunction, no output signal is output from the detecting section 5.

【0026】上述した静電界の閾値は、雷雲から発達し
落雷する可能性のある雷雲になる下限での静電界値であ
り、この閾値を越えれば直ちに落雷する程の高い電界値
ではない。しかし、この閾値を越えれば雷雲からの落雷
の可能性はあるため、測定器1と2による測定信号に対
して並行に検出部5に静電界測定器3からの信号が送ら
れインターロックが解除される。
The above-mentioned threshold value of the static electric field is a static electric field value at a lower limit of a thundercloud that develops from a thundercloud and has a possibility of lightning strike. If the threshold value is exceeded, the electric field value is not high enough to cause a lightning strike immediately. However, if the threshold value is exceeded, there is a possibility of a lightning strike from the thundercloud. Therefore, the signal from the electrostatic field measuring device 3 is sent to the detecting unit 5 in parallel with the measurement signals from the measuring devices 1 and 2, and the interlock is released. Is done.

【0027】従って、測定器1と2による測定の結果、
いずれかの測定器1、2又は両方で測定信号がそれぞれ
の測定器1と2の閾値を越えれば検出部5からショット
信号が出力される。この場合、測定器1では測定時間1
0m秒の間に閾値レベル1.0kV/mを越える電界変
化が3回カウントされると、雷雲の電界が落雷の可能性
があり、レーザ誘雷処理をして落雷を回避すべき状態で
あると判断されショット信号が出力される。
Therefore, as a result of the measurement by the measuring devices 1 and 2,
If the measurement signal in any one of the measuring devices 1 and 2 or both exceeds the threshold value of each of the measuring devices 1 and 2, the detecting section 5 outputs a shot signal. In this case, the measuring device 1 measures time 1
If an electric field change exceeding the threshold level of 1.0 kV / m is counted three times within 0 ms, the electric field of the thundercloud may be a lightning strike, and it is in a state in which a lightning strike is performed to avoid a lightning strike. And a shot signal is output.

【0028】又、測定器2では前述した所定の閾値であ
るコロナ電流が20μA以上流れたことを測定すると、
同様に落雷を回避すべき状態と判断されショット信号が
出力される。このように、2つの測定器1、2ではそれ
ぞれが落雷の可能性を検出するとその検出信号のいずれ
か、又は両方により検出部5からショット信号が出力さ
れるが、この場合2つの測定器1、2ではそれぞれの特
性に応じて雷雲の電界変化が異なる状態を検出する。
When the measuring instrument 2 measures that the corona current, which is the above-mentioned predetermined threshold value, has passed 20 μA or more,
Similarly, it is determined that lightning should be avoided, and a shot signal is output. As described above, when each of the two measuring devices 1 and 2 detects the possibility of a lightning strike, a shot signal is output from the detecting section 5 by one or both of the detection signals. 2 detects a state in which the electric field change of the thundercloud differs according to each characteristic.

【0029】測定器1はその電界変化を検出する機能と
してμ秒単位の時間分解能で検出できるから、所定の測
定時間内に閾値を越える変化をμ秒単位で検出し、雷雲
の電界が急激に変化しているような状態を検出できる。
雷雲が急速に発達しているような場合である。このよう
な変動する雷雲からはPB放電(Preliminany Breakdow
n )が繰り返し放出され、その繰り返し時間は4〜50
μ秒で10数回繰り返される。
Since the measuring instrument 1 can detect the electric field change with a time resolution of the order of microseconds as a function of detecting the change of the electric field, it detects the change exceeding the threshold value within the predetermined measurement time in the order of microseconds, and the electric field of the thundercloud rapidly changes. A state that is changing can be detected.
This is the case when thunderclouds are developing rapidly. PB discharge (Preliminany Breakdowow) from such a fluctuating thundercloud
n) is released repeatedly and the repetition time is 4-50
Repeated several times in μ seconds.

【0030】このようなPB放雷信号の電磁波を測定器
1でμ秒単位で測定し、3回(複数回)閾値を越えると
ショット信号を出力するようにタイミング設定をするこ
とによりレーザ誘雷のトリガ信号としてショット信号を
利用できるため、誘雷動作に対して誤動作が少なくな
り、レーザ誘雷装置の空動作を防ぐことができる。又、
PB放電信号は雷現象の初期段階で放出されるため、レ
ーザ誘雷動作を初期段階で行える利点がある。
The electromagnetic wave of the PB lightning signal is measured by the measuring device 1 in units of μ seconds, and the timing is set so as to output a shot signal when the threshold value is exceeded three times (a plurality of times). Since the shot signal can be used as the trigger signal of the above, the malfunction of the lightning operation is reduced, and the idle operation of the laser lightning device can be prevented. or,
Since the PB discharge signal is emitted in the initial stage of the lightning phenomenon, there is an advantage that the laser-induced lightning operation can be performed in the initial stage.

【0031】一方、PB放電があっても雷現象の初期段
階で必らずしも測定器1によりPB放電信号からレーザ
誘雷をすべきタイミングであると判断される状態を検出
できるとは限らない場合、即ち電界の変化はミリ秒程度
のゆっくりした変化であるがレーザ誘雷はすべきタイミ
ングである場合がある。このような場合、測定器1が必
らずしもその電界変化を捉えることができないことがあ
り、このため測定器2がこのような場合に対処できるよ
うに設けられている。
On the other hand, even if there is a PB discharge, it is not always possible for the measuring instrument 1 to detect from the PB discharge signal a state in which it is determined that it is time to trigger laser lightning at the initial stage of the lightning phenomenon. In some cases, the change in the electric field may be a slow change on the order of milliseconds, but the timing for triggering the laser may be necessary. In such a case, the measuring device 1 may not always be able to detect the change in the electric field, and therefore, the measuring device 2 is provided to cope with such a case.

【0032】この測定器2は、ミリ秒単位の時間分解能
のものであり、図4に示すように、PB放電により変動
する電界変化の影響で針端プローブに流れるコロナ電流
を積分し、その積分値が所定の閾値を越えるとPB放電
によるリーダはμ秒単位での急激な変化によるものでは
ないが、変動幅は所定のレベルを越えていると判断す
る。
This measuring device 2 has a time resolution of a millisecond unit, and as shown in FIG. 4, integrates a corona current flowing through a needle probe under the influence of an electric field change fluctuated by a PB discharge, and integrates the corona current. If the value exceeds a predetermined threshold, the reader due to the PB discharge is not caused by a sudden change in the unit of μ seconds, but it is determined that the fluctuation width exceeds the predetermined level.

【0033】従って、電界変化が時間的にはゆっくりし
ているが変動幅は大きく、レーザ誘雷をすべきタイミン
グを検出することができる。但し、この測定器2では雷
雲が急激に発達している場合はその変化をタイミングよ
く捉えることができないことがあり、誤動作する場合も
ある。
Accordingly, although the electric field change is slow in time, the fluctuation width is large, and it is possible to detect the timing at which laser lightning should be performed. However, when the thundercloud develops rapidly with this measuring device 2, the change may not be able to be caught at a good timing, and a malfunction may occur.

【0034】以上のようにして雷雲の電界状態が検出さ
れて検出部5からショット信号がレーザ制御部4へ出力
されると、そのショット信号に対応してレーザ制御部4
からレーザ誘雷装置Bのレーザ発生装置11に対して制
御信号が送信され、レーザ誘雷が行なわれる。レーザ誘
雷装置Bでは、前述したように、誘雷塔13の先端のタ
ーゲット14で連続プラズマチャンネルが生成され、そ
れによって生じたリーダが雷雲まで延び雷雲の電荷を誘
雷塔13へ導き誘雷が行なわれる。
When the electric field state of the thundercloud is detected as described above and a shot signal is output from the detection unit 5 to the laser control unit 4, the laser control unit 4 responds to the shot signal.
Transmits a control signal to the laser generator 11 of the laser lightning trigger B to perform laser lightning. In the laser lightning strike device B, as described above, a continuous plasma channel is generated at the target 14 at the tip of the lightning tower 13, and the generated leader extends to the thundercloud, guides the electric charge of the thundercloud to the lightning tower 13, and causes lightning. Is performed.

【0035】なお、上記実施形態では検出部5への3つ
の測定器1、2、3の測定信号を入力し、測定器3の信
号をインターロック信号として測定器1、2のいずれか
又は両方の検出信号により検出部5からショット信号を
出力するとしたが、電界検出装置としては測定器1とそ
の検出部5a又は測定器2とその検出部5bのそれぞれ
単独の検出機能を有する検出装置又はその単独の検出装
置に測定器3とその検出部5cをそれぞれ組合せたもの
としてもよい。各単独の検出装置ではそれぞれの特性に
応じた雷電の電界状態の変化を検出できる。
In the above-described embodiment, the measurement signals of the three measuring devices 1, 2, and 3 are input to the detecting section 5, and the signal of the measuring device 3 is used as an interlock signal and one or both of the measuring devices 1 and 2 are used. It is assumed that the detection signal is output from the detection unit 5 in accordance with the detection signal described above. However, as the electric field detection device, the measurement device 1 and its detection unit 5a or the measurement device 2 and its detection unit 5b each having a single detection function, The measuring device 3 and its detecting section 5c may be combined with a single detecting device. Each single detection device can detect a change in the electric field state of lightning according to each characteristic.

【0036】又、上記実施形態の雷雲電界検出装置Aは
レーザ誘雷装置Bへレーザ誘雷のタイミング信号を検出
送信するものとしたが、このような利用以外にも各種電
気設備を電磁ノイズや落雷による影響から保護するため
の高速保護装置へ制御信号を送り電気設備の保護に利用
することもできる。施設建物(例えば無線局)などで
は、雷などの電磁ノイズによるサージ高電圧が誘導され
る(または落雷)と機器の破損が生じるために、機器の
高電圧に対する対策などが講じられてきた。しかし、事
前にサージ高電圧などが予知出来、異常電圧の侵入を阻
止出来れば、機器等の設計、設備の仕様が大幅に軽減出
来る利点が有る。
Although the thundercloud electric field detecting device A of the above embodiment detects and transmits the timing signal of laser lightning to the laser lightning device B, other than such use, various electric equipment may generate electromagnetic noise or noise. A control signal can be sent to a high-speed protection device for protection from the effects of lightning, which can be used to protect electrical equipment. In a facility building (for example, a radio station) or the like, if high surge voltage is induced (or lightning strikes) due to electromagnetic noise such as lightning, the equipment is damaged. Therefore, measures against high voltage of the equipment have been taken. However, if the surge high voltage and the like can be predicted in advance and the intrusion of abnormal voltage can be prevented, there is an advantage that the design of equipment and the like and the specifications of equipment can be greatly reduced.

【0037】例えば、図5に示すように、施設建物(例
えば無線局)などの建物上部の支柱22上に無線アンテ
ナ23を設ける。雷による影響を防止するため無線アン
テナ23に高速保護装置24を設け、これに雷雲電界検
出装置Aの制御信号を送り、設備の保護に用いる。
For example, as shown in FIG. 5, a radio antenna 23 is provided on a support 22 above a building such as a facility building (for example, a radio station). In order to prevent the influence of lightning, a high-speed protection device 24 is provided on the wireless antenna 23, and a control signal of the thundercloud electric field detection device A is sent to this device to use for protection of equipment.

【0038】雷雲電界検出装置Aから落雷の可能性を検
出した制御信号が高速保護装置24へ送られてくると、
その制御信号により高速保護装置24内のスイッチを切
り替えてPB放電の電磁波の信号を無線アンテナ23か
らアース線25を経由した地上へアースし、かかるノイ
ズ信号が無線局へ直接影響を及ぼさないように保護する
のである。保護の対象は無線局以外にも各種設備が含ま
れる。
When a control signal that detects the possibility of a lightning strike is sent from the thundercloud electric field detection device A to the high-speed protection device 24,
The control signal switches a switch in the high-speed protection device 24 to ground the PB discharge electromagnetic wave signal from the wireless antenna 23 to the ground via the ground wire 25 so that the noise signal does not directly affect the wireless station. Protect. The equipment to be protected includes various facilities besides radio stations.

【0039】[0039]

【発明の効果】以上詳細に説明したように、本願の第1
の発明ではμ秒単位の時間分解能の電界変化測定器によ
り急激に発達変化する雷雲のPB放電による電磁波の電
界変化を測定し所定の閾値を複数回越えると落雷の可能
性ありとして検出信号を出力するようにしたから、これ
によってレーザ誘雷や保護装置を作動させるタイミング
信号を得ることができ落雷による被害や各種電気設備へ
の影響を最小限に防止するのに役立つトリガ信号を確実
に信頼性のあるものとして付与できるという効果があ
る。
As described in detail above, the first aspect of the present invention is as follows.
According to the invention of the present invention, an electric field change measuring instrument having a time resolution of microsecond unit measures an electric field change of an electromagnetic wave due to a PB discharge of a rapidly developing thundercloud, and outputs a detection signal as a possibility of lightning strike when exceeding a predetermined threshold value a plurality of times. As a result, it is possible to obtain a timing signal for activating a laser lightning strike or a protective device, and to ensure a reliable trigger signal that helps to minimize damage from lightning strikes and the effects on various electrical equipment. There is an effect that it can be provided as a material having a shape.

【0040】第2の発明ではPB放電による電界変化は
m秒単位の時間分解能の電界変化測定器によって測定さ
れるから、測定中の任意の時間に電界値が所定の閾値を
越えたことを検出することによって落雷の可能性を判断
でき、第1の発明よりゆっくりとした電界変化を検出す
るのに適合した検出信号が得られる。
In the second invention, since the electric field change due to the PB discharge is measured by the electric field change measuring device having a time resolution of a unit of millisecond, it is detected that the electric field value exceeds a predetermined threshold value at an arbitrary time during the measurement. By doing so, the possibility of lightning strike can be determined, and a detection signal suitable for detecting a slower electric field change than in the first invention can be obtained.

【0041】第3の発明では、第1と第2の発明の電界
変化測定器とそれぞれの検出部を備えたものとしたか
ら、第1の発明の測定器で急速に変化する電界変化を、
第2の発明の測定器で第1の発明よりゆっくりとした変
化の電界変化をそれぞれ検出してさらに確実で信頼性の
あるトリガ信号を出力できるという利点が得られる。
In the third invention, the electric field change measuring devices of the first and second inventions and the respective detecting sections are provided.
An advantage is obtained in that the measuring device of the second invention can detect the electric field change that changes more slowly than the first invention and can output a more reliable and reliable trigger signal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の雷雲電界検出装置をレーザ誘雷装置
に適用した例の全体概略図
FIG. 1 is an overall schematic diagram of an example in which a thundercloud electric field detection device according to an embodiment is applied to a laser lightning device;

【図2】雷雲電界検出装置の概略ブロック図FIG. 2 is a schematic block diagram of a thundercloud electric field detection device.

【図3】広帯域電界変化測定器の測定、検出動作の説明
FIG. 3 is an explanatory diagram of the measurement and detection operations of the broadband electric field change measuring instrument.

【図4】針端コロナ電流測定器の測定、検出動作の説明
FIG. 4 is an explanatory diagram of measurement and detection operations of a needle end corona current measuring device.

【図5】高速保護装置への応用例の説明図FIG. 5 is an explanatory diagram of an application example to a high-speed protection device.

【図6】レーザ誘雷の概念図FIG. 6 is a conceptual diagram of a laser lightning strike.

【符号の説明】[Explanation of symbols]

1 広帯域電界変化測定器 2 針端コロナ電流測定器 3 静電界測定器 4 レーザ制御部 5 検出部 DESCRIPTION OF SYMBOLS 1 Broadband electric field change measuring device 2 Needle end corona current measuring device 3 Electrostatic field measuring device 4 Laser control unit 5 Detecting unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石窪 雄二 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 足立 幹雄 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 内田 成明 大阪市西区靭本町1丁目8番4号 財団法 人レーザー技術総合研究所内 (72)発明者 島田 義則 大阪市西区靭本町1丁目8番4号 財団法 人レーザー技術総合研究所内 (72)発明者 山中 龍彦 大阪市西区靭本町1丁目8番4号 財団法 人レーザー技術総合研究所内 (72)発明者 山中 千代衛 大阪市西区靭本町1丁目8番4号 財団法 人レーザー技術総合研究所内 Fターム(参考) 5G067 EA01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yuji Ishikubo 3-3-22 Nakanoshima, Kita-ku, Osaka City Inside Kansai Electric Power Co., Inc. (72) Mikio Adachi 3-2-2, Nakanoshima, Kita-ku, Osaka-shi Inside Kansai Electric Power Co., Inc. (72) Inventor: Shigeaki Uchida 1-8-4, Utsumotocho, Nishi-ku, Osaka City Inside the Institute for Laser Technology Research (72) Inventor: Yoshinori Shimada 1-8-4, Utsumotocho, Nishi-ku, Osaka-shi No. Within the Foundation Laser Technology Research Institute (72) Inventor Tatsuhiko Yamanaka 1-8-4 Nishihoncho, Nishi-ku, Osaka City Inside the Foundation Laser Technology Research Institute (72) Inventor Chiyoe Yamanaka 1-chome, Nishi-ku, Nishi-ku, Osaka City No. 8-4 F-term in the Laser Technology Research Institute (reference) 5G067 EA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 雷雲の前駆放電により放出される電磁波
の電界の変化を測定する電界変化測定器と、この測定器
の測定信号から所定値以上の電界の雷雲を検出して信号
を出力する検出部とを備え、上記測定器はμ秒単位以下
の時間分解能で電界の変化を測定する測定器とし、この
測定器の測定信号から検出部で数m秒乃至数拾m秒単位
の時間間隔内に電界値が所定の電界閾値を越える変化を
複数回検出すると出力信号を出力するようにして成る雷
雲電界検出装置。
An electric field change measuring device for measuring a change in an electric field of an electromagnetic wave emitted by a precursor discharge of a thundercloud, and a detecting device for detecting a thundercloud having an electric field of a predetermined value or more from a measurement signal of the measuring device and outputting a signal. The measuring device is a measuring device that measures a change in an electric field with a time resolution of a unit of μ seconds or less, and a detecting unit detects a change in an electric field within a time interval of several milliseconds to several milliseconds from a measurement signal of the measuring device. A thundercloud electric field detection device, which outputs an output signal when a change in the electric field value exceeding a predetermined electric field threshold is detected a plurality of times.
【請求項2】 雷雲の前駆放電により放出される電磁波
の電界を測定する電界測定器と、この測定器の測定信号
から所定値以上の雷雲を検出して信号を出力する検出部
とを備え、上記測定器はm秒単位の時間分解能で電界の
変化を測定する測定器とし、測定中の任意の時間に検出
信号が所定の閾値を越えたことを検出部で検出すると出
力信号を出力するようにして成る雷雲電界検出装置。
2. An electric field measuring device for measuring an electric field of an electromagnetic wave emitted by a precursor discharge of a thundercloud, and a detection unit for detecting a thundercloud having a predetermined value or more from a measurement signal of the measuring device and outputting a signal, The measuring device is a measuring device that measures a change in an electric field with a time resolution of a unit of millisecond, and outputs an output signal when a detecting unit detects that a detection signal exceeds a predetermined threshold value at an arbitrary time during the measurement. Thundercloud electric field detection device.
【請求項3】 雷雲の前駆放電により放出される電磁波
の電界の変化を測定する電界変化測定器と、この測定器
の測定信号から所定値以上の電界の雷雲を検出して信号
を出力する検出部とを備え、上記検出センサはμ秒単位
以下の時間分解能で電界の変化を検出する第1電界変化
測定器と、m秒単位の時間分解能で電界の変化を検出す
る第2電界変化測定器とし、これら測定器の測定値から
それぞれの検出部で数m秒乃至数拾m秒単位の時間間隔
内に電界値が所定の電界閾値を越える変化を複数回検出
するか、又は測定の任意の時間に電界値が所定の閾値を
越えたことを検出するかのいずれか又は両方を検出する
と出力信号を出力するようにして成る雷雲電界検出装
置。
3. An electric field change measuring device for measuring a change in an electric field of an electromagnetic wave emitted by a thrust cloud precursor discharge, and a detection for outputting a signal by detecting a thundercloud having an electric field of a predetermined value or more from a measurement signal of the measuring device. A first electric field change measuring device for detecting a change in the electric field with a time resolution of μ seconds or less, and a second electric field change measuring device for detecting a change in the electric field with a time resolution of m seconds From the measured values of these measuring instruments, each detecting unit detects a change in the electric field value exceeding a predetermined electric field threshold a plurality of times within a time interval of several milliseconds to several milliseconds, or performs any arbitrary measurement. A thundercloud electric field detecting device configured to output an output signal upon detecting either or both of detecting that an electric field value exceeds a predetermined threshold value in time.
【請求項4】 雷雲の静電界を測定する静電界測定器
と、この測定器の測定信号から所定値以上の静電界の雷
雲を検出して信号を出力する静電界検出部とを備え、前
記電磁波の電界を検出する電界変化測定器の検出部から
の検出信号を上記静電界測定器の検出信号により外部へ
出力又は阻止するようにしたことを特徴とする請求項1
乃至3のいずれかに記載の雷雲電界検出装置。
4. An electrostatic field measuring device for measuring an electrostatic field of a thundercloud, and an electrostatic field detecting section for detecting a thundercloud having an electrostatic field of a predetermined value or more from a measurement signal of the measuring device and outputting a signal, and 2. A detection signal from a detection unit of an electric field change measuring device for detecting an electric field of an electromagnetic wave is output or blocked to the outside by the detection signal of the electrostatic field measuring device.
4. A thundercloud electric field detection device according to any one of claims 1 to 3.
JP11037256A 1999-02-16 1999-02-16 Apparatus for detecting thundercloud electric field Pending JP2000235082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11037256A JP2000235082A (en) 1999-02-16 1999-02-16 Apparatus for detecting thundercloud electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11037256A JP2000235082A (en) 1999-02-16 1999-02-16 Apparatus for detecting thundercloud electric field

Publications (1)

Publication Number Publication Date
JP2000235082A true JP2000235082A (en) 2000-08-29

Family

ID=12492580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11037256A Pending JP2000235082A (en) 1999-02-16 1999-02-16 Apparatus for detecting thundercloud electric field

Country Status (1)

Country Link
JP (1) JP2000235082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071815A (en) * 2008-09-18 2010-04-02 Central Res Inst Of Electric Power Ind Method and instrument for measuring space electric field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071815A (en) * 2008-09-18 2010-04-02 Central Res Inst Of Electric Power Ind Method and instrument for measuring space electric field

Similar Documents

Publication Publication Date Title
Zeng et al. Survey of recent progress on lightning and lightning protection research
Kim Electromagnetic radiation behavior of low-voltage arcing fault
Honda A new threat-EMI effect by indirect ESD on electronic equipment
JP7213397B2 (en) Systems and methods for detecting and isolating electromagnetic pulses for the protection of monitored infrastructure
US6072684A (en) Device and method for protecting a site against the direct impact of lightning
KR20110128291A (en) Device for protecting against a physical phenomenon such as lightning
JP6280105B2 (en) Partial discharge detection method and partial discharge detection apparatus for electric power equipment
Wang et al. Development of an arc‐extinguishing lightning protection gap for 35 kV overhead power lines
MacGregor et al. The operation of repetitive high-pressure spark gap switches
Yamanaka et al. First observation of laser-triggered lightning
JP2000235082A (en) Apparatus for detecting thundercloud electric field
CN108847577B (en) Ultraviolet and laser combined effect ancient building lightning protection method and system
JP2013137222A (en) Static electricity discharge detection device, static electricity discharge detection method, and fluctuating electric field resistance inspection device
JP4587382B2 (en) Laser discharge induction method and apparatus
KR101723522B1 (en) Power system for arc extinction
CN104574725A (en) Signal processing alarm unit and electronic wall formed by signal processing alarm unit
Wong et al. A novel autonomous technique for early fault detection on overhead power lines
Rudyk et al. Complex tools for surge process analysis and hardware disturbance protection
Lopez-Roldan et al. Development of a pocket ultrahigh frequency partial-discharge detector to warn switchyard personnel of imminent failure of a nearby high-voltage plant
Rubini et al. Implementation of Yagi-Uda Loop Array Antennas in Distribution Switchboards
Xu et al. Study of fault arc protection based on UV pulse method in high voltage switchgear
Sigogne et al. New results at the Pic du Midi lightning station
Uchida et al. Experimental study on artificially triggered lightning using high power lasers
Lippert et al. Laser-Induced Lightning Concept Experiment
Maekawa et al. Partial discharge locating system for GIS