JP2000230172A - Fluorescent member and light-emitting device using the same - Google Patents

Fluorescent member and light-emitting device using the same

Info

Publication number
JP2000230172A
JP2000230172A JP34905299A JP34905299A JP2000230172A JP 2000230172 A JP2000230172 A JP 2000230172A JP 34905299 A JP34905299 A JP 34905299A JP 34905299 A JP34905299 A JP 34905299A JP 2000230172 A JP2000230172 A JP 2000230172A
Authority
JP
Japan
Prior art keywords
light
fluorescent
light emitting
emission
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34905299A
Other languages
Japanese (ja)
Inventor
Hitoshi Takeda
均 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP34905299A priority Critical patent/JP2000230172A/en
Publication of JP2000230172A publication Critical patent/JP2000230172A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a fluorescent member having the function to convert blue- color light to red-color light in high efficiency. SOLUTION: This fluorescent member is characterized by having each at least one 1st fluorescent coloring matter with maximum absorption wavelengths of 350-500 nm and maximum light emission wavelengths of 530-595 nm and 2nd fluorescent coloring matter with maximum absorption wavelengths of 530-595 nm and maximum light emission wavelengths of 585-800 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光部材及びそれ
を用いた発光素子に関する。更に詳しくは、本発明は、
光を吸収して異なる波長特性の光を発光する蛍光部材及
び、この蛍光部材と、エレクトロルミネッセンス素子や
発光ダイオード等の発光部材とを組み合わせることで発
光部材の発光波長特性とは異なる光を放出しうる発光素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescent member and a light emitting device using the same. More specifically, the present invention provides:
A fluorescent member that absorbs light and emits light having different wavelength characteristics, and emits light different from the emission wavelength characteristics of the light emitting member by combining the fluorescent member with a light emitting member such as an electroluminescent element or a light emitting diode. Light emitting device.

【0002】[0002]

【従来の技術】蛍光材料は光により、より高いエネルギ
ー状態に励起され、光としてエネルギーを放出すること
で元のエネルギー状態に戻る。このいわゆるフォトルミ
ネッセンス(PL)現象では、一般的に、発光波長特性
は、励起光の波長特性より長波長化することが知られて
いる。このようなPL現象による光の長波長変換の利用
事例は多く報告されている。例えば、エレクトロルミネ
ッセンス(EL)素子や発光ダイオード(LED)の発
光色を変換する技術が、特公昭63−18319号公
報、特開平3−152897号公報、特開平9−738
07号公報等に記載されている。EL素子やLEDの場
合、発光材料の選択や素子構造の設計等により発光波長
特性をある程度調整することはできる。しかし、これら
の方法だけで青緑赤の三原色表示や白色表示等の要求を
満たすことは難しい。そのため、PL現象により、すな
わち、青色発光する発光部材と緑色や赤色の成分を有す
る光を発光する蛍光材料を組み合わせることにより青緑
赤の三原色表示や白色表示を実現しようと試みられてい
る。
2. Description of the Related Art A fluorescent material is excited to a higher energy state by light, and returns to an original energy state by emitting energy as light. In the so-called photoluminescence (PL) phenomenon, it is generally known that the emission wavelength characteristic has a longer wavelength than the excitation light wavelength characteristic. There are many reports of examples of using long wavelength conversion of light by such a PL phenomenon. For example, techniques for converting the emission color of an electroluminescent (EL) element or a light emitting diode (LED) are disclosed in JP-B-63-18319, JP-A-3-152897, and JP-A-9-738.
No. 07 publication. In the case of an EL element or LED, the emission wavelength characteristics can be adjusted to some extent by selecting a light emitting material, designing an element structure, and the like. However, it is difficult to satisfy the requirements of the three primary colors of blue, green, and red and the white display only by these methods. Therefore, an attempt has been made to realize a blue-green-red three-primary-color display or a white display by the PL phenomenon, that is, by combining a blue-light-emitting member with a light-emitting member that emits light having a green or red component.

【0003】[0003]

【発明が解決しようとする課題】蛍光部材の発光スペク
トル特性は、主に蛍光部材中の蛍光材料そのものに大き
く依存する。また、その発光強度は励起光波長や強度に
も依存するが、この依存性も蛍光材料の励起光に対する
感度特性に由来し、蛍光材料の吸収スペクトル特性と密
接な関係がある。従って、蛍光部材の励起−発光特性、
すなわち、波長変換特性は蛍光部材中の蛍光材料に大き
く依存しており、特定の波長変換特性を得るためにはそ
れに適した蛍光材料の選択が不可欠である。例えば、青
色光から緑色光への変換に適した蛍光材料は容易に入手
できる。例えば、特開平3−152897号公報によれ
ば、クマリン系の色素を用いて比較的容易に高効率の変
換が可能であることが記載されている。これに対し青色
光から赤色光への変換は、一般的な蛍光材料にとって波
長のシフトが大きいので、高効率の変換が難しかった。
The emission spectrum characteristics of the fluorescent member largely depend on the fluorescent material itself in the fluorescent member. The emission intensity also depends on the excitation light wavelength and intensity, and this dependence is also derived from the sensitivity characteristics of the fluorescent material to the excitation light and is closely related to the absorption spectrum characteristics of the fluorescent material. Therefore, the excitation-emission characteristics of the fluorescent member,
That is, the wavelength conversion characteristics greatly depend on the fluorescent material in the fluorescent member, and in order to obtain specific wavelength conversion characteristics, it is essential to select a fluorescent material suitable for the specific wavelength conversion characteristics. For example, fluorescent materials suitable for converting blue light to green light are readily available. For example, JP-A-3-152897 describes that high-efficiency conversion can be performed relatively easily using a coumarin-based dye. On the other hand, conversion from blue light to red light has a large wavelength shift for a general fluorescent material, so that high-efficiency conversion has been difficult.

【0004】青色光から赤色光への変換効率を高める試
みとして、特開平3−152897号公報には、蛍光材
料を分散した膜の厚さを数百μmと厚くすることで高効
率の変換が可能であると報告されている。しかしながら
このような方法では形状やコスト等のデバイス設計上の
制約が大きくなり、あまり好ましくない。
As an attempt to increase the conversion efficiency from blue light to red light, Japanese Patent Laid-Open No. 152897/1991 discloses high efficiency conversion by increasing the thickness of a film in which a fluorescent material is dispersed to several hundred μm. It is reported that it is possible. However, in such a method, restrictions on device design such as a shape and a cost are increased, which is not preferable.

【0005】また、特開平8−286033号公報及び
特開平9−213478号公報には、青色光を吸収して
緑色発光する蛍光材料と青色光及び緑色光を吸収して赤
色発光する蛍光材料を含む蛍光部材によって青色光を赤
色光又は白色光に変換する技術が記載されている。この
方法では緑色発光する蛍光材料が青色光を吸収し、その
励起エネルギーの一部は緑色光として、一部はエネルギ
ー移動の形態で、赤色発光する蛍光材料に移動吸収され
赤色光が放出される。しかしながらこの方法では赤色成
分の発光とともにある程度の緑色成分の発光も伴うた
め、青色光から赤色光に変換する場合、得られる赤色光
の色純度が低下する原因となる。
Japanese Unexamined Patent Publications Nos. Hei 8-286033 and Hei 9-213478 disclose a fluorescent material that absorbs blue light and emits green light and a fluorescent material that absorbs blue light and green light and emits red light. A technique of converting blue light into red light or white light by using a fluorescent member is described. In this method, a fluorescent material that emits green light absorbs blue light, and a part of the excitation energy is converted to green light, and part of the energy is transferred and absorbed by the fluorescent material that emits red light to emit red light. . However, in this method, a certain amount of green component light is emitted together with the emission of the red component. Therefore, when blue light is converted into red light, the color purity of the obtained red light is reduced.

【0006】このように蛍光材料を用いて青色光を赤色
光に高効率で変換する技術は未だ十分なものではない。
本発明は、青色光を高効率で赤色光に変換する蛍光部材
と、それを用いて赤色光や白色光等の赤色成分を含む発
光色の発光素子を提供することを目的とする。
[0006] As described above, a technique for converting blue light into red light with high efficiency by using a fluorescent material is not yet sufficient.
An object of the present invention is to provide a fluorescent member that converts blue light into red light with high efficiency, and to provide a light emitting element that emits light containing a red component such as red light or white light using the fluorescent member.

【0007】[0007]

【課題を解決するための手段】本発明によれば、吸収極
大波長が350〜500nm、発光極大波長が530〜
595nmの範囲にある第一の蛍光色素と、吸収極大波
長が530〜595nm、発光極大波長が585〜80
0nmの範囲にある第二の蛍光色素とを、少なくとも1
つずつ含むことを特徴とする蛍光部材が提供される。
According to the present invention, the maximum absorption wavelength is 350 to 500 nm and the maximum emission wavelength is 530 to 500 nm.
A first fluorescent dye in the range of 595 nm, an absorption maximum wavelength of 530 to 595 nm, and an emission maximum wavelength of 585 to 80;
A second fluorescent dye in the range of 0 nm
There is provided a fluorescent member comprising:

【0008】更に、本発明によれば、上記蛍光部材と、
少なくとも350〜500nmの波長域の一部又は全部
を波長成分として含む光を発光する発光部材とを含むこ
とを特徴とする発光素子が提供される。
Further, according to the present invention, the above-mentioned fluorescent member,
A light-emitting member that emits light containing at least a part or all of a wavelength range of 350 to 500 nm as a wavelength component is provided.

【0009】[0009]

【発明の実施の形態】本発明の蛍光部材において第一の
蛍光色素と第二の蛍光色素はそれぞれ励起光の吸収と蛍
光発光の役割を分担していると考えられる。すなわち、
青色周辺波長を主成分とする光を励起光として赤色周辺
波長を主成分とする発光を得ようとする場合、第二の蛍
光色素単独ではこの波長域の励起光に対する感度が低い
ため十分な発光強度は得られない。しかし、この励起波
長域に吸収を持つ第一の蛍光色素の存在下では、(1)
励起光が第一の蛍光色素を励起し、そのエネルギーの一
部が第一の蛍光色素から光として放出、その一部が第二
の蛍光色素を励起する、(2)励起光が第一の蛍光色素
を励起し、そのエネルギーの一部がエネルギーのまま第
二の蛍光色素に移動、第二の蛍光色素を励起する、とい
う2通りの経路で、第一の蛍光色素が励起光の吸収によ
り得たエネルギーで第二の蛍光色素を励起する、すなわ
ち、第一の蛍光色素が第二の蛍光色素の増感剤として作
用し第二の蛍光色素が発光すると考えられる。このよう
な本発明の蛍光部材における蛍光色素の混合による増感
効果は、前述の特開平9−213478号公報の青色光
を吸収して緑色発光する蛍光材料と青色光及び緑色光を
吸収して赤色発光する蛍光材料を含む蛍光部材の場合で
も同じ原理を利用している。
BEST MODE FOR CARRYING OUT THE INVENTION In the fluorescent member of the present invention, it is considered that the first fluorescent dye and the second fluorescent dye share the roles of absorption of excitation light and emission of fluorescence, respectively. That is,
In the case where light having a blue peripheral wavelength as a main component is used as excitation light and light emission having a red peripheral wavelength as a main component is to be obtained, sufficient light is emitted because the second fluorescent dye alone has low sensitivity to excitation light in this wavelength range. No strength is obtained. However, in the presence of the first fluorescent dye having absorption in this excitation wavelength region, (1)
The excitation light excites the first fluorescent dye, a part of the energy is emitted as light from the first fluorescent dye, and a part of the energy excites the second fluorescent dye. Excitation of the fluorescent dye, a part of the energy moves to the second fluorescent dye with the energy unchanged, and excites the second fluorescent dye. It is considered that the second fluorescent dye is excited by the obtained energy, that is, the first fluorescent dye acts as a sensitizer for the second fluorescent dye, and the second fluorescent dye emits light. The sensitizing effect of the fluorescent member of the present invention due to the mixing of the fluorescent dye is described in Japanese Patent Application Laid-Open No. Hei 9-213478 described above. The fluorescent material absorbs blue light and emits green light, and absorbs blue light and green light. The same principle is used for a fluorescent member including a fluorescent material that emits red light.

【0010】しかしながら、本発明者らは検討の結果、
第一の蛍光色素と第二の蛍光色素が、所定の範囲の吸収
極大波長及び発光極大波長を有する場合、第二の蛍光色
素の発光が高効率化するとともに、第一の蛍光色素の発
光が抑制されることを見いだした。
However, as a result of the study, the present inventors have found that
When the first fluorescent dye and the second fluorescent dye have a maximum absorption wavelength and a maximum emission wavelength within a predetermined range, the efficiency of the emission of the second fluorescent dye is increased, and the emission of the first fluorescent dye is increased. Found to be suppressed.

【0011】これは、次の理由によるものと考えられ
る。即ち、第一の蛍光色素から第二の蛍光色素へのエネ
ルギーの受け渡しは、第一の蛍光色素の発光を経る移動
よりもエネルギーの直接移動の方が効率がよい。次に、
上記所定の範囲の吸収極大波長及び発光極大波長を有す
る第一の蛍光色素と第二の蛍光色素を使用した場合、発
光を経る移動より、エネルギーの直接移動の割合が大き
くなる。その結果、第二の蛍光色素の発光効率が高くな
るためであると考えられる。
This is considered to be due to the following reasons. That is, in transferring energy from the first fluorescent dye to the second fluorescent dye, direct energy transfer is more efficient than transfer through light emission of the first fluorescent dye. next,
When the first fluorescent dye and the second fluorescent dye having the absorption maximum wavelength and the emission maximum wavelength in the above-mentioned predetermined ranges are used, the ratio of direct transfer of energy is higher than transfer through light emission. As a result, it is considered that the luminous efficiency of the second fluorescent dye is increased.

【0012】ここで、特開平9−213478号公報に
記載の構成の場合、二つの蛍光材料の吸収及び発光波長
特性の差が本発明に比べて大きいため、緑色発光する蛍
光材料からの発光がある程度伴って色純度が低くなる。
更に、青色光に対する発光した赤色光の効率も高くはな
らない。これに対して、本発明の構成であれば、例え
ば、色素濃度を調整することにより、第一の蛍光色素か
らの発光を十分小さくすることが可能で、励起光に対す
る第二の蛍光色素の発光効率を高くすることが可能であ
る。
Here, in the case of the configuration described in JP-A-9-213478, since the difference between the absorption and emission wavelength characteristics of the two fluorescent materials is larger than that of the present invention, light emission from the fluorescent material that emits green light is performed. The color purity decreases with some degree.
Further, the efficiency of the emitted red light with respect to the blue light does not increase. On the other hand, according to the configuration of the present invention, for example, by adjusting the dye concentration, the emission from the first fluorescent dye can be sufficiently reduced, and the emission of the second fluorescent dye with respect to the excitation light can be achieved. It is possible to increase the efficiency.

【0013】更に、特開平9−213478号公報で
は、吸収色と発光色を青、緑、赤色に限定している。し
かし、例えば、蛍光材料として有機化合物を用いる場
合、半値幅の広い波長特性となりやすいため、白っぽく
発光したり、中間色を発光する。従って、純粋に緑色や
赤色に発光する蛍光材料は少ないので、選択できる蛍光
材料は限られる。これに対して、本発明の蛍光部材は、
所定の範囲の発光又は吸収の極大波長を有していればど
のような蛍光色素も使用できるので、使用できる蛍光色
素の選択肢が非常に多い。
Further, in Japanese Patent Application Laid-Open No. Hei 9-213478, the absorption color and the emission color are limited to blue, green and red. However, for example, when an organic compound is used as a fluorescent material, it tends to have a wavelength characteristic with a wide half-value width, and thus emits whitish light or light of an intermediate color. Therefore, since there are few fluorescent materials that emit purely green or red light, the available fluorescent materials are limited. On the other hand, the fluorescent member of the present invention
Since any fluorescent dye can be used as long as it has a maximum wavelength of light emission or absorption within a predetermined range, there are a great many choices of fluorescent dyes that can be used.

【0014】以下に本発明の蛍光部材を詳しく説明す
る。本発明の蛍光部材は吸収極大波長が350〜500
nm(近紫外〜青緑色)の範囲にあり、発光極大波長が
530〜595nm(黄緑色〜橙色)の範囲にある第一
の蛍光色素と、吸収極大波長が530〜595nm(黄
緑色〜橙色)の範囲にあり、発光極大波長が585〜8
00nm(橙色〜近赤外)の範囲にある第二の蛍光色素
を、それぞれ少なくとも1つずつ含めばどのような形態
であってもよい。ここで、各波長範囲の後ろの括弧内に
記載した色名はそれぞれの波長の単色光の色名である。
また、これらの波長範囲はあくまで吸収や発光の極大波
長の範囲であり、吸収色や発光色はどのような色でもよ
い。
Hereinafter, the fluorescent member of the present invention will be described in detail. The fluorescent member of the present invention has an absorption maximum wavelength of 350 to 500.
a first fluorescent dye having an emission maximum wavelength in the range of 530 to 595 nm (yellow green to orange) and an absorption maximum wavelength of 530 to 595 nm (yellow green to orange). And the emission maximum wavelength is 585 to 8
Any form may be used as long as at least one second fluorescent dye in the range of 00 nm (orange to near infrared) is included. Here, the color names described in parentheses after each wavelength range are the color names of monochromatic light of each wavelength.
Further, these wavelength ranges are the ranges of the maximum wavelengths of absorption and emission, and any absorption color or emission color may be used.

【0015】第一の蛍光色素と第二の蛍光色素は、発光
極大波長の差が60nm以下の蛍光色素から選択するこ
とが望ましい。また、第一の蛍光色素の発光極大波長と
第二の蛍光色素の吸収極大波長は、その値が近いほど発
光を経ないエネルギー移動が起こりやすいため、できる
だけ両波長の差が小さいことが好ましい。具体的には、
その差は30nm以下であることが望ましい。
It is desirable that the first fluorescent dye and the second fluorescent dye are selected from fluorescent dyes having a difference in emission maximum wavelength of 60 nm or less. Further, as the emission maximum wavelength of the first fluorescent dye and the absorption maximum wavelength of the second fluorescent dye are closer to each other, energy transfer that does not cause light emission is more likely to occur, so that the difference between the two wavelengths is preferably as small as possible. In particular,
The difference is desirably 30 nm or less.

【0016】第一の蛍光色素としては、吸収極大波長が
350〜500nmの範囲にあり、発光極大波長が53
0〜595nmの範囲にあれば、有機/無機を問わずど
んな蛍光色素でも使用することができるが、第一の蛍光
色素と第二の蛍光色素の発光極大波長の差が小さく、か
つ、励起光の波長特性と第二の蛍光色素の発光波長特性
の波長シフトを大きくするためには、第一の蛍光色素は
その吸収と発光の波長シフトが大きな材料であることが
好ましい。この条件を満たす第一の蛍光色素としては、
通常DCMと略される2−〔2−〔4−(N,N−ジメ
チルアミノ)フェニル〕エテニル〕−4−ジシアノメチ
レン−6−メチル−4H−ピランや、特開平8−100
173号公報に記載のDCM誘導体が挙げられ、これら
DCM及びその誘導体は吸収極大波長と発光極大波長の
シフト幅が大きいため特に好ましい。なお、特開平8−
100173号公報に記載のDCM誘導体は、下記一般
式(I)
The first fluorescent dye has an absorption maximum wavelength in the range of 350 to 500 nm and an emission maximum wavelength of 53 to 500 nm.
Any fluorescent dye, whether organic or inorganic, can be used within a range of 0 to 595 nm. However, the difference between the emission maximum wavelengths of the first fluorescent dye and the second fluorescent dye is small, and the excitation light is In order to increase the wavelength shift between the wavelength characteristic of the second fluorescent dye and the emission wavelength characteristic of the second fluorescent dye, the first fluorescent dye is preferably a material having a large wavelength shift in absorption and emission. As the first fluorescent dye satisfying this condition,
2- [2- [4- (N, N-dimethylamino) phenyl] ethenyl] -4-dicyanomethylene-6-methyl-4H-pyran which is usually abbreviated as DCM, or JP-A-8-100
No. 173, which is particularly preferable because these DCMs and derivatives thereof have a large shift width between the absorption maximum wavelength and the emission maximum wavelength. Note that Japanese Patent Application Laid-Open
The DCM derivative described in Japanese Patent No. 100173 has the following general formula (I)

【0017】[0017]

【化1】 Embedded image

【0018】(式中、Ar1 及びAr2 はアリール基、
1 〜R5 は水素原子又は炭素数1〜3のアルキル基、
6 は炭素数1〜3のアルキル基)で表され、具体的に
は、
Wherein Ar 1 and Ar 2 are an aryl group,
R 1 to R 5 are a hydrogen atom or an alkyl group having 1 to 3 carbon atoms,
R 6 is represented by an alkyl group having 1 to 3 carbon atoms).

【0019】[0019]

【化2】 Embedded image

【0020】が挙げられる。[0020]

【0021】また、第二の蛍光色素としては、吸収極大
波長が530〜595nmの範囲にあり、発光極大波長
が585〜800nmの範囲にあれば有機/無機を問わ
ずどんな蛍光色素でもよい。特に発光波長が赤色周辺波
長の有機蛍光色素は、共役二重結合長が一般に長いため
光安定性が低い化合物やイオン性の構造のため有機溶剤
系での取り扱いが難しい化合物が多い。しかしながら、
Lumogen FRed 300(BASF社製)の
ようなペリレン系蛍光色素は、光安定性や有機溶剤への
溶解性等も良好で、第二の蛍光色素として特に好適であ
る。
The second fluorescent dye may be any fluorescent dye, whether organic or inorganic, as long as it has an absorption maximum wavelength in the range of 530 to 595 nm and an emission maximum wavelength in the range of 585 to 800 nm. In particular, many organic fluorescent dyes having an emission wavelength around a red wavelength have a low conjugate double bond length and generally have low photostability, and many compounds are difficult to handle in an organic solvent system because of their ionic structure. However,
Perylene-based fluorescent dyes such as Lumogen FRed 300 (manufactured by BASF) have good light stability and solubility in organic solvents, and are particularly suitable as the second fluorescent dye.

【0022】また、第一の蛍光色素としてのDCMと第
二の蛍光色素としてのLumogen F Red 3
00の組み合わせは、特に好適である。その理由は、両
色素間のエネルギー移動が良好であり、また、Lumo
gen F Red 300の光安定性が良好であるた
め、それに伴ってDCMの光安定性も著しく向上するか
らである。
In addition, DCM as the first fluorescent dye and Lumogen F Red 3 as the second fluorescent dye
The combination of 00 is particularly preferred. The reason is that the energy transfer between both dyes is good and that Lumo
This is because the light stability of gen F Red 300 is good, and accordingly, the light stability of DCM is significantly improved.

【0023】また、本発明の蛍光部材は、例えば、蒸着
膜のような第一の蛍光色素と第二の蛍光色素のみから構
成される形態でもよい。また、一般に蛍光色素は濃度が
ある程度高くなると、吸収した励起エネルギーを同種の
色素間で移動を繰り返すうち発光することなく失活す
る、濃度消光と呼ばれる現象がおこる。そのため、蛍光
部材は、何らかの媒体中に溶解又は分散の形態で蛍光色
素が担持されていることが望ましい。ここで、溶解とは
蛍光色素が媒体中に分子単位でバラバラに散らばってい
る状態、分散とは蛍光色素が媒体中に複数分子の集合単
位で散らばっている状態を意味する。このように蛍光色
素が媒体中に溶解又は分散の形態で担持されている蛍光
部材は、それぞれの蛍光色素の濃度を互いに調整するこ
とが可能であるため、第二の蛍光色素からの発光が強く
なるよう調整したり、かつ、その強度に対する第一の蛍
光色素からの発光強度を調整することも容易であり好ま
しい。
Further, the fluorescent member of the present invention may be constituted by only a first fluorescent dye and a second fluorescent dye such as a vapor-deposited film. In general, when the concentration of a fluorescent dye is increased to some extent, a phenomenon called concentration quenching occurs in which the absorbed excitation energy is deactivated without emitting light while being repeatedly transferred between dyes of the same kind. Therefore, it is desirable that the fluorescent member carry a fluorescent dye in a form of being dissolved or dispersed in some medium. Here, "dissolution" means a state in which the fluorescent dye is scattered in the medium in units of molecules, and "dispersion" means a state in which the fluorescent dye is scattered in the unit of a plurality of molecules in the medium. As described above, since the fluorescent member in which the fluorescent dye is dissolved or dispersed in the medium can adjust the concentration of each fluorescent dye, the emission from the second fluorescent dye is strong. It is also easy and preferable to adjust the light emission intensity from the first fluorescent dye with respect to the intensity.

【0024】媒体としては、蛍光部材の使用形態に合わ
せて成型しやすいものが好ましい。具体的には、高分子
化合物や無機化合物の焼結体等の固体や、容器に封入し
ての使用を目的とした水、アルコールその他有機溶剤等
の液体から選択できる。中でも、ポリメチルメタクリレ
ート(PMMA)、ポリカーボネート(PC)、ポリ塩
化ビニル(PVC)、ポリエチレンテレフタレート(P
ET)等の高分子材料は成型加工性に優れているので特
に好ましい。
As the medium, a medium that can be easily molded in accordance with the usage of the fluorescent member is preferable. Specifically, it can be selected from a solid such as a sintered body of a polymer compound or an inorganic compound, or a liquid such as water, alcohol or an organic solvent intended for use in a container. Among them, polymethyl methacrylate (PMMA), polycarbonate (PC), polyvinyl chloride (PVC), polyethylene terephthalate (P
Polymer materials such as ET) are particularly preferred because of their excellent moldability.

【0025】また、本発明の蛍光部材は、少なくとも3
50〜500nmの波長域の一部又は全部を波長成分と
して含む励起光の吸収により、585〜800nmの波
長域の一部又は全部を波長成分として含む光を発光する
蛍光部材であればよい。従って、光学路長や構造等を適
宜選択することにより、励起光又はその吸収残りや第一
の蛍光色素の発光を取り出せる蛍光部材であっても、取
り出せない蛍光部材であってもよい。次に、本発明の蛍
光部材を用いた発光素子を詳しく説明する。
Also, the fluorescent member of the present invention has at least 3
Any fluorescent member may be used as long as it emits light containing a part or all of the wavelength range of 585 to 800 nm as a wavelength component by absorbing excitation light containing a part or all of the wavelength range of 50 to 500 nm as a wavelength component. Therefore, by appropriately selecting the optical path length, the structure, and the like, a fluorescent member that can take out the excitation light or its absorption residue and the emission of the first fluorescent dye or a fluorescent member that cannot take out the excitation light may be used. Next, a light emitting device using the fluorescent member of the present invention will be described in detail.

【0026】本発明の発光素子は、350〜500nm
の波長域の一部又は全部を波長成分として含む光を発光
する発光部材と、上述した本発明の蛍光部材とを組み合
わせたものであればどのような形態であってもよい。発
光部材としては、上記波長域の光を発するものであれば
どんなものでもよい。特に、電界や電流等の電気エネル
ギーにより発光制御される発光部材が好ましく、中で
も、有機EL素子、無機EL素子、LED等が好適であ
る。
The light emitting device of the present invention has a thickness of 350 to 500 nm.
Any form may be used as long as the light emitting member that emits light containing a part or the whole of the wavelength range as a wavelength component is combined with the above-described fluorescent member of the present invention. Any light-emitting member may be used as long as it emits light in the above wavelength range. In particular, a light-emitting member whose light emission is controlled by electric energy such as an electric field or a current is preferable, and among them, an organic EL element, an inorganic EL element, an LED, and the like are preferable.

【0027】蛍光部材は、発光部材の発光部位に近いほ
ど、励起光の損失が少なくなるため好ましい。発光部材
が有機又は無機EL素子の場合、蛍光部材は例えばフィ
ルム状の形態で、EL素子の光取り出し側基板の外側
面、基板の内側面と電極層の間、あるいは、電極間等E
L素子の発光部位から光の取り出し方向の任意の場所に
配設することができる。EL素子の発光の制御が可能な
単位発光領域のサイズが光取り出し側基板の厚さに比べ
十分な大きさを持たない場合、例えば、発光部材として
のEL素子が精細なマトリクス構造を有し、かつ、蛍光
部材もそれに対応して精細なパタンで形成されるような
場合には、蛍光部材を光取り出し側基板の内側面と電極
層の間に形成することが望ましい。これは、光取り出し
基板の外側に蛍光部材を形成すると見る方向によって基
板内側と外側、すなわち、発光部材と蛍光部材の相対位
置にずれが生じるためである。これに対し、視角による
発光部材と蛍光部材の相対位置のずれが問題とならない
ような場合、すなわち、EL素子の発光の制御が可能な
単位発光領域のサイズが光取り出し側基板の厚さに比べ
十分に大きい場合などでは、蛍光部材を光り取り出し側
基板の外側面に形成したり、あるいは、光取り出し側基
板そのものを蛍光部材で形成することも可能である。特
に、光取り出し側基板の外側面への形成はEL素子内部
に影響を与えないため、蛍光部材のフィルム厚さや構成
材料の選択等の設計上の自由度が高く好適である。ま
た、発光部材がLEDの場合には、発光チップを直接覆
うように形成したり、モールド樹脂そのものを蛍光部材
で形成したり、あるいは、モールド樹脂の外側表面に蛍
光部材をフィルム状に形成する等が可能である。
The fluorescent member is preferably closer to the light emitting portion of the light emitting member because the loss of the excitation light is reduced. When the light-emitting member is an organic or inorganic EL element, the fluorescent member is, for example, in the form of a film.
It can be arranged at any position in the light extraction direction from the light emitting portion of the L element. When the size of the unit light emitting region capable of controlling the light emission of the EL element does not have a sufficient size compared to the thickness of the light extraction side substrate, for example, the EL element as a light emitting member has a fine matrix structure, In the case where the fluorescent member is also formed of a fine pattern corresponding to the fluorescent member, it is desirable to form the fluorescent member between the inner surface of the light extraction side substrate and the electrode layer. This is because the relative position between the light emitting member and the fluorescent member is shifted depending on the viewing direction when the fluorescent member is formed outside the light extraction substrate. On the other hand, when the relative position between the light emitting member and the fluorescent member due to the viewing angle does not cause a problem, that is, the size of the unit light emitting area in which light emission of the EL element can be controlled is smaller than the thickness of the light extraction side substrate. In a case where the size is sufficiently large, the fluorescent member can be formed on the outer surface of the light extraction side substrate, or the light extraction side substrate itself can be formed of the fluorescent member. In particular, since the formation on the outer surface of the light extraction side substrate does not affect the inside of the EL element, the degree of freedom in design such as selection of the film thickness of the fluorescent member and selection of the constituent material is high, which is preferable. When the light emitting member is an LED, the light emitting chip is formed so as to directly cover the light emitting chip, the mold resin itself is formed of a fluorescent member, or the fluorescent member is formed in a film shape on the outer surface of the mold resin. Is possible.

【0028】また、発光部材と蛍光部材は直接接触して
いる必要はなく、蛍光部材を発光素子の発光面形状に形
成し、その全面を照光可能な態様で発光部材を配設すれ
ばよい。その際、発光部材による照光が、蛍光部材の面
上で略均一な明るさとなるよう、発光部材と蛍光部材の
間に光拡散機能を持つフィルム等の機能性部材を配設し
てもよい。また、LED等を光源とする導光板型面発光
部材の導光板光入射面、光出射面、散乱面に蛍光部材を
フィルム状に形成したり、導光板そのものを蛍光部材で
形成することも可能である。
The light emitting member and the fluorescent member do not need to be in direct contact with each other. The fluorescent member may be formed in the shape of the light emitting surface of the light emitting element, and the light emitting member may be provided so that the entire surface can be illuminated. At this time, a functional member such as a film having a light diffusing function may be provided between the light emitting member and the fluorescent member so that the light emitted by the light emitting member has substantially uniform brightness on the surface of the fluorescent member. In addition, it is also possible to form a fluorescent member in the form of a film on a light guide plate light incident surface, a light emitting surface, and a scattering surface of a light guide plate type surface light emitting member using an LED as a light source, or to form the light guide plate itself with a fluorescent member. It is.

【0029】上記のように発光部材と蛍光部材とを組み
合わせることで、発光部材そのもので発光色の調整が困
難な場合でも発光色を容易に調整することができる。更
に、製造コストの観点から発光部材の発光色数を多数用
意することが困難な場合でも、所望の数の発光色を得る
ことができる。ここで蛍光部材を介して放出される光に
ついて説明する。
By combining the light emitting member and the fluorescent member as described above, the light emitting color can be easily adjusted even when it is difficult to adjust the light emitting color by the light emitting member itself. Further, even when it is difficult to prepare a large number of light emitting colors of the light emitting member from the viewpoint of manufacturing cost, a desired number of light emitting colors can be obtained. Here, the light emitted through the fluorescent member will be described.

【0030】発光部材が蛍光部材の光取り出し方向に対
して背面に配設されたり、蛍光部材中や表面等での散乱
や反射等が起こる場合、発光部材からの発光の一部を蛍
光部材を介して放出することができる。ただし、このと
き放出される光は、蛍光部材中の色素や媒体によって特
定の波長成分がある割合で吸収された残りであるため、
ほとんどの場合、発光部材から放出される光と同じ色で
はない。また、逆に蛍光色素の濃度や光学路長の調整等
によって発光部材からの発光のほとんどを蛍光部材で吸
収して放出されないようにすることも可能である。更
に、発光部材と蛍光部材の位置関係等発光素子の構造を
工夫することにより発光部材の発光を蛍光部材を介して
放出されないようにすることも可能である。
When the light emitting member is disposed on the back side with respect to the light extraction direction of the fluorescent member, or when scattering or reflection occurs inside or on the surface of the fluorescent member, a part of the light emitted from the light emitting member is transferred to the fluorescent member. Can be released via However, since the light emitted at this time is the remaining part of the specific wavelength component absorbed by the dye or medium in the fluorescent member at a certain ratio,
In most cases, it is not the same color as the light emitted from the light emitting member. Conversely, by adjusting the concentration of the fluorescent dye and the optical path length, it is possible to absorb most of the light emitted from the light emitting member by the fluorescent member so as not to be emitted. Further, by devising the structure of the light emitting element such as the positional relationship between the light emitting member and the fluorescent member, it is possible to prevent the light emitted from the light emitting member from being emitted through the fluorescent member.

【0031】また、蛍光部材から放出される第一及び第
二の蛍光色素からの発光は、それぞれの蛍光色素の濃度
や蛍光部材の光学路長等により発光強度を調整すること
が可能である。特に、第一の蛍光色素からの発光を、ほ
とんど放出されないように調整することも可能である。
第二の蛍光色素からの発光は多くの場合、第一の蛍光色
素で吸収されずに蛍光部材から放出される。しかしなが
ら、蛍光部材の光学路長が長くなったり、色素の濃度が
高くなると自己吸収と呼ばれる現象がおこり、第二の蛍
光色素自身により発光成分のうち短波長側が吸収され、
残りの光が放出される。また、第一の蛍光色素からの発
光は、主に第二の蛍光色素により吸収されたり、第一の
蛍光色素自身により自己吸収され、その残りの成分が蛍
光部材より放出される。
The emission intensity of the first and second fluorescent dyes emitted from the fluorescent member can be adjusted by adjusting the concentration of each fluorescent dye and the optical path length of the fluorescent member. In particular, it is also possible to adjust the emission from the first fluorescent dye so that it is hardly emitted.
In many cases, light emitted from the second fluorescent dye is emitted from the fluorescent member without being absorbed by the first fluorescent dye. However, a phenomenon called self-absorption occurs when the optical path length of the fluorescent member is long or the concentration of the dye is high, and the short wavelength side of the luminescent component is absorbed by the second fluorescent dye itself,
The remaining light is emitted. Light emitted from the first fluorescent dye is mainly absorbed by the second fluorescent dye or self-absorbed by the first fluorescent dye itself, and the remaining components are emitted from the fluorescent member.

【0032】蛍光部材を介して放出されるこれらの光成
分は、その各々の強度がある程度調整可能であるため、
例えば、ほとんど第二の蛍光色素からの発光のみとする
ことで赤色の発光素子とすることができる。更に、青色
及び緑色領域の成分を含む励起光を用いて、各成分を混
色させ白色の発光素子とすることも可能である。特に発
光部材が青色有機EL素子や青色LED等の場合は、そ
の特性上発光成分としてある程度の緑色領域のスペクト
ルを含んでいる。この場合、蛍光部材を主に青色領域及
び黄色領域にのみ吸収があり赤色を発光する部材から選
べば、発光部材からの発光のうち緑成分はほとんど蛍光
部材によって吸収されずに蛍光部材を介して放出され
る。この緑成分と、青色成分の吸収残り及び蛍光部材か
らの赤色成分とを混合することで、三原色を成分とする
白色光を発光する発光素子を得ることができる。このと
き、発光部材の発光の緑色成分があまり吸収されずにほ
ぼそのまま蛍光部材を介して放出されるため、発光部材
の発光輝度に対する蛍光部材を介して放出される光の輝
度の割合、すなわち蛍光部材の輝度変換率は高くなりう
る。この理由は、可視光のうち緑色領域は、人間の視感
度特性上、最も感度が高いため輝度に大きく貢献するの
に対し、青色や赤色の成分は輝度への貢献が小さいため
である。
Since the intensity of each of these light components emitted through the fluorescent member can be adjusted to some extent,
For example, a red light-emitting element can be obtained by emitting light only from the second fluorescent dye. Furthermore, it is also possible to mix each component using excitation light containing components in the blue and green regions to form a white light emitting element. In particular, when the light-emitting member is a blue organic EL element, a blue LED, or the like, the light-emitting component includes a spectrum in the green region to some extent as a light-emitting component. In this case, if the fluorescent member is selected from a member that mainly absorbs only in the blue region and the yellow region and emits red light, the green component of the light emitted from the light emitting member is hardly absorbed by the fluorescent member and passes through the fluorescent member. Released. By mixing the green component, the residual absorption of the blue component, and the red component from the fluorescent member, a light-emitting element that emits white light having three primary colors as components can be obtained. At this time, the green component of the light emitted from the light emitting member is emitted through the fluorescent member almost without being absorbed so much. Therefore, the ratio of the luminance of the light emitted through the fluorescent member to the light emission luminance of the light emitting member, The luminance conversion rate of the member can be high. The reason for this is that the green region of visible light has the highest sensitivity in terms of human luminosity characteristics and thus contributes significantly to luminance, whereas the blue and red components contribute little to luminance.

【0033】また、発光部材から放出される光の割合を
増加させたい場合、発光の制御が可能な単位発光領域の
一部に任意の割合で、蛍光部材を介さずに発光部材から
直接光を放出できる部分を設ければよい。このようにす
ることで、蛍光部材の発光と発光部材の発光を任意の割
合で混合して、単位発光領域全体の色度を調整すること
もでき、例えばこれにより白色の発光素子を得ることが
可能である。次に、実施例により本発明をさらに具体的
に説明するが、本発明はこれらの例によってなんら限定
されるものではない。
When it is desired to increase the ratio of light emitted from the light emitting member, light is directly transmitted from the light emitting member to the part of the unit light emitting region where light emission can be controlled, without using the fluorescent member at an arbitrary ratio. What is necessary is just to provide the part which can be released. By doing so, it is also possible to adjust the chromaticity of the entire unit light emitting region by mixing the light emission of the fluorescent member and the light emission of the light emitting member at an arbitrary ratio, for example, thereby obtaining a white light emitting element. It is possible. Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0034】[0034]

【実施例】〔蛍光部材の実施例及び比較例〕 (実施例1)PMMA(分子量約38000、ACRO
S社製)とDCM及びLumogen F Red 3
00をエチレングリコールモノエチルエーテルに溶解
し、ガラス基板上にスピンコート法により塗布・焼成し
て、DCM及びLumogenF Red 300をそ
れぞれ0.3重量%含有する膜厚10μmのPMMA膜
からなる蛍光部材1を作成した。
EXAMPLES [Examples and Comparative Examples of Fluorescent Member] (Example 1) PMMA (molecular weight of about 38,000, ACRO
S Co., Ltd.) and DCM and Lumogen F Red 3
Is dissolved in ethylene glycol monoethyl ether, coated and baked on a glass substrate by a spin coating method, and a fluorescent member 1 made of a 10 μm-thick PMMA film containing 0.3% by weight of DCM and Lumogen F Red 300, respectively. It was created.

【0035】この蛍光部材1の法線方向から励起光とし
て青色LED(日亜化学工業社製)で青色光を照射し、
法線に対し45°の角度に放出される蛍光部材1のPL
スペクトルを大塚電子社製瞬間マルチ測光システムMC
PD−2000を用いて測定した。608nmにLum
ogen F Red 300の発光による発光極大を
持つ、色度がx=0.64、y=0.36の赤色光が観
測された。結果を図1に示す。また、使用した青色LE
Dの発光スペクトルを図2に示す。
A blue LED (manufactured by Nichia Corporation) is irradiated with blue light as excitation light from the normal direction of the fluorescent member 1,
PL of the fluorescent member 1 emitted at an angle of 45 ° with respect to the normal
Instantaneous multi-photometry system MC manufactured by Otsuka Electronics Co., Ltd.
It measured using PD-2000. Lum to 608nm
Red light having a chromaticity of x = 0.64 and y = 0.36, having a light emission maximum due to light emission of Ogen F Red 300, was observed. The results are shown in FIG. Also used blue LE
The emission spectrum of D is shown in FIG.

【0036】(比較例1)DCMの代わりにクマリン7
を用いたこと以外は実施例1と同様にして、蛍光部材2
を作成した。また、実施例1と同様にして青色光で励起
した蛍光部材2のPLスペクトルを測定した。603n
mにLumogen F Red 300の発光による
第一の発光極大を、490nmにクマリン7の発光によ
る第二の発光極大を持つ、色度がx=0.53、y=
0.40の橙色光が観測された。結果を図3に示す。
(Comparative Example 1) Coumarin 7 instead of DCM
Except that the fluorescent member 2 was used.
It was created. Further, the PL spectrum of the fluorescent member 2 excited by blue light was measured in the same manner as in Example 1. 603n
m has a first emission maximum due to the emission of Lumogen F Red 300, and 490 nm has a second emission maximum due to the emission of coumarin 7; chromaticity is x = 0.53, y =
0.40 orange light was observed. The results are shown in FIG.

【0037】(比較例2)Lumogen F Red
300を用いなかったこと以外は実施例1と同様にし
て、蛍光部材3を作成した。また、実施例1と同様にし
て青色光で励起した蛍光部材3のPLスペクトルを測定
した。564nmに発光極大を持つ、色度がx=0.4
8、y=0.51の黄色光が観測された。結果を図4に
示す。また、この蛍光部材3の吸収スペクトルを日立製
作所社製U−3410形自記分光光度計を用いて測定し
た。吸収極大波長は461nmであった。結果を図5に
示す。
(Comparative Example 2) Lumogen F Red
A fluorescent member 3 was prepared in the same manner as in Example 1 except that 300 was not used. Further, the PL spectrum of the fluorescent member 3 excited by blue light was measured in the same manner as in Example 1. It has an emission maximum at 564 nm and has a chromaticity of x = 0.4.
8, yellow light of y = 0.51 was observed. FIG. 4 shows the results. The absorption spectrum of the fluorescent member 3 was measured using a U-3410 type auto-recording spectrophotometer manufactured by Hitachi, Ltd. The maximum absorption wavelength was 461 nm. FIG. 5 shows the results.

【0038】(比較例3)DCMの代わりにLumog
en F Red 300を用いたこと以外は比較例2
と同様にして、蛍光部材4を作成した。また、実施例1
と同様にして青色光で励起した蛍光部材4のPLスペク
トルを測定した。602nmに発光極大を持つ、色度が
x=0.61、y=0.36の赤色光が観測された。結
果を図6に示す。また、比較例2と同様にして蛍光部材
4の吸収スペクトルを測定したところ、吸収極大波長は
573nmであった。結果を図7に示す。
(Comparative Example 3) Lumog instead of DCM
Comparative Example 2 except that en F Red 300 was used.
In the same manner as in the above, a fluorescent member 4 was prepared. Example 1
The PL spectrum of the fluorescent member 4 excited by blue light was measured in the same manner as described above. Red light having an emission maximum at 602 nm and chromaticity of x = 0.61 and y = 0.36 was observed. FIG. 6 shows the results. When the absorption spectrum of the fluorescent member 4 was measured in the same manner as in Comparative Example 2, the maximum absorption wavelength was 573 nm. FIG. 7 shows the results.

【0039】(比較例4)DCMの代わりにクマリン7
を用いたこと以外は比較例2と同様にして、蛍光部材5
を作成した。また、実施例1と同様にして青色光で励起
した蛍光部材5のPLスペクトルを測定した。490n
mに発光極大を持つ、色度がx=0.19、y=0.5
1の緑色光が観測された。結果を図8に示す。また、比
較例2と同様にして蛍光部材5の吸収スペクトルを測定
したところ、吸収極大波長は435nmであった。結果
を図9に示す。以上の実施例1及び比較例1〜4におけ
る蛍光部材1〜5のPL発光の輝度相対値は順に、51
5、460、521、100、705であり、赤色光は
視感度が低いにもかかわらず、実施例1における蛍光部
材1は十分に高い輝度を示した。
(Comparative Example 4) Coumarin 7 instead of DCM
Except that the fluorescent member 5 was used.
It was created. The PL spectrum of the fluorescent member 5 excited by blue light was measured in the same manner as in Example 1. 490n
m has emission maximum, chromaticity is x = 0.19, y = 0.5
One green light was observed. FIG. 8 shows the results. When the absorption spectrum of the fluorescent member 5 was measured in the same manner as in Comparative Example 2, the maximum absorption wavelength was 435 nm. FIG. 9 shows the results. The relative luminance values of the PL emission of the fluorescent members 1 to 5 in the above Example 1 and Comparative Examples 1 to 4 are 51
5, 460, 521, 100, and 705, and although the red light has low visibility, the fluorescent member 1 in Example 1 exhibited sufficiently high luminance.

【0040】また、蛍光部材1のLumogen F
Red 300の発光に由来する発光極大強度は、Lu
mogen F Red 300を単独で含有する蛍光
部材4の発光極大強度の約5.9倍となった。更に、こ
の発光極大強度は蛍光部材5のクマリン7の緑色発光の
極大強度の約1.2倍であった。この結果は、既にクマ
リン系色素で実用的な波長変換特性の得られている青/
緑色波長変換と同様に、十分実用的な青/赤色波長変換
特性が得られたことを意味する。更にまた、蛍光部材1
のPLスペクトルにはDCMの発光に由来する波長成分
がほとんど含まれない。そのため、赤色光として利用す
る場合、カラーフィルター等による色度補正は事実上不
要である。また、蛍光部材1に用いた蛍光色素DCMと
Lumogen F Red 300は比較例2及び3
の結果からも、発光極大波長の差が38nm、発光極大
波長と吸収極大波長の差が9nmと非常に好ましい組み
合わせであることが示唆される。
Further, Lumogen F of the fluorescent member 1 is used.
The emission maximum intensity derived from the emission of Red 300 is Lu
The emission maximum intensity was about 5.9 times the maximum emission intensity of the fluorescent member 4 containing mogen F Red 300 alone. Further, the maximum emission intensity was about 1.2 times the maximum intensity of green emission of coumarin 7 of the fluorescent member 5. This result indicates that the coumarin-based dyes have already obtained practical wavelength conversion characteristics.
As in the case of green wavelength conversion, it means that sufficiently practical blue / red wavelength conversion characteristics were obtained. Furthermore, the fluorescent member 1
Has almost no wavelength component derived from the emission of DCM. Therefore, when used as red light, chromaticity correction using a color filter or the like is practically unnecessary. Further, the fluorescent dye DCM and Lumogen F Red 300 used for the fluorescent member 1 were compared with Comparative Examples 2 and 3.
From the results, it is suggested that the difference between the maximum emission wavelength and the maximum absorption wavelength is 38 nm, and the difference between the maximum emission wavelength and the maximum absorption wavelength is 9 nm, which is a very preferable combination.

【0041】一方、比較例1の蛍光部材2ではLumo
gen F Red 300の発光に由来する発光極大
強度は、Lumogen F Red 300を単独で
含有する蛍光部材4の発光極大強度の約3.4倍とクマ
リン7による増感効果は認められる。しかし、蛍光部材
1の場合より増感効果が小さいことに加え、その約0.
3倍の発光極大強度でクマリン7の発光に由来する緑色
の波長成分が含まれる結果、発光色は橙色となった。ま
た、蛍光部材2に用いた蛍光色素クマリン7とLumo
gen F Red 300は比較例3及び4の結果か
らも、発光極大波長の差が112nm、発光極大波長と
吸収極大波長の差が83nmと大きく、増感効果が小さ
い組み合わせであることが示唆される。
On the other hand, in the fluorescent member 2 of Comparative Example 1, Lumo was used.
The emission maximum intensity derived from the emission of gen F Red 300 is about 3.4 times the emission maximum intensity of the fluorescent member 4 containing Lumogen F Red 300 alone, and the sensitizing effect of coumarin 7 is recognized. However, the sensitizing effect is smaller than that of the case of the fluorescent member 1, and about 0.
As a result of including the green wavelength component derived from the emission of coumarin 7 at the maximum emission intensity of 3 times, the emission color became orange. The fluorescent dye coumarin 7 used for the fluorescent member 2 and Lumo
The results of Comparative Examples 3 and 4 also indicate that gen F Red 300 is a combination having a large difference between the maximum emission wavelength of 112 nm and a large difference between the maximum emission wavelength and the maximum absorption wavelength of 83 nm, and a small sensitizing effect. .

【0042】〔発光素子の実施例〕 (実施例2)PMMA(分子量約38000、ACRO
S社製)とDCM及びLumogen F Red 3
00をエチレングリコールモノエチルエーテルに溶解
し、ガラス基板上にスピンコート法により塗布・焼成し
て、DCM及びLumogenF Red 300をそ
れぞれ0.3重量%含有する膜厚50μmのPMMA膜
からなる蛍光部材6を作成した。また、東芝社製の青緑
発光分散型EL素子に青色カラーフィルターを重ねて青
色発光の発光部材1とし、さらにその上に蛍光部材6を
重ねて発光素子1とした。
[Embodiment of Light Emitting Element] (Embodiment 2) PMMA (molecular weight of about 38,000, ACRO
S Co., Ltd.) and DCM and Lumogen F Red 3
Is dissolved in ethylene glycol monoethyl ether, coated and baked on a glass substrate by a spin coating method, and a fluorescent member 6 composed of a 50 μm-thick PMMA film containing 0.3% by weight of DCM and Lumogen F Red 300, respectively. It was created. Further, a blue-color light emitting member 1 was obtained by superposing a blue color filter on a blue-green light emitting dispersion type EL device manufactured by Toshiba Corporation, and a fluorescent member 6 was further superposed thereon to obtain a light emitting device 1.

【0043】この発光素子1の発光スペクトルを大塚電
子社製瞬間マルチ測光システムMCPD−2000を用
いて測定した。603nmに発光極大を有する色度x=
0.59、y=0.39の赤色光が観察された。結果を
図10に、同様に測定した発光部材2の発光スペクトル
を図11に示す。また、発光部材1の発光輝度が100
cd/m2 のときの発光素子2の発光輝度は77cd/
2 であった。
The emission spectrum of the light-emitting device 1 was measured using an instantaneous multi-photometry system MCPD-2000 manufactured by Otsuka Electronics Co., Ltd. Chromaticity x = maximum emission at 603 nm
A red light of 0.59, y = 0.39 was observed. FIG. 10 shows the results, and FIG. 11 shows the emission spectrum of the light-emitting member 2 measured in the same manner. Further, the light emission luminance of the light emitting member 1 is 100
The emission luminance of the light-emitting element 2 at cd / m 2 was 77 cd / m 2.
m 2 .

【0044】(実施例3)PMMA(分子量約3800
0、ACROS社製)とDCM及びLumogen F
Red 300をエチレングリコールモノエチルエー
テルに溶解し、ガラス基板上にスピンコート法により塗
布・焼成して、DCM及びLumogenF Red
300をそれぞれ0.3重量%含有する膜厚12μmの
PMMA膜からなる蛍光部材7を作成した。また、ガラ
ス基板上に膜厚140nmのインジウム−スズ酸化物
(ITO)、膜厚5nmの銅フタロシアニン、膜厚40
nmのN,N’−ジフェニル−N,N’−ビス(1−ナ
フチル)−1,1’−ビフェニル−4,4’−ジアミ
ン、0.15重量%でペリレンを添加した膜厚25nm
のビス(2−メチル−8−キノリノラト)(4−フェニ
ルフェノラト)アルミニウム(III)、膜厚40nmのト
リス(8−キノリノラト)アルミニウム(III)、及び膜
厚160nmのアルミニウムをこの順で積層してなる青
色発光有機EL素子を発光部材2とした。この発光部材
2の発光面に蛍光部材7を重ねて発光素子2とした。
Example 3 PMMA (molecular weight: about 3800)
0, ACROS) and DCM and Lumogen F
Red 300 is dissolved in ethylene glycol monoethyl ether, applied and baked on a glass substrate by a spin coating method, and then DCM and LumogenF Red are applied.
A fluorescent member 7 made of a 12 μm-thick PMMA film containing 0.3% by weight of each 300 was prepared. In addition, indium-tin oxide (ITO) having a thickness of 140 nm, copper phthalocyanine having a thickness of 5 nm, and
N, N'-diphenyl-N, N'-bis (1-naphthyl) -1,1'-biphenyl-4,4'-diamine with a thickness of 0.15% by weight and a perylene added thickness of 25 nm
Of bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III), tris (8-quinolinolato) aluminum (III) having a thickness of 40 nm, and aluminum having a thickness of 160 nm are laminated in this order. The resulting blue light emitting organic EL element was used as a light emitting member 2. The light emitting element 2 was obtained by superposing the fluorescent member 7 on the light emitting surface of the light emitting member 2.

【0045】この発光素子2の発光スペクトルを実施例
2と同様にして測定した。602nm、521nm、4
85nm及び453nmの4つの発光極大を有する色度
x=0.33、Y=0.37の白色光が観察された。結
果を図12に、同様に測定した発光部材2の発光スペク
トルを図13に示す。また、発光部材3の発光輝度が1
00cd/m2 のときの発光素子2の発光輝度は74c
d/m2 であった。
The emission spectrum of the light-emitting device 2 was measured in the same manner as in Example 2. 602 nm, 521 nm, 4
White light having chromaticity x = 0.33 and Y = 0.37 having four emission maxima at 85 nm and 453 nm was observed. FIG. 12 shows the results, and FIG. 13 shows the emission spectrum of the light-emitting member 2 measured in the same manner. The light emission luminance of the light emitting member 3 is 1
The emission luminance of the light emitting element 2 at the time of 00 cd / m 2 is 74 c
d / m 2 .

【0046】(実施例4)PMMA(分子量約3800
0、ACROS社製)とDCM及びLumogen F
Red 300をエチレングリコールモノエチルエー
テルに溶解し、ガラス基板上にスピンコート法により塗
布・焼成して、DCMを0.3重量%及びLumoge
n F Red 300を0.2重量%含有する膜厚3
5μmのPMMA膜からなる蛍光部材8を作成した。ま
た、約5mmピッチで配置した日亜化学工業社製の青色
LEDと導光板を組み合わせて青色面発光の発光部材3
とした。この発光部材3の発光面に蛍光部材8を重ねて
発光素子3とした。
Example 4 PMMA (molecular weight: about 3800)
0, ACROS) and DCM and Lumogen F
Red 300 is dissolved in ethylene glycol monoethyl ether, applied and baked on a glass substrate by a spin coating method, and 0.3% by weight of DCM and Lumage are added.
Film thickness 3 containing 0.2% by weight of nF Red 300
A fluorescent member 8 made of a 5 μm PMMA film was formed. A light emitting member 3 emitting blue surface light by combining a blue LED manufactured by Nichia Corporation and a light guide plate arranged at a pitch of about 5 mm.
And The fluorescent member 8 was overlapped on the light emitting surface of the light emitting member 3 to obtain the light emitting element 3.

【0047】この発光素子3の発光スペクトルを実施例
2と同様にして測定した。603nm、535nm及び
423nmの3つの発光極大を有する色度x=0.4
3、y=0.42の黄色光が観察された。結果を図14
に示す。また、発光部材3の発光輝度が100cd/m
2 のときの発光素子3の発光輝度は41cd/m2 であ
った。
The emission spectrum of the light emitting device 3 was measured in the same manner as in Example 2. Chromaticity x = 0.4 with three emission maxima at 603 nm, 535 nm and 423 nm
3, yellow light of y = 0.42 was observed. FIG. 14 shows the results.
Shown in Further, the light emission luminance of the light emitting member 3 is 100 cd / m.
The light emission luminance of the light emitting element 3 at the time of 2 was 41 cd / m 2 .

【0048】(実施例5)400μm角の面領域あたり
100μm角の開口部が1つとなるよう、実施例4で作
成した蛍光部材8にドライエッチング法により開口部を
設けた蛍光部材9を作成し、発光部材3の発光面に蛍光
部材9を重ねて発光素子4とした。この発光素子4の発
光スペクトルを実施例2と同様にして測定した。603
nm、535nm及び431nmの3つの発光極大を有
する色度x=0.34、y=0.33の白色光が観察さ
れた。結果を図15に示す。また、発光部材3の発光輝
度が100cd/m2 のときの発光素子4の発光輝度は
45cd/m2 であった。
(Example 5) A fluorescent member 9 having an opening provided by a dry etching method was formed on the fluorescent member 8 prepared in Example 4 such that one opening of 100 μm square was formed per 400 μm square surface area. The light emitting element 4 was obtained by superposing the fluorescent member 9 on the light emitting surface of the light emitting member 3. The emission spectrum of the light emitting device 4 was measured in the same manner as in Example 2. 603
White light with chromaticity x = 0.34 and y = 0.33 having three emission maxima of 535 nm and 431 nm was observed. FIG. 15 shows the results. The light emission luminance of the light emitting element 4 when the light emission luminance of the light emitting member 3 was 100 cd / m 2 was 45 cd / m 2 .

【0049】以上の実施例及び比較例により、本発明に
よって青色光を高効率で赤色光に変換する蛍光部材とそ
れを用いて赤色光や赤緑青の三原色からなる白色光を発
光する発光素子を作成することが可能であることを確認
した。
According to the above Examples and Comparative Examples, a fluorescent member that converts blue light into red light with high efficiency according to the present invention and a light emitting element that emits white light consisting of the three primary colors of red light and red, green, and blue using the fluorescent member are provided. It was confirmed that it could be created.

【0050】なお、以上の実施例においては、発光素子
の発光色は赤色光と白色光及び黄色光に限定したが、赤
色の波長成分を含む発光色であればどのような色であっ
てもかまわない。また、青/緑色波長変換材料との併用
により、より高輝度の白色やあるいは多色発光素子とす
ることももちろん可能である。
In the above embodiment, the light emission color of the light emitting element is limited to red light, white light, and yellow light. However, any light emission color including a red wavelength component may be used. I don't care. In addition, it is of course possible to obtain a white or multicolor light emitting device with higher luminance by using the blue / green wavelength conversion material together.

【0051】[0051]

【発明の効果】以上のように、本発明の蛍光部材は青色
周辺波長の光を高効率で赤色周辺波長の光に変換するこ
とが可能で、青色周辺の波長成分を含む発光部材と組み
合わせた本発明の発光素子により、赤色や白色等赤色周
辺の波長成分を含む発光色を得ることができる。本発明
の蛍光部材及び発光素子を用いれば、発光部材そのもの
で発光色の調整が困難な場合や製造コストの観点等から
発光部材の発光色数を多数用意することができない場合
等でも発光素子として発光色を容易に調整することが可
能となる。また、本発明の蛍光部材と青/緑波長変換蛍
光部材を用いて精細な多色パタンに加工すれば、発光部
材そのものを精細パタンに加工できない場合にも精細な
多色発光素子を実現することが可能となる。
As described above, the fluorescent member of the present invention is capable of converting light having a peripheral wavelength of blue into light having a peripheral wavelength of red with high efficiency, and is combined with a light emitting member containing a wavelength component around blue. With the light emitting device of the present invention, it is possible to obtain a luminescent color including a wavelength component around red such as red and white. When the fluorescent member and the light emitting element of the present invention are used, even when it is difficult to adjust the color of the light emitted by the light emitting member itself, or when it is not possible to prepare a large number of light emitting colors of the light emitting member from the viewpoint of manufacturing cost, etc. The emission color can be easily adjusted. Further, if the fluorescent member of the present invention and the blue / green wavelength conversion fluorescent member are processed into a fine multicolor pattern, a fine multicolor light emitting element can be realized even when the light emitting member itself cannot be processed into a fine pattern. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に記載の蛍光部材1のPLスペクトル
である。
FIG. 1 is a PL spectrum of a fluorescent member 1 described in Example 1.

【図2】実施例1に記載の青色LEDの発光スペクトル
である。
FIG. 2 is an emission spectrum of the blue LED described in Example 1.

【図3】比較例1に記載の蛍光部材2のPLスペクトル
である。
FIG. 3 is a PL spectrum of the fluorescent member 2 described in Comparative Example 1.

【図4】比較例2に記載の蛍光部材3のPLスペクトル
である。
FIG. 4 is a PL spectrum of the fluorescent member 3 described in Comparative Example 2.

【図5】比較例2に記載の蛍光部材3の吸収スペクトル
である。
FIG. 5 is an absorption spectrum of the fluorescent member 3 described in Comparative Example 2.

【図6】比較例3に記載の蛍光部材4のPLスペクトル
である。
FIG. 6 is a PL spectrum of the fluorescent member 4 described in Comparative Example 3.

【図7】比較例3に記載の蛍光部材4の吸収スペクトル
である。
FIG. 7 is an absorption spectrum of the fluorescent member 4 described in Comparative Example 3.

【図8】比較例4に記載の蛍光部材5のPLスペクトル
である。
FIG. 8 is a PL spectrum of the fluorescent member 5 described in Comparative Example 4.

【図9】比較例4に記載の蛍光部材5の吸収スペクトル
である。
FIG. 9 is an absorption spectrum of the fluorescent member 5 described in Comparative Example 4.

【図10】実施例2に記載の発光素子1の発光スペクト
ルである。
FIG. 10 is an emission spectrum of the light-emitting element 1 described in Example 2.

【図11】実施例2に記載の発光部材2の発光スペクト
ルである。
FIG. 11 is an emission spectrum of the light emitting member 2 described in Example 2.

【図12】実施例3に記載の発光素子2の発光スペクト
ルである。
FIG. 12 shows an emission spectrum of the light-emitting element 2 described in Example 3.

【図13】実施例3に記載の発光部材2の発光スペクト
ルである。
FIG. 13 is an emission spectrum of the light emitting member 2 described in Example 3.

【図14】実施例4に記載の発光素子3の発光スペクト
ルである。
14 shows an emission spectrum of the light-emitting element 3 described in Example 4. FIG.

【図15】実施例5に記載の発光素子4の発光スペクト
ルである。
FIG. 15 is an emission spectrum of the light-emitting element 4 described in Example 5.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 吸収極大波長が350〜500nm、発
光極大波長が530〜595nmの範囲にある第一の蛍
光色素と、吸収極大波長が530〜595nm、発光極
大波長が585〜800nmの範囲にある第二の蛍光色
素とを、少なくとも1つずつ含むことを特徴とする蛍光
部材。
1. A first fluorescent dye having an absorption maximum wavelength of 350 to 500 nm and an emission maximum wavelength of 530 to 595 nm, and a first fluorescent dye having an absorption maximum wavelength of 530 to 595 nm and an emission maximum wavelength of 585 to 800 nm. A fluorescent member comprising at least one second fluorescent dye.
【請求項2】 第一の蛍光色素の発光極大波長と第二の
蛍光色素の発光極大波長の差が60nm以下である請求
項1に記載の蛍光部材。
2. The fluorescent member according to claim 1, wherein the difference between the emission maximum wavelength of the first fluorescent dye and the emission maximum wavelength of the second fluorescent dye is 60 nm or less.
【請求項3】 第一の蛍光色素の発光極大波長と第二の
蛍光色素の吸収極大波長の差が30nm以下である請求
項1又は2に記載の蛍光部材。
3. The fluorescent member according to claim 1, wherein the difference between the emission maximum wavelength of the first fluorescent dye and the absorption maximum wavelength of the second fluorescent dye is 30 nm or less.
【請求項4】 第一の蛍光色素が、2−〔2−〔4−
(N,N−ジメチルアミノ)フェニル〕エテニル〕−4
−ジシアノメチレン−6−メチル−4H−ピラン又はそ
の誘導体である請求項1〜3のいずれか1つに記載の蛍
光部材。
4. The method according to claim 1, wherein the first fluorescent dye is 2- [2- [4-
(N, N-dimethylamino) phenyl] ethenyl] -4
The fluorescent member according to any one of claims 1 to 3, which is -dicyanomethylene-6-methyl-4H-pyran or a derivative thereof.
【請求項5】 第二の蛍光色素が、ペリレン系蛍光色素
である請求項1〜4のいずれか1つに記載の蛍光部材。
5. The fluorescent member according to claim 1, wherein the second fluorescent dye is a perylene fluorescent dye.
【請求項6】 蛍光色素が、固体中又は液体中に、溶解
もしくは分散の形態で担持されている請求項1〜5のい
ずれか1つに記載の蛍光部材。
6. The fluorescent member according to claim 1, wherein the fluorescent dye is carried in a solid or liquid form in a dissolved or dispersed form.
【請求項7】 固体が、高分子材料である請求項6に記
載の蛍光部材。
7. The fluorescent member according to claim 6, wherein the solid is a polymer material.
【請求項8】 蛍光部材が、少なくとも350〜500
nmの波長域の一部又は全部を波長成分として含む光を
吸収し、少なくとも585〜800nmの波長域の一部
又は全部を波長成分として含む光を発光する請求項1〜
7のいずれか1つに記載の蛍光部材。
8. The method according to claim 1, wherein the fluorescent member is at least 350 to 500.
The light which absorbs light containing a part or all of the wavelength range of nm as a wavelength component, and emits light containing a part or all of the wavelength range of at least 585 to 800 nm as a wavelength component.
8. The fluorescent member according to any one of 7.
【請求項9】 請求項1〜8のいずれか1つに記載の蛍
光部材と、少なくとも350〜500nmの波長域の一
部又は全部を波長成分として含む光を発光する発光部材
とを含むことを特徴とする発光素子。
9. A light-emitting member, comprising: the fluorescent member according to claim 1; and a light-emitting member that emits light containing at least a part or all of a wavelength range of 350 to 500 nm as a wavelength component. Characteristic light emitting element.
【請求項10】 蛍光部材を介して放出される光が赤色
又は白色である請求項9に記載の発光素子。
10. The light emitting device according to claim 9, wherein the light emitted through the fluorescent member is red or white.
【請求項11】 発光素子が発光を制御しうる単位発光
領域を有し、単位発光領域が、蛍光部材を介して光を放
出する部分と、蛍光部材を介さずに発光部材から光を放
出する部分からなる請求項9又は10に記載の発光素
子。
11. A light-emitting element has a unit light-emitting region capable of controlling light emission, and the unit light-emitting region emits light from a light-emitting member without a fluorescent member and a portion that emits light through a fluorescent member. The light emitting device according to claim 9, comprising a portion.
【請求項12】 単位発光領域が、蛍光部材を介して放
出された光と、蛍光部材を介さずに発光部材から放出さ
れた光との混色により白色の光を放出する請求項11に
記載の発光素子。
12. The unit light emitting device according to claim 11, wherein the unit light emitting region emits white light by mixing light emitted through the fluorescent member and light emitted from the light emitting member without passing through the fluorescent member. Light emitting element.
【請求項13】 発光部材が、有機或いは無機エレクト
ロルミネッセンス素子、又は発光ダイオードからなる請
求項9〜12のいずれか1つに記載の発光素子。
13. The light emitting device according to claim 9, wherein the light emitting member is an organic or inorganic electroluminescent device or a light emitting diode.
JP34905299A 1998-12-09 1999-12-08 Fluorescent member and light-emitting device using the same Pending JP2000230172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34905299A JP2000230172A (en) 1998-12-09 1999-12-08 Fluorescent member and light-emitting device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-350056 1998-12-09
JP35005698 1998-12-09
JP34905299A JP2000230172A (en) 1998-12-09 1999-12-08 Fluorescent member and light-emitting device using the same

Publications (1)

Publication Number Publication Date
JP2000230172A true JP2000230172A (en) 2000-08-22

Family

ID=26578873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34905299A Pending JP2000230172A (en) 1998-12-09 1999-12-08 Fluorescent member and light-emitting device using the same

Country Status (1)

Country Link
JP (1) JP2000230172A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086978A1 (en) * 2001-04-20 2002-10-31 Nichia Corporation Light emitting device
JP2004193581A (en) * 2002-11-25 2004-07-08 Matsushita Electric Ind Co Ltd Led illumination light source
WO2006061954A1 (en) * 2004-12-08 2006-06-15 Fuji Electric Holdings Co., Ltd. Organic el element
US7091656B2 (en) 2001-04-20 2006-08-15 Nichia Corporation Light emitting device
WO2006100957A1 (en) * 2005-03-22 2006-09-28 Idemitsu Kosan Co., Ltd. Color conversion substrate, method for manufacturing same and light-emitting device
WO2006103907A1 (en) * 2005-03-29 2006-10-05 Idemitsu Kosan Co., Ltd. Red fluorescence conversion medium, color conversion substrate using same, and light-emitting device
JP2006269252A (en) * 2005-03-24 2006-10-05 Seiko Epson Corp Light emitting device
JP2008027864A (en) * 2006-07-25 2008-02-07 Matsushita Electric Works Ltd Organic el element and wavelength conversion unit for organic el element
JP4577458B1 (en) * 2009-06-10 2010-11-10 富士電機ホールディングス株式会社 Color conversion film containing conjugated polymer copolymer and multicolor light emitting organic EL device using the same
US8044575B2 (en) 2008-07-29 2011-10-25 Fuji Electric Co., Ltd. Color conversion type organic EL display
WO2012008325A1 (en) * 2010-07-12 2012-01-19 国立大学法人名古屋大学 Broadband infrared light emitting device
US8304265B2 (en) 2007-09-19 2012-11-06 Sharp Kabushiki Kaisha Color conversion filter and manufacturing method of the organic EL display
US8558450B2 (en) 2008-07-28 2013-10-15 Sharp Kabushiki Kaisha Color conversion film using polymeric dye, and multicolor light-emitting organic EL device using same
JP2013542595A (en) * 2010-09-28 2013-11-21 コーニンクレッカ フィリップス エヌ ヴェ Light emitting device with organic phosphor
US8710731B2 (en) 2007-01-24 2014-04-29 Sharp Kabushiki Kaisha Method of patterning color conversion layer and method of manufacturing organic EL display using the patterning method
US8771030B2 (en) 2009-08-19 2014-07-08 Sharp Kabushiki Kaisha Color conversion layer and manufacturing method for same
US8785007B2 (en) 2009-09-18 2014-07-22 Adeka Corporation Pendant-type polymeric compound, color conversion film using pendant-type polymeric compound, and multicolor emission organic EL device
JP2014531739A (en) * 2011-07-13 2014-11-27 コーニンクレッカ フィリップス エヌ ヴェ Wavelength conversion element
CN106796950A (en) * 2015-01-31 2017-05-31 株式会社Lg化学 Color conversion coatings film, its preparation method and back light unit and display device including it
KR101817415B1 (en) 2015-01-31 2018-01-11 주식회사 엘지화학 Color conversion film and back light unit and display appratus comprising the same
WO2020149368A1 (en) * 2019-01-16 2020-07-23 コニカミノルタ株式会社 Wavelength conversion film, light-emitting member, authentication device, wristband type electronic apparatus and biometric device

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247257B2 (en) 2001-04-20 2007-07-24 Nichia Corporation Light emitting device
US7091656B2 (en) 2001-04-20 2006-08-15 Nichia Corporation Light emitting device
WO2002086978A1 (en) * 2001-04-20 2002-10-31 Nichia Corporation Light emitting device
JP2004193581A (en) * 2002-11-25 2004-07-08 Matsushita Electric Ind Co Ltd Led illumination light source
JP4542329B2 (en) * 2002-11-25 2010-09-15 パナソニック株式会社 LED lighting source
WO2006061954A1 (en) * 2004-12-08 2006-06-15 Fuji Electric Holdings Co., Ltd. Organic el element
GB2436226A (en) * 2004-12-08 2007-09-19 Fuji Electric Holdings Co Organic EL element
WO2006100957A1 (en) * 2005-03-22 2006-09-28 Idemitsu Kosan Co., Ltd. Color conversion substrate, method for manufacturing same and light-emitting device
JP2006269252A (en) * 2005-03-24 2006-10-05 Seiko Epson Corp Light emitting device
JP4631490B2 (en) * 2005-03-24 2011-02-16 セイコーエプソン株式会社 Light emitting device
WO2006103907A1 (en) * 2005-03-29 2006-10-05 Idemitsu Kosan Co., Ltd. Red fluorescence conversion medium, color conversion substrate using same, and light-emitting device
JP2008027864A (en) * 2006-07-25 2008-02-07 Matsushita Electric Works Ltd Organic el element and wavelength conversion unit for organic el element
US8710731B2 (en) 2007-01-24 2014-04-29 Sharp Kabushiki Kaisha Method of patterning color conversion layer and method of manufacturing organic EL display using the patterning method
US8446091B2 (en) 2007-09-19 2013-05-21 Sharp Kabushiki Kaisha Color conversion filter and manufacturing method of the organic EL display
US8304265B2 (en) 2007-09-19 2012-11-06 Sharp Kabushiki Kaisha Color conversion filter and manufacturing method of the organic EL display
US8558450B2 (en) 2008-07-28 2013-10-15 Sharp Kabushiki Kaisha Color conversion film using polymeric dye, and multicolor light-emitting organic EL device using same
US8044575B2 (en) 2008-07-29 2011-10-25 Fuji Electric Co., Ltd. Color conversion type organic EL display
US8389985B2 (en) 2009-06-10 2013-03-05 Sharp Kabushiki Kaisha Color conversion film containing a conjugated high molecular weight copolymer and multicolor light-emitting organic EL device including the same
WO2010143276A1 (en) * 2009-06-10 2010-12-16 富士電機ホールディングス株式会社 Color conversion film comprising conjugated high-molecular-weight copolymer, and multi-color-emitting organic el device using the same
JP4577458B1 (en) * 2009-06-10 2010-11-10 富士電機ホールディングス株式会社 Color conversion film containing conjugated polymer copolymer and multicolor light emitting organic EL device using the same
US8771030B2 (en) 2009-08-19 2014-07-08 Sharp Kabushiki Kaisha Color conversion layer and manufacturing method for same
US8785007B2 (en) 2009-09-18 2014-07-22 Adeka Corporation Pendant-type polymeric compound, color conversion film using pendant-type polymeric compound, and multicolor emission organic EL device
US9062853B2 (en) 2010-07-12 2015-06-23 National University Corporation Nagoya University Broadband infrared light emitting device
WO2012008325A1 (en) * 2010-07-12 2012-01-19 国立大学法人名古屋大学 Broadband infrared light emitting device
JP5000028B2 (en) * 2010-07-12 2012-08-15 国立大学法人名古屋大学 Broadband infrared radiation equipment
US9528686B2 (en) 2010-09-28 2016-12-27 Philips Lighting Holding B.V. Light-emitting arrangement with organic phosphor
US9310050B2 (en) 2010-09-28 2016-04-12 Koninklijke Philips N.V. Light-emitting arrangement with organic phosphor
JP2013542595A (en) * 2010-09-28 2013-11-21 コーニンクレッカ フィリップス エヌ ヴェ Light emitting device with organic phosphor
JP2014531739A (en) * 2011-07-13 2014-11-27 コーニンクレッカ フィリップス エヌ ヴェ Wavelength conversion element
US9897285B2 (en) 2011-07-13 2018-02-20 Philips Lighting Holding B.V. Wavelength converting element
CN106796950A (en) * 2015-01-31 2017-05-31 株式会社Lg化学 Color conversion coatings film, its preparation method and back light unit and display device including it
KR101817415B1 (en) 2015-01-31 2018-01-11 주식회사 엘지화학 Color conversion film and back light unit and display appratus comprising the same
US10597581B2 (en) 2015-01-31 2020-03-24 Lg Chem, Ltd. Color conversion film, production method for same, and backlight unit and display device comprising same
WO2020149368A1 (en) * 2019-01-16 2020-07-23 コニカミノルタ株式会社 Wavelength conversion film, light-emitting member, authentication device, wristband type electronic apparatus and biometric device
JPWO2020149368A1 (en) * 2019-01-16 2021-12-02 コニカミノルタ株式会社 Wavelength conversion film, light emitting member, authentication device, wristband type electronic device and biometric device
US20220082740A1 (en) * 2019-01-16 2022-03-17 Konica Minolta, Inc. Wavelength conversion film, light-emitting member, authentication device, wristband type electronic apparatus and biometric device
US11774653B2 (en) * 2019-01-16 2023-10-03 Konica Minolta, Inc. Wavelength conversion film, light-emitting member, authentication device, wristband type electronic apparatus and biometric device
JP7392666B2 (en) 2019-01-16 2023-12-06 コニカミノルタ株式会社 Wavelength conversion film, light emitting member, authentication device, wristband type electronic device, and biometric device

Similar Documents

Publication Publication Date Title
JP2000230172A (en) Fluorescent member and light-emitting device using the same
TWI271118B (en) Color emission device
CN113412542A (en) Color-tunable LED-OLED hybrid guided lighting device
JP2795932B2 (en) Electroluminescence element
TWI804566B (en) Light emitting element, display and color conversion substrate
US7843134B2 (en) Organic EL emission devices connected in series
US20080252198A1 (en) Red Fluorescence Conversion Medium, Color Conversion Substrate Using Same and Light-Emitting Device
JP3037610B2 (en) Red fluorescence conversion film and red light emitting device using the same
TW200803600A (en) Light emitting device
JP2003115377A (en) Light emitting element, its manufacturing method, and display equipment using this
JP5706097B2 (en) Tetraazaporphyrin compound used for color correction filter and color correction filter
JPWO2003043382A1 (en) Color light emitting device
KR20090051161A (en) Fluorescence conversion medium and apparatus for color luminescence employing the same
JPH07150139A (en) White-emitting, internally joined organic electroluminescent device
JP3613268B2 (en) Color conversion filter, color conversion layer, and color conversion light emitting device using the same
TW201022375A (en) Color conversion film using polymeric dye, and multicolor light emitting organic el device
JP2006196777A (en) Illuminator, imaging device, and portable terminal
JP5034220B2 (en) Color filter substrate for organic electroluminescence device
KR20060024545A (en) High-luminance organic light-emitting device displays
JP5857006B2 (en) Organic electroluminescent device and lighting device
JP2003264081A (en) Red fluorescence-converting filter and organic light- emitting element using the same
JPWO2010024439A1 (en) Conjugated polymer copolymer, color conversion film using the same, and multicolor organic EL device
JP2000044824A (en) Color converting film and organic electroluminescent element
JP2002184576A (en) Color conversion filter substrate and color conversion color display equipped with same
JP2001126861A (en) Organic electroluminescence device