JP2000226468A - Fractionation method for fractionating vinyl chloride resin material according to stabilizer in vinyl chloride resin material and method for recycling vinyl chloride resin material - Google Patents

Fractionation method for fractionating vinyl chloride resin material according to stabilizer in vinyl chloride resin material and method for recycling vinyl chloride resin material

Info

Publication number
JP2000226468A
JP2000226468A JP6535199A JP6535199A JP2000226468A JP 2000226468 A JP2000226468 A JP 2000226468A JP 6535199 A JP6535199 A JP 6535199A JP 6535199 A JP6535199 A JP 6535199A JP 2000226468 A JP2000226468 A JP 2000226468A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
resin material
absorption spectrum
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6535199A
Other languages
Japanese (ja)
Inventor
Hiroshi Amano
啓史 天野
Toshibumi Asakawa
俊文 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPT GIKEN KK
Original Assignee
OPT GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPT GIKEN KK filed Critical OPT GIKEN KK
Priority to JP6535199A priority Critical patent/JP2000226468A/en
Publication of JP2000226468A publication Critical patent/JP2000226468A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for recycling a vinyl chloride resin material which can readily and quickly identify a vinyl chloride resin material containing a lead type compound stabilizer and a vinyl chloride resin material containing a tin type compound stabilizer by the absorption spectrum spectroscopy using near infrared rays to effect material recycling of vinyl chloride resin materials, and a fractionation method for fractionating vinyl chloride resin materials according to the stabilizers in the vinyl chloride resin materials. SOLUTION: The stabilizer in each vinyl chloride resin material is identified by comparing the absorption spectrum pattern of a lead type compound stabilizer present in a vinyl chloride resin material with that of a tin type compound stabilizer present in another vinyl chloride resin material by the absorption spectrum spectroscopy using near infrared rays with a wavelength of about 1.15 to about 1.28 μm. Further, by applying this identification method of stabilizers, material recycling of vinyl chloride resin materials is carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、塩化ビニル樹脂材中の
安定剤別に塩化ビニル樹脂材を分別するための分別方法
及び塩化ビニル樹脂材のリサイクル方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating a vinyl chloride resin material by a stabilizer in the vinyl chloride resin material and a method for recycling the vinyl chloride resin material.

【0002】[0002]

【従来の技術】現在、廃プラスチック発生量は、年間約
800万トンで年々増加している。石油原料から製品を
製造するまでに消費するトータルエネルギーを考慮する
と、マテリアルサイクルすることが好ましいリサイクル
形態となるが、現状では大部分が焼却や埋立で処理され
ており、大きな社会問題となっている。
2. Description of the Related Art At present, the amount of waste plastic generated is increasing year by year at about 8 million tons per year. Considering the total energy consumed from the production of petroleum raw materials to products, it is a preferable form of recycling to use a material cycle, but at present it is largely treated by incineration and landfill, which is a major social problem .

【0003】塩化ビニル樹脂は燃焼条件によっては非常
に有毒なダイオキシンを発生するため、現状に処理はほ
とんど埋立て処理に依存している。しかしながら、埋立
て処理には埋立て用地の不足という重大な問題が差迫っ
ている。
[0003] Since vinyl chloride resin generates very toxic dioxin depending on combustion conditions, at present the treatment mostly depends on landfill treatment. However, the landfill process has a serious problem of shortage of landfill sites.

【0004】そこで、塩化ビニル樹脂の有効なリサイク
ルを行うためには、まず廃プラスチック類中から塩化ビ
ニル樹脂を識別して分別回収することが必要となる。最
も簡単な識別方法は、銅線を燃焼させて炎色反応により
判別する方法である。しかしながら、この方法では燃焼
によりダイオキシンを発生する試料を燃焼するために非
破壊測定ができない、測定時間が長い等の欠点があっ
た。
[0004] Therefore, in order to effectively recycle the vinyl chloride resin, it is necessary to first identify and separate and separate the vinyl chloride resin from the waste plastics. The easiest identification method is a method in which a copper wire is burned and discriminated by a flame reaction. However, this method has the disadvantages that non-destructive measurement cannot be performed because a sample that generates dioxin by combustion is burnt, and the measurement time is long.

【0005】さらに、塩化ビニル樹脂のマテリアルサイ
クルを行うには、塩化ビニル樹脂に含まれている重金属
化合物安定剤の種類まで識別する必要がある。しかしな
がら、現状の近赤外線を使用した吸収スペクトル分光法
では、塩化ビニルに含まれている安定剤の種類まで識別
することができないため、その分析には別の分析方法が
必要になるために非常に長い時間と高い費用を要するた
めに、せっかく分別回収した塩化樹脂のマテリアルりサ
イクルを行うことができないという重大な問題を生じて
いた。
Further, in order to carry out the material cycle of the vinyl chloride resin, it is necessary to identify the type of the heavy metal compound stabilizer contained in the vinyl chloride resin. However, the current absorption spectrum spectroscopy using near-infrared rays cannot identify the type of stabilizer contained in vinyl chloride, and the analysis requires a different analysis method. Since a long time and high cost are required, there has been a serious problem that the material cycle of the chlorinated resin separated and recovered cannot be performed.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決するためになされたものであり、本発明の目的
は、近赤外線を用いた吸収スペクトル分光法によって、
鉛系化合物安定剤を含有する塩化ビニル樹脂材と錫系化
合物安定剤を含有する塩化ビニル樹脂材とを簡単に、か
つ迅速に識別することができ、よって、従来行うことが
できなかった塩化ビニル樹脂材のマテリアルりサイクル
を行うことができる塩化ビニル樹脂材のリサイクル方法
及び塩化ビニル樹脂材中の安定剤別に塩化ビニル樹脂材
を分別するための分別方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an infrared spectroscopy using near infrared rays.
A vinyl chloride resin material containing a lead-based compound stabilizer and a vinyl chloride resin material containing a tin-based compound stabilizer can be easily and quickly distinguished from each other. An object of the present invention is to provide a method of recycling a vinyl chloride resin material capable of performing a material cycle of the resin material, and a separation method for separating the vinyl chloride resin material by a stabilizer in the vinyl chloride resin material.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
波長約1.15〜約1.28ミクロンの近赤外線を塩化
ビニル樹脂材に照射する工程と;前記照射された塩化ビ
ニル樹脂材から反射光による吸収スペクトルパターンを
得る工程と;前記得られた吸収スペクトルパターンとコ
ンピュータに記憶されている塩化ビニル樹脂材中に含ま
れる鉛系化合物安定剤の吸収スペクトルパターンデータ
と塩化ビニル樹脂材中に含まれる錫系化合物安定剤の吸
収スペクトルパターンデータを比較して該塩化ビニル樹
脂材中の安定剤を識別する工程と;前記識別結果を基に
塩化ビニル樹脂材中の安定剤別に塩化ビニル樹脂材を分
別する工程と;を備える塩化ビニル樹脂材中の安定剤別
に塩化ビニル樹脂材を分別するための分別方法である。
The invention according to claim 1 is
Irradiating the vinyl chloride resin material with near-infrared light having a wavelength of about 1.15 to about 1.28 microns; obtaining an absorption spectrum pattern by reflected light from the irradiated vinyl chloride resin material; Comparison of the spectral pattern with the absorption spectrum pattern data of the lead compound stabilizer contained in the vinyl chloride resin material and the absorption spectrum pattern data of the tin compound stabilizer contained in the vinyl chloride resin material stored in the computer A step of identifying a stabilizer in the vinyl chloride resin material; and a step of separating the vinyl chloride resin material according to the stabilizer in the vinyl chloride resin material based on the identification result. This is another separation method for separating a vinyl chloride resin material.

【0008】請求項2に係る発明は、前記塩化ビニル樹
脂材中の安定剤別に塩化ビニル樹脂材を分別するための
分別方法において、前記安定剤を識別する工程に音響光
学可変波長フィルターを使用してなる。
According to a second aspect of the present invention, in a separation method for separating a vinyl chloride resin material for each stabilizer in the vinyl chloride resin material, an acousto-optic tunable wavelength filter is used in the step of identifying the stabilizer. It becomes.

【0009】請求項3に係る発明は、多岐にわたる種類
のプラスチック材に波長約1.3〜約2.4ミクロンの
近赤外線を照射して得られた吸収スペクトルパターンと
記憶されている塩化ビニル樹脂材の吸収スペクトルパタ
ーンデータとを比較して塩化ビニル樹脂材を識別する工
程と;前記塩化ビニル樹脂材に波長約1.15〜約1.
28ミクロンの近赤外線を照射して得られた吸収スペク
トルパターンとコンピュータに記憶されている塩化ビニ
ル樹脂材中に含まれる鉛系化合物安定剤の吸収スペクト
ルパターンデータと塩化ビニル樹脂材中に含まれる錫系
化合物安定剤の吸収スペクトルパターンデータを比較し
て該塩化ビニル樹脂材中の安定剤を識別する工程と;前
記識別結果を基に塩化ビニル樹脂材中の安定剤別に塩化
ビニル樹脂材を分別する工程と;を備える塩化ビニル樹
脂材のリサイクル方法である。
According to a third aspect of the present invention, there is provided a vinyl chloride resin having an absorption spectrum pattern obtained by irradiating a wide variety of plastic materials with near-infrared light having a wavelength of about 1.3 to about 2.4 microns and storing the absorption spectrum pattern. Comparing the absorption spectrum pattern data of the material with a vinyl chloride resin material; and applying a wavelength of about 1.15 to about 1.
Absorption spectrum pattern obtained by irradiating near-infrared light of 28 microns, absorption spectrum pattern data of a lead compound stabilizer contained in a vinyl chloride resin material stored in a computer and tin contained in the vinyl chloride resin material Comparing the absorption spectrum pattern data of the base compound stabilizer to identify the stabilizer in the vinyl chloride resin material; and separating the vinyl chloride resin material according to the stabilizer in the vinyl chloride resin material based on the identification result. And a step of recycling the vinyl chloride resin material.

【0010】請求項4に係る発明は、塩化ビニル樹脂材
のリサイクル方法において、前記安定剤を識別する工程
に音響光学可変波長フィルターを使用してなる。
According to a fourth aspect of the present invention, in the method for recycling a vinyl chloride resin material, an acousto-optic variable wavelength filter is used in the step of identifying the stabilizer.

【0011】[0011]

【発明の実施の形態】本発明の実施例を以下に詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail.

【0012】寸法;径60mm×厚さ5mm×長さ50
mmの鉛系化合物安定剤を含有する塩化ビニル樹脂製パ
イプ(試料A)と同じ寸法を有する錫系化合物安定剤を
含有する塩化ビニル樹脂製パイプ(試料B)とを用意し
た。そして、これら試料A及び試料Bにそれぞれ波長;
約1.15〜約1.28ミクロンの近赤外線を照射し、
そして吸収される割合を測定した。
Dimensions: diameter 60 mm x thickness 5 mm x length 50
A pipe made of a vinyl chloride resin containing a lead-based compound stabilizer (mm) and a pipe made of a vinyl chloride resin containing a tin-based compound stabilizer having the same dimensions (sample B) were prepared. The wavelength of each of the sample A and the sample B;
Irradiating near infrared rays of about 1.15 to about 1.28 microns,
The rate of absorption was measured.

【0013】かくして、得られた吸収スペクトルパター
ンは塩化ビニル樹脂中に含まれる鉛系化合物安定剤と錫
系化合物安定剤の波形とで異なることを利用して鉛系化
合物安定剤と錫系化合物安定剤とを識別する。図1〜図
4において、横軸は、波長(ミクロン)であり、縦軸
は、吸光度である。図1は、鉛系化合物安定剤を含む塩
化ビニル樹脂(試料A)の吸光スペクトルを示す。該図
に示されるように鉛系化合物安定剤を含む塩化ビニル樹
脂の吸光ピークは、低波長側に吸光ピークを有すること
がわかる。図2は、錫系化合物安定剤を含む塩化ビニル
樹脂(試料B)の吸光スペクトルを示す。該図に示され
るように錫系化合物安定剤を含む塩化ビニル樹脂の吸光
ピークは、ほとんど見られないことがわかる。この実験
を該試料につて20回測定を行ったが、いずれも良好な
再現性を示し、両試料間には明らかに吸収スペクトルパ
ターンに違いが認められた。
[0013] The absorption spectrum pattern thus obtained is different between the lead compound stabilizer and the tin compound stabilizer contained in the vinyl chloride resin, and the lead compound stabilizer and the tin compound stabilizer are used. Agent. 1 to 4, the horizontal axis represents wavelength (microns) and the vertical axis represents absorbance. FIG. 1 shows an absorption spectrum of a vinyl chloride resin (sample A) containing a lead compound stabilizer. As shown in the figure, it can be seen that the absorption peak of the vinyl chloride resin containing the lead compound stabilizer has an absorption peak on the low wavelength side. FIG. 2 shows an absorption spectrum of a vinyl chloride resin (sample B) containing a tin compound stabilizer. As shown in the figure, it can be seen that the absorption peak of the vinyl chloride resin containing the tin compound stabilizer is hardly observed. In this experiment, 20 measurements were carried out on the sample, and all showed good reproducibility, and a clear difference was observed in the absorption spectrum pattern between the two samples.

【0014】また一方、波長を変えながら近赤外線
(1.3〜2.4ミクロン)をプラスチック材に照射
し、吸収される割合を測定するとプラスチック材の種類
ごとに異なる吸収スペクトルパターンが得られる。かく
して、この吸収スペクトルパターンがプラスチック材の
種類ごとに異なることを利用して吸収スペクトルパター
ンからプラスチック材の種類を識別することができる。
On the other hand, when a near infrared ray (1.3 to 2.4 microns) is irradiated onto a plastic material while changing the wavelength, and the absorption ratio is measured, different absorption spectrum patterns are obtained for each type of plastic material. Thus, the type of plastic material can be identified from the absorption spectrum pattern by utilizing the fact that this absorption spectrum pattern differs for each type of plastic material.

【0015】まず、1.3〜2.4ミクロンの範囲で波
長を変えながら近赤外線をプラスチック材に照射し、吸
収される割合を測定してプラスチック材の中から塩化ビ
ニル樹脂を識別する。続いて、約1.15〜約1.28
ミクロンの範囲で波長を変えながら近赤外線を照射し塩
化ビニル樹脂中に含まれている鉛系化合物安定剤と錫系
化合物安定剤を識別する。かくして、安定剤別に塩化ビ
ニル樹脂を分別できる。これによりマテリアルサイクル
を実施することができる。
First, the plastic material is irradiated with near-infrared rays while changing the wavelength in the range of 1.3 to 2.4 microns, and the ratio of absorption is measured to identify the vinyl chloride resin from the plastic material. Subsequently, about 1.15 to about 1.28
By irradiating near-infrared rays while changing the wavelength in the range of microns, a lead compound stabilizer and a tin compound stabilizer contained in the vinyl chloride resin are distinguished. Thus, the vinyl chloride resin can be separated for each stabilizer. As a result, a material cycle can be performed.

【0016】該実施例において、まず、種々のプラスチ
ック材の中から塩化ビニル樹脂材を識別する。この場
合、波長1.3〜2.4ミクロンの近赤外線を種々のプ
ラスチック材に照射して得られた吸収スペクトルパター
ンと予めコンピュータに記憶されている塩化ビニル樹脂
の吸収スペクトルパターンデータとを比較する。かくし
て、コンピュータに記憶されている塩化ビニル樹脂の吸
収スペクトルパターンデータと一致した吸収スペクトル
パターンを有するプラスチック材が塩化ビニル樹脂材と
して識別される。
In this embodiment, first, a vinyl chloride resin material is identified from various plastic materials. In this case, an absorption spectrum pattern obtained by irradiating various plastic materials with near infrared rays having a wavelength of 1.3 to 2.4 microns is compared with absorption spectrum pattern data of a vinyl chloride resin stored in a computer in advance. . Thus, a plastic material having an absorption spectrum pattern that matches the absorption spectrum pattern data of the vinyl chloride resin stored in the computer is identified as the vinyl chloride resin material.

【0017】次に、塩化ビニル樹脂材に波長約1.15
〜約1.28ミクロンの近赤外線を照射して吸収スペク
トルパターンを得る。そして、この得られた吸収スペク
トルパターンと既にコンピュータに記憶されている塩化
ビニル樹脂材中の鉛系化合物安定剤と錫系化合物安定剤
の吸収スペクトルパターンデータとを比較する。かくし
て、コンピュータに記憶されている鉛系化合物と錫系化
合物の吸収スペクトルパターンデータとの一致の有無に
よりそれぞれ塩化ビニル樹脂材中に含まれている鉛系化
合物安定剤と錫系化合物安定剤とが識別される。
Next, a wavelength of about 1.15 is applied to the vinyl chloride resin material.
Irradiation with near-infrared light of about 1.28 microns gives an absorption spectrum pattern. Then, the obtained absorption spectrum pattern is compared with the absorption spectrum pattern data of the lead compound stabilizer and the tin compound stabilizer in the vinyl chloride resin material already stored in the computer. Thus, the lead compound stabilizer and the tin compound stabilizer contained in the vinyl chloride resin material, respectively, depend on whether or not the absorption spectrum pattern data of the lead compound and the tin compound stored in the computer match. Be identified.

【0018】上述の本実施例において、種々のプラスチ
ック材に波長;約1.3〜約2.4ミクロンの近赤外線
を照射して塩化ビニル樹脂を識別し、さらに塩化ビニル
樹脂に波長;約1.15〜約1.28ミクロンの近赤外
線を照射して鉛系化合物安定剤と錫系化合物安定剤とを
識別して鉛系化合物安定剤を含む塩化ビニル樹脂材と錫
系化合物安定剤を含む塩化ビニル樹脂材とに分別した
が、該実施例に限らずに、任意のプラスチック材に波
長;約1.3〜約2.4ミクロンの近赤外線を照射して
得られた吸収スペクトルパターンと予めコンピュータに
記憶されている各プラスチック材の吸収スペクトルパタ
ーンデータとを比較して、プラスチック材を種類別に識
別し、さらにプラスチック材中に含まれる重金属安定剤
を識別するに適する波長を選択して該波長の近赤外線を
照射することにより重金属安定剤別にプラスチック材を
分別できる。
In the above embodiment, various plastic materials are irradiated with near infrared rays having a wavelength of about 1.3 to about 2.4 microns to identify the vinyl chloride resin. Irradiating near-infrared rays of 15 to about 1.28 microns to discriminate between a lead compound stabilizer and a tin compound stabilizer and to include a vinyl chloride resin material containing the lead compound stabilizer and a tin compound stabilizer Although it was classified into a vinyl chloride resin material, the present invention is not limited to this example, and any plastic material is irradiated with near-infrared light having a wavelength of about 1.3 to about 2.4 microns. By comparing the absorption spectrum pattern data of each plastic material stored in the computer with each other, the type of plastic material is identified, and a wave suitable for identifying the heavy metal stabilizer contained in the plastic material. Heavy metal stabilizers can separate separate the plastic material by irradiating a near-infrared wavelength Select.

【0019】一方、図3及び図4は、鉛系化合物安定剤
を含む塩化ビニル樹脂材と錫系化合物安定剤を含む塩化
ビニル樹脂材に波長;約1.6〜約2.4ミクロンの近
赤外線を照射した時の吸収スペクトルを示す。該図から
わかるように、両者の材料において吸収スペクトルのパ
ターンにほとんど差異は認められない。
On the other hand, FIGS. 3 and 4 show that the vinyl chloride resin material containing a lead compound stabilizer and the vinyl chloride resin material containing a tin compound stabilizer have a wavelength of about 1.6 to about 2.4 microns. 4 shows an absorption spectrum when irradiated with infrared light. As can be seen from the figure, there is hardly any difference in the absorption spectrum patterns between the two materials.

【0020】ここで、吸収スペクトルを測定して塩化ビ
ニル樹脂中に含まれる鉛系化合物と錫系化合物とを識別
する装置、または、吸収スペクトルを測定してプラスチ
ックの種類を識別する分光分析装置は、出願人が先に発
明したプラスチック種類判別計(商品名;プラスキャ
ン)を利用した。該分光分析装置は、以下の構成を備え
る。
Here, a device for measuring the absorption spectrum to discriminate between the lead compound and the tin compound contained in the vinyl chloride resin, or a spectroscopic device for measuring the absorption spectrum to discriminate the type of plastic is A plastic type discriminator (trade name; Plascan), which was previously invented by the applicant, was used. The spectroscopic analyzer has the following configuration.

【0021】すなわち、図5において、分光分析装置
は、高周波発生装置3で発生させた高周波が高周波振動
子2に印加されて複屈折結晶分光素子1に音響振動が加
えられる。音響振動が加えられた複屈折結晶分光素子1
に光源7からの光b1を入射して得られる分光光線b2
が有機化合物である被測定物8に照射される。反射光b
3は受光器9で受光され、この受光された反射光の吸収
スペクトルはパターン化される。パターン化されたデー
タが、予めデータファイルに保存されている有機化合物
の吸収スペクトルパターンと比較・照合される。かくし
て、被測定物8の有機化合物の材質を判別することがで
きる。
That is, in FIG. 5, in the spectroscopic analyzer, the high frequency generated by the high frequency generator 3 is applied to the high frequency oscillator 2 to apply acoustic vibration to the birefringent crystal spectroscopic element 1. Birefringent crystal spectroscopy element 1 with acoustic vibration
Ray b2 obtained by entering light b1 from the light source 7 into the
Is irradiated on the object 8 which is an organic compound. Reflected light b
3 is received by the light receiver 9, and the absorption spectrum of the received reflected light is patterned. The patterned data is compared and collated with the absorption spectrum pattern of the organic compound previously stored in the data file. Thus, the material of the organic compound of the device under test 8 can be determined.

【0022】さらに、図6は、前記分光分析装置の温度
補正を説明する図である。該図において、図5と同じ符
号は同じ構成を示す。ここで、複屈折結晶分光素子1の
温度ドリフトを回避する温度補正装置が採られている。
該装置は、複屈折結晶分光素子1の温度を測定する温度
測定素子4と、この温度測定素子4の測定結果に素づい
て高周波振動子に印可する高周波を補正する高周波制御
信号重畳回路5とを備える。a1は、分光分析計測のス
ペクトルを採取する分光波長の切替えのための周波数制
御信号、a2は、複屈折結晶分光素子1の温度に基づく
周波数制御補正信号、a3はa1とa2の信号の重畳さ
れた結果の周波数制御重畳信号である。
FIG. 6 is a diagram for explaining the temperature correction of the spectroscopic analyzer. In the figure, the same reference numerals as those in FIG. 5 indicate the same components. Here, a temperature correction device that avoids a temperature drift of the birefringent crystal spectroscopy element 1 is employed.
The apparatus comprises a temperature measuring element 4 for measuring the temperature of the birefringent crystal spectroscopic element 1, a high-frequency control signal superimposing circuit 5 for correcting a high frequency applied to a high-frequency oscillator based on the measurement result of the temperature measuring element 4. Is provided. a1 is a frequency control signal for switching a spectral wavelength for sampling a spectrum of spectroscopic analysis, a2 is a frequency control correction signal based on the temperature of the birefringent crystal spectroscopic element 1, and a3 is a superposition of signals a1 and a2. This is a frequency control superimposed signal obtained as a result.

【0023】[0023]

【発明の効果】近赤外線を用いた吸収スペクトル分光法
によって、鉛系化合物安定剤を含有する塩化ビニル樹脂
材と錫系化合物安定剤を含有する塩化ビニル樹脂材とを
簡単に、かつ迅速に識別することができ、よって、従来
行うことができなかった塩化ビニル樹脂材のマテリアル
りサイクルを行うことができる。よって、鉛化合物をリ
サイクル系の外に出さないことができ、大きな環境負担
抑止効果を得ることができる。
According to the present invention, a vinyl chloride resin material containing a lead compound stabilizer and a vinyl chloride resin material containing a tin compound stabilizer can be easily and quickly distinguished by absorption spectrum spectroscopy using near infrared rays. Therefore, the material cycle of the vinyl chloride resin material, which could not be performed conventionally, can be performed. Therefore, the lead compound can be prevented from being taken out of the recycling system, and a large environmental burden deterrent effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、鉛系化合物安定剤を含む塩化ビニル樹
脂に波長;約1.15〜約1.28ミクロンの近赤外線
を照射した時の吸収スペクトルパターンを示す図であ
る。
FIG. 1 is a diagram showing an absorption spectrum pattern when a near-infrared ray having a wavelength of about 1.15 to about 1.28 microns is irradiated on a vinyl chloride resin containing a lead-based compound stabilizer.

【図2】図2は、錫系化合物安定剤を含む塩化ビニル樹
脂に波長;約1.15〜約1.28ミクロンの近赤外線
を照射した時の吸収スペクトルパターンを示す図であ
る。
FIG. 2 is a view showing an absorption spectrum pattern when a near-infrared ray having a wavelength of about 1.15 to about 1.28 μm is irradiated on a vinyl chloride resin containing a tin-based compound stabilizer.

【図3】図3は、鉛系化合物安定剤を含む塩化ビニル樹
脂に波長;約1.6〜約2.4ミクロンの近赤外線を照
射した時の吸収スペクトルパターンを示す図である。
FIG. 3 is a diagram showing an absorption spectrum pattern when a near-infrared ray having a wavelength of about 1.6 to about 2.4 microns is irradiated to a vinyl chloride resin containing a lead-based compound stabilizer.

【図4】図4は、錫系化合物安定剤を含む塩化ビニル樹
脂に波長;約1.6〜約2.4ミクロンの近赤外線を照
射した時の吸収スペクトルパターンを示す図である。
FIG. 4 is a diagram showing an absorption spectrum pattern when a near-infrared ray having a wavelength of about 1.6 to about 2.4 microns is irradiated to a vinyl chloride resin containing a tin-based compound stabilizer.

【図5】図5は、本発明に係る分光分析装置の概略を示
す図である。
FIG. 5 is a diagram schematically showing a spectroscopic analyzer according to the present invention.

【図6】図6は、図5の分光分析装置の温度補正を行う
温度補正装置の概略を示す図である。
FIG. 6 is a diagram schematically illustrating a temperature correction device that performs a temperature correction of the spectroscopic analyzer of FIG. 5;

【符号の説明】[Explanation of symbols]

1 複屈折結晶分光素子 2 高周波振動子 3 高周波発生装置 4 温度測定素子 5 周波数制御信号重畳回路 a1 周波数制御信号 a2 周波数制御補正信号 a3 周波数制御重畳信号 DESCRIPTION OF SYMBOLS 1 Birefringence crystal spectroscopy element 2 High frequency oscillator 3 High frequency generator 4 Temperature measuring element 5 Frequency control signal superimposing circuit a1 Frequency control signal a2 Frequency control correction signal a3 Frequency control superimposing signal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 波長約1.15〜約1.28ミクロンの
近赤外線を塩化ビニル樹脂材に照射する工程と;前記照
射された塩化ビニル樹脂材から反射光による吸収スペク
トルパターンを得る工程と;前記得られた吸収スペクト
ルパターンとコンピュータに記憶されている塩化ビニル
樹脂材中に含まれる鉛系化合物安定剤の吸収スペクトル
パターンデータと塩化ビニル樹脂材中に含まれる錫系化
合物安定剤の吸収スペクトルパターンデータを比較して
該塩化ビニル樹脂材中の安定剤を識別する工程と;前記
識別結果を基に塩化ビニル樹脂材中の安定剤別に塩化ビ
ニル樹脂材を分別する工程と;を備える塩化ビニル樹脂
材中の安定剤別に塩化ビニル樹脂材を分別するための分
別方法。
1. irradiating a near infrared ray having a wavelength of about 1.15 to about 1.28 microns to a vinyl chloride resin material; and obtaining an absorption spectrum pattern by reflected light from the irradiated vinyl chloride resin material; The obtained absorption spectrum pattern and the absorption spectrum pattern data of the lead compound stabilizer contained in the vinyl chloride resin material stored in the computer and the absorption spectrum pattern of the tin compound stabilizer contained in the vinyl chloride resin material Comparing the data to identify the stabilizer in the vinyl chloride resin material; and separating the vinyl chloride resin material according to the stabilizer in the vinyl chloride resin material based on the identification result. Separation method for separating vinyl chloride resin material by stabilizer in the material.
【請求項2】 前記安定剤を識別する工程は、音響光学
可変波長フィルターを使用してなることを特徴とする請
求項1記載の塩化ビニル樹脂材中の安定剤別に塩化ビニ
ル樹脂材を分別するための分別方法。
2. The method according to claim 1, wherein the step of identifying the stabilizer comprises using an acousto-optic tunable wavelength filter. For sorting.
【請求項3】 多岐にわたる種類のプラスチック材に波
長約1.3〜約2.4ミクロンの近赤外線を照射して得
られた吸収スペクトルパターンと記憶されている塩化ビ
ニル樹脂材の吸収スペクトルパターンデータとを比較し
て塩化ビニル樹脂材を識別する工程と;前記塩化ビニル
樹脂材に波長約1.15〜約1.28ミクロンの近赤外
線を照射して得られた吸収スペクトルパターンとコンピ
ュータに記憶されている塩化ビニル樹脂材中に含まれる
鉛系化合物安定剤の吸収スペクトルパターンデータと塩
化ビニル樹脂材中に含まれる錫系化合物安定剤の吸収ス
ペクトルパターンデータを比較して該塩化ビニル樹脂材
中の安定剤を識別する工程と;前記識別結果を基に塩化
ビニル樹脂材中の安定剤別に塩化ビニル樹脂材を分別す
る工程と;を備える塩化ビニル樹脂材のリサイクル方
法。
3. An absorption spectrum pattern obtained by irradiating a wide variety of plastic materials with near-infrared light having a wavelength of about 1.3 to about 2.4 microns, and stored absorption spectrum pattern data of a vinyl chloride resin material. Identifying the vinyl chloride resin material by comparing the vinyl chloride resin material with near-infrared light having a wavelength of about 1.15 to about 1.28 microns and storing the absorption spectrum pattern in a computer. Comparing the absorption spectrum pattern data of the lead compound stabilizer contained in the vinyl chloride resin material with the absorption spectrum pattern data of the tin compound stabilizer contained in the vinyl chloride resin material. A step of identifying a stabilizer; and a step of separating the vinyl chloride resin material for each stabilizer in the vinyl chloride resin material based on the identification result. How to recycle vinyl chloride resin.
【請求項4】 前記安定剤を識別する工程は、音響光学
可変波長フィルターを使用してなることを特徴とする請
求項4記載の塩化ビニル樹脂材のリサイクル方法。
4. The method according to claim 4, wherein the step of identifying the stabilizer comprises using an acousto-optic tunable wavelength filter.
JP6535199A 1999-02-05 1999-02-05 Fractionation method for fractionating vinyl chloride resin material according to stabilizer in vinyl chloride resin material and method for recycling vinyl chloride resin material Pending JP2000226468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6535199A JP2000226468A (en) 1999-02-05 1999-02-05 Fractionation method for fractionating vinyl chloride resin material according to stabilizer in vinyl chloride resin material and method for recycling vinyl chloride resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6535199A JP2000226468A (en) 1999-02-05 1999-02-05 Fractionation method for fractionating vinyl chloride resin material according to stabilizer in vinyl chloride resin material and method for recycling vinyl chloride resin material

Publications (1)

Publication Number Publication Date
JP2000226468A true JP2000226468A (en) 2000-08-15

Family

ID=13284458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6535199A Pending JP2000226468A (en) 1999-02-05 1999-02-05 Fractionation method for fractionating vinyl chloride resin material according to stabilizer in vinyl chloride resin material and method for recycling vinyl chloride resin material

Country Status (1)

Country Link
JP (1) JP2000226468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520679A (en) * 2010-03-01 2013-06-06 エンパイア テクノロジー ディベロップメント エルエルシー Sensing chemicals in aqueous environments
TWI643726B (en) * 2011-04-11 2018-12-11 道達爾石油化學產品研究弗呂公司 Recycling of high-density polyethylene from domestic polymer waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520679A (en) * 2010-03-01 2013-06-06 エンパイア テクノロジー ディベロップメント エルエルシー Sensing chemicals in aqueous environments
TWI643726B (en) * 2011-04-11 2018-12-11 道達爾石油化學產品研究弗呂公司 Recycling of high-density polyethylene from domestic polymer waste

Similar Documents

Publication Publication Date Title
US5017007A (en) Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same
Bol'Shakov et al. Laser-induced breakdown spectroscopy in industrial and security applications
CA2016222A1 (en) Method for spectroscopic analysis of hydrocarbons, and hydrocarbon refining operations using same
CN107709983A (en) The method for carrying out detailed batch classification analysis to complex sample using vacuum ultraviolet spectrometry and gas-chromatography
JPH07111397B2 (en) How to determine the type of plastic
US20170336264A1 (en) Optoelectronic device for multi-spectral spectroscopic identification of the polymer composition of an unknown plastic object and related methods
Adarsh et al. Development of an inter-confirmatory plastic characterization system using spectroscopic techniques for waste management
US7243548B2 (en) Surface wave chemical detector using optical radiation
JP2000226468A (en) Fractionation method for fractionating vinyl chloride resin material according to stabilizer in vinyl chloride resin material and method for recycling vinyl chloride resin material
Siddiqui et al. Identification of different type of polymers in plastics waste
WO1998024043A1 (en) Method and apparatus for processing geochemical survey data
Ren et al. Portable Pyrolysis-Point Discharge Optical Spectrometer for In Situ Plastic Polymer Identification by Coupling with Machine Learning
Oelichmann Surface and depth-profile analysis using FTIR spectroscopy
Rafferty et al. FT-IR imaging of patterned photocrosslinkable poly (vinyl cinnamate)
Simpson et al. Communication. Polymer characterization using laser desorption–ion mobility spectrometry
Wang et al. Discrimination of plant samples using near-infrared spectroscopy with a principal component accumulation method
JPH1038690A (en) Device for spectroscopic analysis avoiding temperature drift
JP2005164431A (en) Method and apparatus for identifying plastics
RU2248571C1 (en) Method of rapidly identifying gasolines
CN110907430A (en) LIBS-based nondestructive testing method for single-particle micro-plastic composite heavy metal pollution
Nodland et al. Influence and correction of peak shift and band broadening observed by rank analysis on vibrational bands from variable-temperature measurements
EP0354486A3 (en) Apparatus for carrying out a method to identify and to quantify unknown gaseous substances
Parvin et al. LIF/LIB Spectroscopy of crude oil-saturated carbonate bedrock
KUMAGAI et al. Chemical meaning of near infrared spectra from a portable near infrared spectrometer for various plastic wastes
Potyrailo et al. Recognition and quantitation of closely related chlorinated organic vapors with acoustic-wave chemical sensor arrays