JP2000224996A - Production optically active polyester - Google Patents

Production optically active polyester

Info

Publication number
JP2000224996A
JP2000224996A JP11029513A JP2951399A JP2000224996A JP 2000224996 A JP2000224996 A JP 2000224996A JP 11029513 A JP11029513 A JP 11029513A JP 2951399 A JP2951399 A JP 2951399A JP 2000224996 A JP2000224996 A JP 2000224996A
Authority
JP
Japan
Prior art keywords
optically active
chiral carbon
lactone
hydrolase
active polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11029513A
Other languages
Japanese (ja)
Inventor
Ryohei Ikeda
良平 池田
Shiro Kobayashi
四郎 小林
Hiroshi Uyama
浩 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP11029513A priority Critical patent/JP2000224996A/en
Publication of JP2000224996A publication Critical patent/JP2000224996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optically active polyester useful as a biodegradable polymer simply under a mild condition by reacting a chiral carbon-containing lactone with a chiral carbon-free lactone in the presence of a hydrolase. SOLUTION: A chiral carbon-containing lactone (e.g. β-butyrolactone) is reacted with a chiral carbon-free lactone such as 12-dodecanolide or ε- caprolactone in the presence of a hydrolase (e.g. lipase) in a solvent such as isooctane under heating for 6 hours mixed with chloroform and the enzyme is removed by filtration. The filtrate is concentrated under reduced pressure and the formed polymer is dried in vacuum to give the objective optically active polyester useful as a biodegradable polymer inexpensively, simply under mild conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学活性ポリエス
テルの製造方法に関する。更に詳しくは、簡便且つ穏和
な条件で安価に光学活性ポリエステルを製造する方法に
関する。
[0001] The present invention relates to a method for producing an optically active polyester. More specifically, the present invention relates to a method for producing an optically active polyester at low cost under simple and mild conditions.

【0002】[0002]

【従来の技術】光学活性ポリエステルは生分解性高分子
として有用であることが知られている。とくに、種々の
微生物が生産するポリ(R−3−ヒドロキシアルカノエ
ート)は、高分子材料としての優れた物性や容易な生分
解性から注目されている。一方、酵素触媒による穏和な
条件下でラクトン類の開環重合が進行することが知られ
ており、当該手法を用いて光学活性ポリエステルを合成
する試みが成されている。例えばMacromolec
ules,29巻、4591ページ(1996年)で
は、ラセミ体のα−メチル−β−プロピオラクトンをリ
パーゼ触媒を用いて開環重合を進行させることにより、
S体富化の光学活性ポリエステルであるポリ(α-メチ
ル−β−プロピオラクトン)を合成する方法が示されて
いる。しかしながら、当該方法で得られるポリエステル
は単独重合体であり、従ってポリエステルの物性は限定
され、コスト的にも問題点があった。更に、キラル炭素
を有するラクトンとキラル炭素を有さないラクトンとを
加水分解酵素存在下に反応させることを特徴とする光学
活性ポリエステルの製造方法の報告例はなかった。
2. Description of the Related Art Optically active polyesters are known to be useful as biodegradable polymers. In particular, poly (R-3-hydroxyalkanoate) produced by various microorganisms has attracted attention because of its excellent physical properties as a polymer material and easy biodegradability. On the other hand, it is known that ring-opening polymerization of lactones proceeds under mild conditions catalyzed by an enzyme, and attempts have been made to synthesize optically active polyesters using this technique. For example, Macromolec
ules, vol. 29, p. 4591 (1996), by proceeding ring-opening polymerization of racemic α-methyl-β-propiolactone using a lipase catalyst.
A method for synthesizing an S-enriched optically active polyester, poly (α-methyl-β-propiolactone), is disclosed. However, the polyester obtained by this method is a homopolymer, and thus the physical properties of the polyester are limited, and there is a problem in cost. Furthermore, there has been no report on a method for producing an optically active polyester, which comprises reacting a lactone having a chiral carbon with a lactone having no chiral carbon in the presence of a hydrolase.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、簡便
且つ穏和な条件で安価にかつ物性の設計が容易な種々の
光学活性ポリエステルを提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide various optically active polyesters which are simple, easy to use under mild conditions, inexpensive, and easy in designing physical properties.

【0004】[0004]

【課題を解決するための手段】即ち本発明は、キラル炭
素を有するラクトンとキラル炭素を有さないラクトンと
を加水分解酵素存在下に反応させることを特徴とする光
学活性ポリエステルの製造方法に関する。
That is, the present invention relates to a method for producing an optically active polyester, which comprises reacting a lactone having a chiral carbon with a lactone having no chiral carbon in the presence of a hydrolase.

【0005】更に本発明は、キラル炭素を有するラクト
ンが、ラセミ体である上記光学活性ポリエステルの製造
方法に関する。
Further, the present invention relates to a method for producing the above-mentioned optically active polyester, wherein the lactone having a chiral carbon is in a racemic form.

【0006】更に本発明は、キラル炭素を有さないラク
トンが、12-ドデカノリドおよびε−カプロラクトンで
ある上記光学活性ポリエステルの製造方法に関する。
Further, the present invention relates to a method for producing the above-mentioned optically active polyester, wherein the lactone having no chiral carbon is 12-dodecanolide and ε-caprolactone.

【0007】更に本発明は、加水分解酵素が、リパーゼ
である上記光学活性ポリエステルの製造方法に関する。
Further, the present invention relates to a method for producing the above optically active polyester, wherein the hydrolase is lipase.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0009】本発明において用いられるキラル炭素を有
するラクトンは、加水分解酵素と反応するものであれば
特に制限はないが、例えば、β−ブチロラクトン、α−
メチル−プロピオラクトン、γ−カプロラクトン、γ−
ヘプタノラクトン、γ−バレロラクトン、ε−ヘプタノ
ラクトン、ε−オクタノラクトン等が挙げられる。
The lactone having a chiral carbon used in the present invention is not particularly limited as long as it reacts with a hydrolase, and examples thereof include β-butyrolactone and α-butyrolactone.
Methyl-propiolactone, γ-caprolactone, γ-
Heptanolactone, γ-valerolactone, ε-heptanolactone, ε-octanolactone and the like can be mentioned.

【0010】本発明において用いられるキラル炭素を有
さないラクトンは、加水分解酵素と反応するものであれ
ば特に制限はないが、例えば、β−プロピオラクトン、
γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラ
クトン、7-ヘプタノリド、8-オクトノリド、11-ウンデ
カノリド、12-ドデカノリド、15-ペンタデカノリド、16
-ヘキサドデカノリド、α、α−ジメチル−β−プロピ
オラクトン等が挙げられる。
[0010] The lactone having no chiral carbon used in the present invention is not particularly limited as long as it reacts with a hydrolase. For example, β-propiolactone,
γ-butyrolactone, δ-valerolactone, ε-caprolactone, 7-heptanolide, 8-octonolide, 11-undecanolide, 12-dodecanolide, 15-pentadecanolide, 16
-Hexadodecanolide, α, α-dimethyl-β-propiolactone and the like.

【0011】本発明は、加水分解酵素が触媒するエステ
ル合成反応とエナンチオ選択性とを利用することを特徴
としている。従って、本発明で用いる加水分解酵素は、
ラセミ体モノマーと反応してエステル合成反応を触媒
し、エナンチオ選択性を示すものであればとくに制限は
ない。例えばカルボキシエステラーゼ、リパーゼ、ホス
ホリパーゼ、アセチルエステラーゼ、ペクチンエステラ
ーゼ、コレステロールエステラ ーゼ、タンナーゼ、モ
ノアシルグリセロールリパーゼ、ラクトナーゼ、リポプ
ロテイ ンリパーゼ等のEC(酵素番号)3.1群(丸
尾・田宮監修「酵素ハンドブック」朝 倉書店(198
2)等参照)に分類されるエステラーゼ、グルコシダー
ゼ、ガラクトシダーゼ、グルクロニダーゼ、キシロシダ
ーゼ等のグリコシル化合物に作用するEC3.2群に分
類される加水分解酵素、エポキシドヒドラーゼ等のEC
3.3群に分類される加水分解酵素、アミノペプチダー
ゼ、キモトリプシン、トリプシン、プラスミン、ズブチ
リシン等のペプチド結合に作用するEC3.4群に分類
される加水分解酵素、フロレチンヒドラーゼ等のEC
3.7群に分類される加水分解酵素等を挙げることがで
きる。
The present invention is characterized by utilizing an ester synthesis reaction catalyzed by a hydrolase and enantioselectivity. Therefore, the hydrolase used in the present invention is:
There is no particular limitation as long as it reacts with the racemic monomer to catalyze the ester synthesis reaction and shows enantioselectivity. For example, EC (enzyme number) 3.1 group of carboxylesterase, lipase, phospholipase, acetylesterase, pectin esterase, cholesterol esterase, tannase, monoacylglycerol lipase, lactonase, lipoprotein lipase, etc. (Enzyme Handbook supervised by Maruo and Tamiya) Asakura Shoten (198
2) etc.) ECs acting on glycosyl compounds such as esterases, glucosidases, galactosidases, glucuronidases, glucuronidases, xylosidases classified as EC3.2, ECs classified as hydrolytic enzymes and epoxide hydrolases classified into the group 3.2.
ECs acting on peptide bonds such as hydrolases, aminopeptidase, chymotrypsin, trypsin, plasmin, subtilisin, etc. classified into group 3.3 Hydrolases, ECs such as phloretin hydrolase classified into group 3.4
Hydrolytic enzymes classified into the 3.7 group can be exemplified.

【0012】上記エステラーゼのうち、グリセロールエ
ステルを加水分解し脂肪酸を遊離する酵素をとくにリパ
ーゼと呼ぶが、リパーゼは収率良くエステル合成反応を
触媒し、さらに安価に入手できるなどの利点がある。従
って、本発明のポリエステルの製造方法においてもリパ
ーゼを用いることが好ましい。
Among the above esterases, the enzyme that hydrolyzes glycerol esters to release fatty acids is particularly called a lipase. Lipases have the advantages of catalyzing the ester synthesis reaction with high yield and being available at a low cost. Therefore, it is preferable to use lipase also in the method for producing the polyester of the present invention.

【0013】リパーゼには種々の起源のものを使用でき
るが、好ましいものとして、シュードモナス(Pseudomo
nas)属、アルカリゲネス(Alcaligenes)属、アクロモ
バクター(Achromobacter)属、カンジダ(Candida)
属、アスペルギルス(Aspergillus)属、リゾプス(Rhi
zopus)属、ムコール(Mucor)属等の微生物から得られ
るリパーゼ、植物種子から得られるリパーゼ、動物組織
から得られるリパーゼ、さらに、パンクレアチン、ステ
アプシン等を挙げることができる。このうち、シュード
モナス属、カンジダ属、アスペルギルス属の微生物由来
のリパーゼを用いることが望ましい。本発明において
は、2種類以上の加水分解酵素を混合して用いても良
く、また、酵素の安定化や反応後の回収を容易にするた
めに、公知の方法で固定化した酵素を用いることも可能
である。
Although lipases of various origins can be used, Pseudomonas (Pseudomo
nas), Alcaligenes, Achromobacter, Candida
Genus, Aspergillus, Rhizopus (Rhi
Examples include lipase obtained from microorganisms such as genus zopus and Mucor, lipase obtained from plant seeds, lipase obtained from animal tissues, and pancreatin and stearpsin. Among them, it is desirable to use a lipase derived from microorganisms of the genera Pseudomonas, Candida and Aspergillus. In the present invention, two or more types of hydrolases may be used as a mixture, and an enzyme immobilized by a known method is used in order to stabilize the enzyme and facilitate recovery after the reaction. Is also possible.

【0014】本発明の上記ラクトンと加水分解酵素との
反応において、必要に応じて溶媒を用いることができ
る。溶媒としては加水分解酵素の活性を妨げないものが
好ましいが、例えば、ヘキサン、シクロヘキサン、イソ
オクタン、ヘプタン、ベンゼン、トルエン、ジオキサ
ン、テトラヒドロフラン、イソプロパノール、t−アミ
ルアルコール、アセトニトリル、酢酸エチル、エーテ
ル、イソプロピルエーテルが挙げられる。特に好ましい
溶媒として、イソオクタン、ヘプタンが挙げられる。
In the reaction of the lactone with the hydrolase of the present invention, a solvent can be used if necessary. As the solvent, those which do not hinder the activity of the hydrolase are preferable, for example, hexane, cyclohexane, isooctane, heptane, benzene, toluene, dioxane, tetrahydrofuran, isopropanol, t-amyl alcohol, acetonitrile, ethyl acetate, ether, isopropyl ether Is mentioned. Particularly preferred solvents include isooctane and heptane.

【0015】本発明の製造方法において、キラル炭素を
有するラクトンおよびキラル炭素を有さないラクトンが
固体または液体の状態を維持し、且つ、固体である加水
分解酵素と分散状態を維持していても何ら問題はない。
In the production method of the present invention, the lactone having a chiral carbon and the lactone having no chiral carbon can be maintained in a solid or liquid state and in a dispersed state with a solid hydrolase. There is no problem at all.

【0016】本発明において、キラル炭素を有するラク
トン1モルに対してキラル炭素を有さないラクトンは、
0.001〜1000モル%使用するのが好ましく、さ
らに好ましくは0.01〜100モル%使用することが
望ましい。反応温度は酵素の失活しない範囲である−1
0〜120 ℃が好ましく、特に好ましくは20〜80
℃が望ましい。
In the present invention, the lactone having no chiral carbon per mole of the lactone having chiral carbon is
It is preferably used in an amount of 0.001 to 1000 mol%, more preferably 0.01 to 100 mol%. The reaction temperature is within a range where the enzyme is not deactivated-1.
The temperature is preferably from 0 to 120 ° C, particularly preferably from 20 to 80 ° C.
C is desirable.

【0017】本発明において、加水分解酵素の添加量
は、用いる加水分解酵素のエステル合成能により適宜加
減すれば良いが、好ましくはキラル炭素を有するラクト
ンの量に対し0.01〜1000重量%、さらに好まし
くは0.1〜100重量%とすれば良い。このとき、
酵素を大量に使用しても副反応は生じず、得られるポリ
エステルの精製操作に支障を来たすことはない。
In the present invention, the amount of the hydrolase added may be appropriately adjusted depending on the ester synthesizing ability of the hydrolase used, but is preferably 0.01 to 1000% by weight based on the amount of the lactone having a chiral carbon. More preferably, it may be 0.1 to 100% by weight. At this time,
Even if a large amount of the enzyme is used, no side reaction occurs, and the operation of purifying the obtained polyester is not hindered.

【0018】本発明において得られるポリエステルの数
平均分子量は、GPCより求めたポリスチレン換算の分
子量で300〜300,000、通常は500〜10
0,000の範囲である。
The number average molecular weight of the polyester obtained in the present invention is 300 to 300,000 in terms of polystyrene equivalent molecular weight determined by GPC, usually 500 to 10
It is in the range of 0000.

【0019】通常、光学活性ポリマーの合成方法は、ラ
セミ体原料からキラルなモノマーを得、このものを重合
する方法と、ラセミ体モノマーから光学活性ポリマーを
直接得る方法の2つがある。本発明は、酵素が有するエ
ナンチオ選択性を利用するものであり、ラセミ体モノマ
ーであるキラル炭素を有するラクトンから一段階で光学
活性ポリマーであるポリエステルを得ることができる。
さらに本発明では、重合反応に関与しなかった未反応の
キラル炭素を有するラクトンの光学純度は100%であ
ることから、ラセミ体であるキラル炭素を有するラクト
ンの光学分割方法としても有用である。
In general, there are two methods for synthesizing an optically active polymer: a method of obtaining a chiral monomer from a racemic material and polymerizing the same, and a method of directly obtaining an optically active polymer from a racemic monomer. The present invention utilizes the enantioselectivity possessed by the enzyme, and can obtain a polyester which is an optically active polymer in one step from a lactone having a chiral carbon which is a racemic monomer.
Furthermore, in the present invention, the lactone having an unreacted chiral carbon which did not participate in the polymerization reaction has an optical purity of 100%, and thus is also useful as an optical resolution method for a lactone having a racemic chiral carbon.

【0020】[0020]

【実施例】以下、本発明を実施例により詳細に説明する
が、本発明はこれらに限定されるものではない。 (実施例1)ラセミ体のβ−ブチロラクトン(ee値0
%)1ミリモル(0.086グラム)、12−ドデカノリド1
ミリモル(0.20グラム)にCandida antarctica由来のリ
パーゼ50ミリグラム、イソオクタン5mLを加えた。この
ものを60℃で6時間加熱した。その後クロロホルムを
30mL加え、濾過により酵素を除去し、濾液を減圧下に濃
縮し、ポリマーを真空下乾燥した。収量0.26グラム。ポ
リスチレン換算で求めた数平均分子量はGPCより150
0であった。12−ドデカノリド、β−ブチロラクトン
の転化率をガスクロマトグラフィーにより求めたとこ
ろ、12−ドデカノリドの転化率は100%、β−ブチ
ロラクトンの転化率は67%であった。未反応β−プチ
ロラクトンの光学純度を光学活性カラムを装着したガス
クロマトグラフィーにより求めたところ、ee値は10
0%であり、絶対配置はR体であった。得られたポリマ
ーの比旋光度を室温下、クロロホルム溶媒にて365nmの
波長で測定したところ、+4.3(c=5.0)であっ
た(かっこ内のcはg/dL)。また、13C−NMR分析よ
り、得られたポリマーはランダム共重合体であることが
判った。
The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 Racemic β-butyrolactone (ee value 0
%) 1 mmol (0.086 g), 12-dodecanolide 1
To 50 milligrams (0.20 grams) of lipase from Candida antarctica and 5 mL of isooctane were added. This was heated at 60 ° C. for 6 hours. Then chloroform
30 mL was added, the enzyme was removed by filtration, the filtrate was concentrated under reduced pressure, and the polymer was dried under vacuum. Yield 0.26 grams. The number average molecular weight determined in terms of polystyrene is 150 from GPC.
It was 0. When the conversion of 12-dodecanolide and β-butyrolactone was determined by gas chromatography, the conversion of 12-dodecanolide was 100% and the conversion of β-butyrolactone was 67%. When the optical purity of unreacted β-butyrolactone was determined by gas chromatography equipped with an optically active column, the ee value was 10
0%, and the absolute configuration was R-form. The specific rotation of the obtained polymer was measured at room temperature with a chloroform solvent at a wavelength of 365 nm, and was +4.3 (c = 5.0) (c in parentheses is g / dL). From 13 C-NMR analysis, it was found that the obtained polymer was a random copolymer.

【0021】(実施例2)イソオクタンの代わりに、ヘ
プタンを用いた以外は実施例1と同様に実験を行った。
収量0.27グラム。数平均分子量はGPC より1700であ
った。12−ドデカノリドの転化率は100%、β−ブ
チロラクトンの転化率は76%、未反応β−プチロラクト
ンの光学純度(ee値)は100%(絶対配置は R
体)であった。また、得られたポリマーの比旋光度は、
+3.3(c=5.3) であった。
Example 2 An experiment was conducted in the same manner as in Example 1 except that heptane was used instead of isooctane.
Yield 0.27 grams. The number average molecular weight was 1,700 from GPC. The conversion of 12-dodecanolide is 100%, the conversion of β-butyrolactone is 76%, the optical purity (ee value) of unreacted β-butyrolactone is 100% (absolute configuration is R
Body). The specific rotation of the obtained polymer is
+3.3 (c = 5.3).

【0022】(実施例3)12−ドデカノリドの代わり
に、ε−カプロラクトン0.11グラムを用いた以外は実施
例1と同様に実験を行った。収量0.17グラム。数平均分
子量はGPCより2300であった。ε−カプロラクトン
の転化率は100%、β−プチロラクトンの転化率は7
1%、未反応β−プチロラクトンの光学純度(ee値)
は100%(絶対配置はR体)であった。また、得られ
たポリマーの比旋光度は、+8.2(c=2 .6)であ
った。
Example 3 An experiment was carried out in the same manner as in Example 1 except that 0.11 g of ε-caprolactone was used instead of 12-dodecanolide. Yield 0.17 grams. The number average molecular weight was 2,300 from GPC. The conversion of ε-caprolactone is 100%, and the conversion of β-butyrolactone is 7%.
1%, optical purity of unreacted β-butyrolactone (ee value)
Was 100% (the absolute configuration was R-form). The specific rotation of the obtained polymer was +8.2 (c = 2.6).

【0023】[0023]

【発明の効果】安価で様々な物性を有するキラル炭素を
有さないラクトンを用いることにより、簡便且つ穏和な
条件で安価でかつ様々な物性を有する光学活性ポリエス
テルが製造することができた。
As described above, the use of inexpensive and non-chiral carbon-free lactones having various physical properties makes it possible to produce inexpensive optically active polyesters having various physical properties under simple and mild conditions.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B064 AD83 CB26 CB30 CC30 CD08 DA16 DA20 4J029 AA02 AB04 AC02 AD01 AE04 EG02 EG04 EG05 EG06 EG07 EG08 EG09 EG10 JE011 KB05  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4B064 AD83 CB26 CB30 CC30 CD08 DA16 DA20 4J029 AA02 AB04 AC02 AD01 AE04 EG02 EG04 EG05 EG06 EG07 EG08 EG09 EG10 JE011 KB05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】キラル炭素を有するラクトンとキラル炭素
を有さないラクトンとを加水分解酵素存在下に反応させ
ることを特徴とする光学活性ポリエステルの製造方法。
1. A process for producing an optically active polyester, comprising reacting a lactone having a chiral carbon with a lactone having no chiral carbon in the presence of a hydrolase.
【請求項2】キラル炭素を有するラクトンが、ラセミ体
である請求項1記載の光学活性ポリエステルの製造方
法。
2. The method for producing an optically active polyester according to claim 1, wherein the lactone having a chiral carbon is in a racemic form.
【請求項3】キラル炭素を有さないラクトンが、12-ド
デカノリドまたはε−カプロラクトンである請求項1ま
たは2記載の光学活性ポリエステルの製造方法。
3. The process for producing an optically active polyester according to claim 1, wherein the lactone having no chiral carbon is 12-dodecanolide or ε-caprolactone.
【請求項4】加水分解酵素が、リパーゼである請求項1
〜3のいずれか記載の光学活性ポリエステルの製造方
法。
4. The method according to claim 1, wherein the hydrolase is a lipase.
4. The method for producing an optically active polyester according to any one of items 1 to 3.
JP11029513A 1999-02-08 1999-02-08 Production optically active polyester Pending JP2000224996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11029513A JP2000224996A (en) 1999-02-08 1999-02-08 Production optically active polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11029513A JP2000224996A (en) 1999-02-08 1999-02-08 Production optically active polyester

Publications (1)

Publication Number Publication Date
JP2000224996A true JP2000224996A (en) 2000-08-15

Family

ID=12278190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11029513A Pending JP2000224996A (en) 1999-02-08 1999-02-08 Production optically active polyester

Country Status (1)

Country Link
JP (1) JP2000224996A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189772A (en) * 2011-03-10 2012-10-04 Ricoh Co Ltd Toner, two-component developer, image formation method, image formation device and process cartridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189772A (en) * 2011-03-10 2012-10-04 Ricoh Co Ltd Toner, two-component developer, image formation method, image formation device and process cartridge

Similar Documents

Publication Publication Date Title
Matsumura Enzyme‐catalyzed synthesis and chemical recycling of polyesters
Patil et al. Enzymatic synthesis of a sucrose‐containing linear polyester in nearly anhydrous organic media
Matsumura Enzymatic synthesis of polyesters via ring-opening polymerization
Nobes et al. Lipase-catalyzed ring-opening polymerization of lactones: a novel route to poly (hydroxyalkanoate) s
CA2734893C (en) Method for preparing long-chain hydroxyacids, diacids and oligomers and polymers thereof
Khmelnitsky et al. Biocatalysis in nonaqueous solvents
Chaudhary et al. Biocatalytic solvent‐free polymerization to produce high molecular weight polyesters
Gross et al. Polyester and polycarbonate synthesis by in vitro enzyme catalysis
Linko et al. Lipase-catalyzed synthesis of poly (1, 4-butyl sebacate) from sebacic acid or its derivatives with 1, 4-butanediol
Pastorino et al. Lipase-catalyzed degradation of poly (ε-caprolactone)
Rodríguez-Contreras et al. Enzymatic degradation of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by commercial lipases
Santos et al. Polyester hydrolytic and synthetic activity catalyzed by the medium-chain-length poly (3-hydroxyalkanoate) depolymerase from Streptomyces venezuelae SO1
Ohara et al. Lipase-catalyzed oligomerization and hydrolysis of alkyl lactates: direct evidence in the catalysis mechanism that enantioselection is governed by a deacylation step
Kobayashi et al. In vitro polyester synthesis via enzymatic polymerization
US6924129B2 (en) Enzyme-catalyzed esterification of pendant carboxylic acid groups
Gumel et al. Single‐step lipase‐catalyzed functionalization of medium‐chain‐length polyhydroxyalkanoates
Kumar et al. Poly (3-hydroxybutyrate)-depolymerase from Pseudomonas lemoignei: catalysis of esterifications in organic media
Santos et al. Poly (3-hydroxyoctanoate) depolymerase from Pseudomonas fluorescens GK13: Catalysis of ester-forming reactions in non-aqueous media
Wallace et al. Resolution of a chiral ester by lipase-catalyzed transesterification with polyethylene glycol in organic media
Ohya et al. Polycondensation of α-hydroxy acids by enzymes or PEG-modified enzymes in organic media
Li et al. Highly efficient ring-opening polymerization of ɛ-caprolactone catalyzed by a recombinant Escherichia coli whole-cell biocatalyst
JP2000224996A (en) Production optically active polyester
Wang et al. Lipase-catalyzed polyester synthesis
Shimizu et al. Optical resolution of pantolactone by a novel fungal enzyme, lactonohydrolase
JP3690028B2 (en) Polyester manufacturing method