JP2000224894A - Driving of multi-phase stepping motor and driving circuit - Google Patents

Driving of multi-phase stepping motor and driving circuit

Info

Publication number
JP2000224894A
JP2000224894A JP2359499A JP2359499A JP2000224894A JP 2000224894 A JP2000224894 A JP 2000224894A JP 2359499 A JP2359499 A JP 2359499A JP 2359499 A JP2359499 A JP 2359499A JP 2000224894 A JP2000224894 A JP 2000224894A
Authority
JP
Japan
Prior art keywords
winding
stepping motor
circuit
windings
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2359499A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mizuno
裕之 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2359499A priority Critical patent/JP2000224894A/en
Publication of JP2000224894A publication Critical patent/JP2000224894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Stepping Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the transient vibration of a rotor by keeping both ends of an non-excited winding in a multi-phase stepping motor in a short-circuit condition. SOLUTION: SW11 to SW15 opened from feeding point A to E are included in a circuit 10 which connects the feeding points with a common connecting point S. For windings A to D in a exciting step 1 condition, a conventional way is taken as follows: the feeding point E is connected to the common connecting point S through the SW12 to form a short-circuit phase out of a winding (e). The feeding point A is connected to the common connecting point S through the SW15 to form a short-circuit phase out of a winding (a). In the same way, a stage rises up to a step 10, and a step 1 is then taken. The excited winding is left as it is, the non-excited winding is kept in a short-circuit condition, and in any exciting step, a set of short-circuit phase is always formed, therefore the vibration of a rotor can be restrained. On the motor side, only one wire of the common connecting point S may be added.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば5相ステッピン
グモータのような複数相のステッピングモータのロータ
の過渡振動が抑制できる駆動方法および駆動回路に関す
るものである。なお、以下の説明では、5相ステッピン
グモータを例にとり説明する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving method and a driving circuit for suppressing transient vibration of a rotor of a multi-phase stepping motor such as a five-phase stepping motor. In the following description, a five-phase stepping motor will be described as an example.

【0002】[0002]

【従来の技術】5相ステッピングモータの4相励磁駆動
回路の従来例の回路を図4に示す。5組の励磁巻線a〜
eの一端を給電点A〜Eとし、その機械的配列すなわち
ステータの配列は、a→b→c→d→e→aあるいはそ
の逆のa→e→d→c→b→aの順に環状に並ぶ。各々
の巻線は以下のように星状に接続されている。
2. Description of the Related Art FIG. 4 shows a conventional circuit of a four-phase excitation drive circuit for a five-phase stepping motor. 5 sets of excitation windings a to
One end of e is a feeding point A to E, and the mechanical arrangement, that is, the arrangement of the stator is annular in the order of a → b → c → d → e → a or vice versa. Line up. Each winding is connected in a star configuration as follows.

【0003】各巻線は以下のように接続される。巻線a
の巻初めは給電点Aであり、巻終りは共通の接続点Sに
結線される。巻線bの巻終りは給電点Bであり、巻初め
は共通の接続点Sに結線される。巻線cの巻初めは給電
点Cであり、巻終りは共通の接続点Sに結線される。巻
線dの巻終りは給電点Dであり、巻初めは共通の接続点
Sに結線される。巻線eの巻初めは給電点Eであり、巻
終りは共通の接続点Sに結線される。
[0003] Each winding is connected as follows. Winding a
Is the feeding point A, and the winding end is connected to the common connection point S. The end of the winding b is a feeding point B, and the beginning of the winding is connected to a common connection point S. The beginning of the winding c is a feeding point C, and the end of the winding c is connected to a common connection point S. The end of the winding d is a feeding point D, and the beginning of the winding is connected to a common connection point S. The beginning of the winding e is a feeding point E, and the end of the winding e is connected to a common connection point S.

【0004】給電点A〜Eは、各々が、高電位にある+
側への導通・開放を行なう例えばトランジスタまたはF
ETから成るスイッチ素子SW1−SW5と、低電位に
ある−側への導通・開放を行なうスイッチ素子SW6−
SW10とにより、等価的に+側に接続されたり、ある
いは等価的に−側に接続されたり、あるいはどちらにも
接続されない状態の3状態のいずれかに制御される。
The feeding points A to E each have a high potential +
For example, a transistor or F
A switch element SW1-SW5 composed of ET and a switch element SW6- for conducting / opening to the negative side at a low potential.
The switch SW10 is controlled to one of three states of equivalently connected to the positive side, equivalently connected to the negative side, or not connected to either side.

【0005】これらスイッチ素子により、5点の給電点
に与える電位を切替えて5組の巻線を所定の順序で励磁
することにより5相ステッピングモータを回転駆動す
る。以下、励磁相数により2つの従来例を説明する。
The five-phase stepping motor is rotated by switching the potentials applied to the five feeding points by these switching elements and exciting the five windings in a predetermined order. Hereinafter, two conventional examples will be described based on the number of excitation phases.

【0006】(従来例1)図5に、4相励磁駆動の従来例
を示す。また、そのときの発生トルクベクトルを図6に
示す。巻線a〜e各々が生じるベクトルは電流の向きに
より180度変わるので、電気角は1回転を10分割す
ることになる。
(Conventional Example 1) FIG. 5 shows a conventional example of a four-phase excitation drive. FIG. 6 shows the generated torque vector at that time. Since the vector generated by each of the windings a to e changes by 180 degrees depending on the direction of the current, the electrical angle divides one rotation into ten.

【0007】励磁ステップ(1)では、給電点Aおよび
Cは+側に接続され、給電点BおよびDは−側に接続さ
れ、給電点Eは+側にも−側にも接続されない。これに
より巻線A、B、C、D各々を流れる電流の向きによ
り、図6に示すようにトルクベクトルTA、TB、T
C、TDを生じ、合成トルクベクトルT1となる。
In the excitation step (1), the feeding points A and C are connected to the + side, the feeding points B and D are connected to the − side, and the feeding point E is not connected to the + side or the − side. Thereby, depending on the direction of the current flowing through each of the windings A, B, C, and D, the torque vectors TA, TB, T
C and TD are generated, resulting in a combined torque vector T1.

【0008】励磁ステップが(2)に進むと、給電点A
は+側にも−側にも接続されない。給電点CおよびEは
+側に接続され、給電点BおよびDは−側に接続され
る。これにより巻線B、C、D、E各々を流れる電流の
向きにより、図6に示すようにトルクベクトルTB、T
C、TD、TEを生じ、合成トルクベクトルT2とな
る。
When the excitation step proceeds to (2), the feeding point A
Is not connected to the + or-side. Feed points C and E are connected to the + side, and feed points B and D are connected to the-side. Thereby, depending on the direction of the current flowing through each of the windings B, C, D, and E, as shown in FIG.
C, TD, and TE are generated, resulting in a combined torque vector T2.

【0009】同様にして、図5に示す励磁ステップ(1
0)まで進み、その次は再びステップ(1)に戻る。こ
れに伴い、合成ベクトルも図6に示すように、T3、T
4と回転しステッピングモーターを回転駆動する。
Similarly, the excitation step (1) shown in FIG.
0), and then returns to step (1) again. Along with this, as shown in FIG.
4 and the stepping motor is rotationally driven.

【0010】(従来例2)図7は3相励磁駆動の従来例で
ある。そのときの発生トルクベクトルは図8のようにな
る。
(Conventional Example 2) FIG. 7 shows a conventional example of three-phase excitation drive. The generated torque vector at that time is as shown in FIG.

【0011】励磁ステップ(1)では、給電点Aおよび
Cは+側に接続され、給電点Bは−側に接続され、給電
点DおよびEは+側にも−側にも接続されない。これに
より巻線A、B、Cに電流が流れるが、巻線bには巻線
aからの電流と巻線cからの電流の合計が巻線bに流れ
る。従って、図6に示すように、巻線aおよび巻線cの
トルクベクトルの大きさは巻線bのトルクベクトルの2
分の1の大きさとなって合成トルクベクトルT1を生じ
る。
In the excitation step (1), the feeding points A and C are connected to the + side, the feeding point B is connected to the-side, and the feeding points D and E are not connected to the + side or the-side. As a result, a current flows through the windings A, B, and C, but a total of the current from the winding a and the current from the winding c flows through the winding b through the winding b. Therefore, as shown in FIG. 6, the magnitude of the torque vector of the winding a and the winding c is two times the torque vector of the winding b.
The resultant torque is reduced by a factor of 1 to produce a resultant torque vector T1.

【0012】励磁ステップが(2)に進むと、給電点B
およびDは−側に接続され、給電点Cは+側に接続さ
れ、給電点EおよびAは+側にも−側にも接続されな
い。これにより巻線B、C、Dに電流が流れるが、図7
に示すように、巻線bおよび巻線dのトルクベクトルの
大きさは巻線cのトルクベクトルの2分の1の大きさと
なって合成トルクベクトルT2となる。
When the excitation step proceeds to (2), the feeding point B
And D are connected to the-side, the feeding point C is connected to the + side, and the feeding points E and A are not connected to the + side or the-side. As a result, current flows through the windings B, C, and D.
As shown in (2), the magnitude of the torque vectors of the windings b and d becomes half the magnitude of the torque vector of the winding c, and becomes the combined torque vector T2.

【0013】同様にして図7に示す励磁ステップ(1
0)まで進み、その次は再びステップ(1)に戻る。こ
れに伴い、合成ベクトルも図8に示すように、T3、T
4と回転しステッピングモーターを回転駆動する。
Similarly, the excitation step (1) shown in FIG.
0), and then returns to step (1) again. Along with this, as shown in FIG.
4 and the stepping motor is rotationally driven.

【0014】[0014]

【発明が解決しようとする課題】従来例の4相励磁では
給電点5点のうち1点が給電されない状態にあり、3相
励磁では給電点5点のうち2点が給電されない状態にあ
り、いずれもこれに対応する巻線は回転駆動には何も寄
与していない。一方、ステッピングモータのロータ振動
はできるだけ抑えることが必要である。
In the conventional four-phase excitation, one of the five feeding points is not supplied with power, and in the three-phase excitation, two of the five feeding points are not supplied with power. In each case, the corresponding winding does not contribute to the rotational drive. On the other hand, it is necessary to suppress the rotor vibration of the stepping motor as much as possible.

【0015】したがって、本発明の目的は、ステッピン
グモータのロータ振動を抑制できる駆動方法および駆動
回路を提供することにある。
Accordingly, an object of the present invention is to provide a driving method and a driving circuit capable of suppressing rotor vibration of a stepping motor.

【0016】[0016]

【課題を解決するための手段】前述の課題を解決するた
めに、本発明は非励磁状態にある巻線の両端を短絡状態
にしてロータ過渡振動の抑制効果を持たせ、安定した駆
動を提供するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a stable drive by making both ends of a winding in a non-excited state short-circuited to suppress rotor transient vibration. Is what you do.

【0017】[0017]

【実施例】以下に、本発明の実施例のステッピングモー
タの駆動方法および駆動回路を図面を参照して説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a driving method and a driving circuit of a stepping motor according to an embodiment of the present invention will be described with reference to the drawings.

【0018】(実施例1)図1は、図4に示した従来例1
に対応する4相励磁駆動回路の実施例である。5組の巻
線の接続構成などは従来例と同一であるが、共通の接続
点Sを、給電点A〜Eと接続する回路10を付加してい
る。回路10は、共通の接続点Sを給電点A−Eに接続
し、また共通の接続点Sを給電点A−Eから開放するS
W11−SW15を含んでいる。
(Embodiment 1) FIG. 1 shows a conventional example 1 shown in FIG.
Is an embodiment of a four-phase excitation drive circuit corresponding to FIG. The connection configuration of the five sets of windings is the same as that of the conventional example, but a circuit 10 for connecting the common connection point S to the feeding points A to E is added. The circuit 10 connects the common connection point S to the feeding points AE, and opens the common connection point S from the feeding points AE.
W11-SW15.

【0019】図2は4相励磁駆動の実施例である。励磁
状態の巻線については従来例の図5と同一であるが、非
励磁状態の巻線については従来例と異なる。
FIG. 2 shows an embodiment of a four-phase excitation drive. The winding in the excited state is the same as that in FIG. 5 of the conventional example, but the winding in the non-excited state is different from the conventional example.

【0020】励磁ステップ(1)の励磁状態にある巻線
A、B、C、Dについては従来例(図5)のそれと同一
である。一方、従来例では+にも−にも接続されなかっ
た給電点Eは、SW12によって共通の接続点Sに接続
され、巻線eは短絡相を形成する。
The windings A, B, C and D in the excitation state in the excitation step (1) are the same as those in the conventional example (FIG. 5). On the other hand, the feeding point E, which is not connected to either + or-in the conventional example, is connected to the common connection point S by SW12, and the winding e forms a short-circuit phase.

【0021】励磁ステップ(2)の励磁状態にある巻線
B、C、D、Eについては従来例(図5)のそれと同一
である。一方、従来例では+にも−にも接続されなかっ
た給電点Aは、SW15によって共通の接続点Sに接続
され、巻線aは短絡相を形成する。
The windings B, C, D and E in the excitation state of the excitation step (2) are the same as those of the conventional example (FIG. 5). On the other hand, the feeding point A, which is not connected to either + or-in the conventional example, is connected to the common connection point S by the SW 15, and the winding a forms a short-circuit phase.

【0022】同様にしてステップ(10)まで進段し、
その次は再びステップ(1)になる。なお、本実施例の
合成トルクベクトルは従来例の図6と同一である。
Similarly, proceed to step (10),
Then, step (1) is performed again. The combined torque vector of the present embodiment is the same as that of the conventional example shown in FIG.

【0023】(実施例2)図3は、図7に示した従来例2
に対応する、3相励磁駆動の実施例である。励磁状態の
巻線については従来例の図5と同一であるが、非励磁状
態の巻線については従来例と異なる。なお、本実施例の
駆動回路は上述の実施例1と同じである。
(Embodiment 2) FIG. 3 shows a conventional example 2 shown in FIG.
Is an embodiment of three-phase excitation drive corresponding to FIG. The winding in the excited state is the same as that in FIG. 5 of the conventional example, but the winding in the non-excited state is different from the conventional example. Note that the drive circuit of this embodiment is the same as that of the first embodiment.

【0024】励磁ステップ(1)の励磁状態にある巻線
A、B、Cについては従来例(図5)のそれと同一であ
る。一方、従来例では+にも−にも接続されなかった給
電点DおよびEは共通の接続点Sに接続され、巻線dお
よびeは短絡相を形成する。
The windings A, B, and C in the excitation state in the excitation step (1) are the same as those in the conventional example (FIG. 5). On the other hand, the feeding points D and E, which are not connected to either + or-in the conventional example, are connected to the common connection point S, and the windings d and e form a short-circuit phase.

【0025】励磁ステップ(2)の励磁状態にある巻線
B、C、Dについては従来例(図5)のそれと同一であ
る。一方、従来例では+にも−にも接続されなかった給
電点EおよびAは共通の接続点Sに接続され、巻線eお
よびaは短絡相を形成する。
The windings B, C and D in the excitation state in the excitation step (2) are the same as those in the conventional example (FIG. 5). On the other hand, the feeding points E and A, which are not connected to either + or-in the conventional example, are connected to the common connection point S, and the windings e and a form a short-circuit phase.

【0026】同様にしてステップ(10)まで進段し、
その次は再びステップ(1)になる。合成トルクベクト
ルは従来例の図6と同一である。本実施例では、短絡相
は常に2相形成されるので、ローターの振動抑制効果は
実施例1よりもさらに大きくなる。
Similarly, proceed to step (10),
Then, step (1) is performed again. The resultant torque vector is the same as that of the conventional example shown in FIG. In this embodiment, since two short-circuit phases are always formed, the effect of suppressing the vibration of the rotor is further increased as compared with the first embodiment.

【0027】[0027]

【発明の効果】本発明では、励磁状態の巻線はそのまま
に、従来例では非励磁状態にあった巻線を短絡状態と
し、しかもいずれの励磁ステップでも、実施例1では常
に1組の短絡相を形成でき、実施例2では常に2組の短
絡相を形成できるので、ロータの振動の抑制効果は大き
い。
According to the present invention, the windings in the non-excited state in the conventional example are kept in the short-circuit state while the windings in the excited state remain as they are. In the second embodiment, two sets of short-circuit phases can always be formed, so that the effect of suppressing the vibration of the rotor is large.

【0028】しかも、本発明を実施するに際しては、モ
ーター側は従来例に比し共通の接続点Sの配線1本を追
加するだけで良く、モーターと駆動回路が離れている場
合でも実施は極めて容易である。
Further, when implementing the present invention, it is only necessary to add one wiring of the common connection point S on the motor side as compared with the conventional example, and even if the motor and the drive circuit are separated, the implementation is extremely large. Easy.

【0029】前記スイッチ素子への制御信号も、既存の
+あるいは−への接続状態を生じるスイッチ群への制御
信号に基づき容易に合成でき、実際には制御信号生成回
路としてゲートアレイ等のICにて安価・容易に実施で
きるため、信号生成回路に若干の追加が生じてもICサ
イズは殆ど増加しない。
The control signal to the switch element can also be easily synthesized based on the control signal to the existing switch group that generates a connection state to + or-. In practice, the control signal generation circuit is integrated with an IC such as a gate array. Inexpensive and easy to implement, the IC size hardly increases even if the signal generation circuit is slightly added.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の実施例の励磁回路図である。FIG. 1 is an excitation circuit diagram according to an embodiment of the present invention.

【図2】図2は、本発明の実施例の4相励磁駆動を説明
するための図である。
FIG. 2 is a diagram for explaining a four-phase excitation drive according to the embodiment of the present invention.

【図3】図3は、本発明の実施例の3相励磁駆動を説明
するための図である。
FIG. 3 is a diagram for explaining three-phase excitation driving according to the embodiment of the present invention.

【図4】図4は、従来例の励磁回路図である。FIG. 4 is an excitation circuit diagram of a conventional example.

【図5】図5は、従来例の4相励磁駆動を説明する図で
ある。
FIG. 5 is a diagram illustrating a conventional four-phase excitation drive.

【図6】図6は、従来例の4相励磁駆動を説明する図で
ある。
FIG. 6 is a diagram illustrating a conventional four-phase excitation drive.

【図7】図8は、従来例の3相励磁駆動を説明するため
の図である。
FIG. 8 is a diagram for explaining a conventional three-phase excitation drive.

【図8】図8は、従来例の3相励磁駆動を説明するため
の図である。
FIG. 8 is a diagram for explaining a conventional three-phase excitation drive.

【符号の説明】[Explanation of symbols]

a〜e 5相ステッピングモーターの5組の巻線 A〜E 5組の巻線a〜eのおのおのの給電点 SW1−SW15 スイッチ素子 1 モータ巻線 10 追加回路 a to e 5 sets of windings of a 5-phase stepping motor A to E Feed points of each of 5 sets of windings a to e SW1-SW15 Switch element 1 Motor winding 10 Additional circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数相ステッピングモータの複数組の巻線
の各々一端を共通に接続し、各巻線の他端に高電位を与
える励磁状態あるいは低電位を与える励磁状態あるいは
高電位も低電位も与えない非励磁状態とを所定の手順に
より繰り返して回転駆動を行う複数相ステッピングモー
タの駆動方法において、前記複数組の巻線の共通接続端
でない側の巻線端のうち非励磁状態にある巻線端を前記
複数組の巻線の共通接続端と接続状態にすることを特徴
とする複数相ステッピングモータの駆動方法。
1. A plurality of sets of windings of a multi-phase stepping motor, one ends of which are connected in common, and the other end of each winding is in an excitation state in which a high potential is applied or in an excitation state in which a low potential is applied. In a method of driving a multi-phase stepping motor, in which a non-excited state that is not applied is repeatedly rotated by a predetermined procedure to perform rotation driving, a winding in a non-excited state among winding ends of the plurality of sets of windings that is not a common connection end. A method of driving a multi-phase stepping motor, wherein a wire end is connected to a common connection end of the plurality of sets of windings.
【請求項2】複数相ステッピングモータの複数組の巻線
の各々一端を共通に接続し、各巻線の他端に高電位を与
える励磁状態あるいは低電位を与える励磁状態あるいは
高電位も低電位も与えない励磁状態とを所定の手順によ
り繰り返し回転駆動を行う複数相ステッピングモータの
駆動回路において、各巻線の他端を高電位または低電位
に選択的に接続するための複数の第1スイッチ素子と、
各巻線の他端を共通の一端と選択的に接続するための複
数の第2スイッチ素子と、を有することを特徴とする複
数相ステッピングモータの駆動回路。
2. One end of each of a plurality of sets of windings of a multi-phase stepping motor is connected in common, and the other end of each winding is in an excited state in which a high potential is applied or in an excited state in which a low potential is applied. In a drive circuit of a multi-phase stepping motor that performs rotational driving repeatedly in a predetermined procedure with and without excitation, a plurality of first switch elements for selectively connecting the other end of each winding to a high potential or a low potential. ,
A drive circuit for a multi-phase stepping motor, comprising: a plurality of second switch elements for selectively connecting the other end of each winding to a common one end.
JP2359499A 1999-02-01 1999-02-01 Driving of multi-phase stepping motor and driving circuit Pending JP2000224894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2359499A JP2000224894A (en) 1999-02-01 1999-02-01 Driving of multi-phase stepping motor and driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2359499A JP2000224894A (en) 1999-02-01 1999-02-01 Driving of multi-phase stepping motor and driving circuit

Publications (1)

Publication Number Publication Date
JP2000224894A true JP2000224894A (en) 2000-08-11

Family

ID=12114926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2359499A Pending JP2000224894A (en) 1999-02-01 1999-02-01 Driving of multi-phase stepping motor and driving circuit

Country Status (1)

Country Link
JP (1) JP2000224894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507475A (en) * 2007-12-18 2011-03-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensorless operation method of electronic rectifying electrical equipment
CN109600081A (en) * 2018-12-24 2019-04-09 浙江大学 A kind of step motor control strategy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507475A (en) * 2007-12-18 2011-03-03 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensorless operation method of electronic rectifying electrical equipment
CN109600081A (en) * 2018-12-24 2019-04-09 浙江大学 A kind of step motor control strategy

Similar Documents

Publication Publication Date Title
US4607204A (en) Five-phase stepping motor
JP4856493B2 (en) 2-motor simultaneous drive system and its control device
US6114826A (en) Stepping motor driving apparatus having small time constant regenerative current path
JPH0337400B2 (en)
US5321340A (en) Driving method for three-phase stepping motor
JP2867378B2 (en) Driving device for four-phase stepping motor and four-phase stepping motor
JP2005354807A (en) Permanent magnet synchronous motor
JP2000224894A (en) Driving of multi-phase stepping motor and driving circuit
JP3783639B2 (en) AC generator motor for vehicle
CN100550598C (en) The control of DC motor
EP0848488A1 (en) Method of driving a multiphase brushless DC motor and output stage
JP2000324891A (en) Inverter drive motor
JP2002369569A (en) Brushless motor drive control unit
JPH0777507B2 (en) Motor device
JPS63220800A (en) Circuit and method for controlling five-phase stepping motor
JP2001320890A (en) Motor pwm drive circuit
JP6425305B2 (en) Driving device for stepping motor and driving method of stepping motor
JP2009524393A (en) Multiphase electric rotating machine control device, multiphase electric rotating machine including the same, and alternator starter
JP3120082B2 (en) Drive device for N-phase stepping motor
JPH1155913A (en) Three-phase motor
JP2014014241A (en) Rotating electrical machine control device and electric power steering apparatus using the same
JP2002084792A (en) Method for driving stepping motor
JPH08116692A (en) Permanent magnet 3-phase stepping motor and driving apparatus thereof
JPH0734676B2 (en) Driving method of stepping motor
JPH11146694A (en) Driving of five-phase stepping motor