JP2000223008A - Secondary electron multiplication device - Google Patents

Secondary electron multiplication device

Info

Publication number
JP2000223008A
JP2000223008A JP11021352A JP2135299A JP2000223008A JP 2000223008 A JP2000223008 A JP 2000223008A JP 11021352 A JP11021352 A JP 11021352A JP 2135299 A JP2135299 A JP 2135299A JP 2000223008 A JP2000223008 A JP 2000223008A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide particles
secondary electron
substrate
electron multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11021352A
Other languages
Japanese (ja)
Inventor
Toshikazu Takeda
敏和 竹田
Yoshifumi Ogiso
美文 小木曽
Junichi Nomura
淳一 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11021352A priority Critical patent/JP2000223008A/en
Publication of JP2000223008A publication Critical patent/JP2000223008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Electron Tubes For Measurement (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase degree of freedom for handling, improve productivity, and provide good characteristic with good reproductivity, by forming zinc oxide particles having respective independent structures on a substrate in an electrochemical method. SOLUTION: When an electrochemical method is used, for example, an electroless deposition method, an electrolytic deposition method, and a hydrothermal synthesis can be employed. Among these, the electroless deposition method is most preferably employed for forming of zinc oxide particles even if a substrate is an insulator, from aspects that the zinc oxide particles are directly easily formed, the zinc oxide particles are easily formed in independent structures, and a device used for forming the zinc oxide particles is very simple. The term 'independent structure' means a state that the zinc oxide particles formed on the substrate do not directly abut, to each other structurally or electrically. Since the zinc oxide particles have such structure, differently from a normal film structure, high resistivity can be held between the zinc oxide particles, and high voltage can be impressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イオン、電子など
の荷電粒子の検出に役立つ二次電子増倍装置に関する。
The present invention relates to a secondary electron multiplier useful for detecting charged particles such as ions and electrons.

【0002】[0002]

【従来の技術】まず、本発明の背景となる二次電子増倍
装置の原理を説明する。二次電子増倍装置には、管状の
もの、平行平板のもの、またはチャネルプレートのもの
等があるが、ここでは図1に示すように管状のものを用
いて説明する。
2. Description of the Related Art First, the principle of a secondary electron multiplier as the background of the present invention will be described. The secondary electron multiplier includes a tubular type, a parallel plate type, a channel plate type and the like. Here, a tubular type as shown in FIG. 1 will be described.

【0003】管状の二次電子増倍装置6は、図1に示す
ように、二次電子放出能を有するセラミックス半導体1
からなり、これが連続ダイノードを構成している。そし
て、その入力端2と出力端3との間には適宜の電圧が印
加されている。いま、入力端2から1個の入射電子4が
入射すると、入力端2と出力端3との間に印加される印
加電圧によって入射電子4が引っ張られ、二次電子増倍
装置6のダイノード面(管の内側)に衝突して2個以上
の二次電子が放出される。そして、それぞれの二次電子
が同様の過程を繰り返すことによって、いわゆるねずみ
算式に二次電子が増倍され、最終的に出力端3において
は106個程度の電子となって放出され、コレクタ5に
よって補足される。
As shown in FIG. 1, a tubular secondary electron multiplier 6 comprises a ceramic semiconductor 1 having a secondary electron emission capability.
And this constitutes a continuous dynode. An appropriate voltage is applied between the input terminal 2 and the output terminal 3. Now, when one incident electron 4 enters from the input terminal 2, the incident electron 4 is pulled by an applied voltage applied between the input terminal 2 and the output terminal 3, and the dynode surface of the secondary electron multiplier 6. (The inside of the tube) and two or more secondary electrons are emitted. Then, by each of the secondary electrons repeat the same process, the secondary electrons in the so-called Nezumizan expression is multiplication, in the finally output terminal 3 is released as 10 6 or so electrons, the collector 5 Complemented by

【0004】上述の二次電子増倍装置6は、従来より、
セラミックス半導体であるチタン酸バリウム系半導体磁
器、チタン酸亜鉛系半導体磁器からなるものが実用化さ
れている。このうちチタン酸亜鉛系半導体磁器におい
て、その二次電子放出は、以下のプロセスによって起こ
ると考えられている。すなわち、印加電圧によって加速
された荷電粒子が高抵抗体であるチタン酸亜鉛磁器中に
含まれている低抵抗体である酸化亜鉛粒子へ衝突するこ
とにより、二次電子が放出されると考えられている。こ
のようなセラミックスは高利得であり耐熱性、耐衝撃性
にも優れかつ小型であると言う優れた特性を有してい
る。
The above-described secondary electron multiplier 6 has been
Ceramic ceramic barium titanate-based semiconductor porcelain and zinc titanate-based semiconductor porcelain have been put to practical use. Among them, the secondary electron emission of the zinc titanate-based semiconductor porcelain is considered to occur by the following process. In other words, it is considered that the secondary electrons are emitted when the charged particles accelerated by the applied voltage collide with the low-resistance zinc oxide particles contained in the high-resistance zinc titanate porcelain. ing. Such ceramics have excellent characteristics such as high gain, excellent heat resistance and impact resistance, and small size.

【0005】また、このようなセラミックスの他に、鉛
含有ガラスを還元ガス中で熱処理して、鉛成分をガラス
表面に析出させたものを用いて二次電子増倍装置を形成
したものが実用化されている。この鉛含有ガラスは、任
意の形状に形成しやすく、簡易な製法で作成できるとい
う特徴を有している。
In addition to such ceramics, a secondary electron multiplier is formed by using a lead-containing glass which is heat-treated in a reducing gas to precipitate a lead component on the glass surface. Has been This lead-containing glass has a characteristic that it can be easily formed into an arbitrary shape and can be produced by a simple manufacturing method.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
従来の二次電子増倍装置は以下のような問題点を有して
いる。
However, the above-mentioned conventional secondary electron multiplier has the following problems.

【0007】すなわち、チタン酸亜鉛磁器等のセラミッ
クス半導体を用いるものにあっては、その材質がセラミ
ックスであるため、その表面及び内部には多数の空隙
(ポア)を有している。また一般に、結晶粒子が均一で
緻密なセラミックスを再現性良く製造することは困難で
ある。二次電子増倍装置の特性の向上及び安定化を図る
ためには、ポアが少なく結晶粒径の均一なセラミックス
の開発が望まれているが、未だ十分に解決されていない
のが現状である。
That is, in the case of using a ceramic semiconductor such as zinc titanate porcelain, since the material is ceramics, the surface and the inside have a large number of voids (pores). In general, it is difficult to produce dense ceramics having uniform crystal grains with good reproducibility. In order to improve and stabilize the characteristics of the secondary electron multiplier, the development of ceramics with a small number of pores and a uniform crystal grain size has been desired, but this has not yet been fully solved .

【0008】また、チャンネルプレート型の二次電子増
倍装置にあっては、チャンネルプレートの形状が複雑で
あり、その加工が非常に困難であり生産性に劣るという
問題を有している。
Further, the channel plate type secondary electron multiplier has the problem that the shape of the channel plate is complicated, the processing thereof is very difficult, and the productivity is poor.

【0009】さらに、鉛含有ガラスを用いて形成した二
次電子増倍装置にあっては、鉛を使用していることか
ら、その生産時の取り扱い、及び廃棄時の処理方法が問
題となる。
Further, in the secondary electron multiplier formed using lead-containing glass, since lead is used, there are problems in handling during production and disposal.

【0010】従って、本発明の目的は、その取り扱いの
自由度が高く、生産性に優れ、良好な特性を再現性良く
得られる二次電子増倍装置を提供することにある。
Accordingly, it is an object of the present invention to provide a secondary electron multiplier which has a high degree of freedom in handling, is excellent in productivity, and can obtain good characteristics with good reproducibility.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上述の問
題点に鑑みて鋭意研究を重ねた結果、基体上に電気化学
的手法によって酸化亜鉛粒子を形成することにより、上
述の目的を達成しうる二次電子増倍装置を得られること
を見出し、本発明を完成するに到った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above-mentioned problems, and as a result, by forming zinc oxide particles on a substrate by an electrochemical method, the above-mentioned object has been achieved. The inventors have found that an achievable secondary electron multiplier can be obtained, and have completed the present invention.

【0012】本発明で言う電気化学的手法としては、例
えば無電解めっき法、電解めっき法、水熱合成法等を挙
げることができる。このうち、基体が絶縁体の場合にも
直接酸化亜鉛粒子を形成しやすいこと、酸化亜鉛粒子を
独立構造に形成しやすいこと、酸化亜鉛粒子の形成に用
いる装置が非常に簡易なもので済むこと等の観点から、
酸化亜鉛粒子の形成は無電解めっき法によることが最も
好ましい。
Examples of the electrochemical technique referred to in the present invention include an electroless plating method, an electrolytic plating method, and a hydrothermal synthesis method. Among them, it is easy to form zinc oxide particles directly even when the substrate is an insulator, easy to form zinc oxide particles in an independent structure, and very simple equipment for forming zinc oxide particles is sufficient. From the viewpoint of
Most preferably, the zinc oxide particles are formed by an electroless plating method.

【0013】なおここで言う「独立構造」とは、基体上
に形成される酸化亜鉛粒子同士が、構造的あるいは電気
的に互いに直接接していない状態を指している。酸化亜
鉛粒子がこのような構造にあることにより、通常の膜構
造とは異なり各酸化亜鉛粒子間の高抵抗化を保持するこ
とができるので、より高電圧を印加することができ、そ
の結果高利得の連続ダイノードを実現することができ
る。
The term "independent structure" as used herein refers to a state where the zinc oxide particles formed on the substrate are not in direct structural or electrical contact with each other. Since the zinc oxide particles have such a structure, a high resistance can be maintained between the zinc oxide particles, unlike a normal film structure, so that a higher voltage can be applied, and as a result, a high voltage can be applied. A continuous dynode of gain can be realized.

【0014】また、酸化亜鉛粒子自体の低抵抗化を図る
ために、酸化亜鉛粒子にB、Al、Ga、In、Tlの
うちの1種以上をドープすることが好ましい。このドー
プにより、酸化亜鉛粒子が低抵抗化され、入射電子の連
続ダイノードへの衝突により放出される二次電子をより
多くすることができ、増倍装置の利得を向上させること
ができる。
In order to reduce the resistance of the zinc oxide particles, it is preferable that the zinc oxide particles are doped with at least one of B, Al, Ga, In and Tl. By this doping, the resistance of the zinc oxide particles is reduced, the number of secondary electrons emitted by collision of incident electrons with the continuous dynode can be increased, and the gain of the multiplier can be improved.

【0015】このドープ方法としては、例えばイオン注
入法、熱拡散法、酸化亜鉛粒子形成時のイオン取り込み
等が挙げられる。このうち、無電解めっき法によって酸
化亜鉛粒子を形成する場合には、粒子形成と同時に上述
のドーパントのイオン取り込みを行うことができるの
で、コスト削減の点等からこの手法によることが好まし
い。
[0015] Examples of the doping method include an ion implantation method, a thermal diffusion method, and ion uptake when forming zinc oxide particles. Among these, in the case of forming zinc oxide particles by electroless plating, since the above-described dopant ions can be taken in simultaneously with the formation of the particles, it is preferable to use this method from the viewpoint of cost reduction and the like.

【0016】以上のように、電気化学的手法によって酸
化亜鉛粒子を形成することにより、例えばガラスのよう
にポアを有さない基体上にも酸化亜鉛粒子を形成するこ
とができるので増倍装置の特性を向上させることができ
る。また、めっき浴の組成を均一に保つことにより、容
易に増倍装置ごとの特性の均一化を実現できる。さら
に、酸化亜鉛粒子の形成に必要な装置も比較的簡易なも
ので足る。加えて、鉛を使用しないので、取り扱いの自
由度の高い増倍装置を提供できる。
As described above, by forming zinc oxide particles by an electrochemical method, it is possible to form zinc oxide particles even on a substrate having no pores, such as glass, so that a multiplication apparatus can be used. The characteristics can be improved. Further, by keeping the composition of the plating bath uniform, it is possible to easily realize the uniformity of the characteristics of each multiplier. Further, a relatively simple apparatus is required for forming the zinc oxide particles. In addition, since lead is not used, a multiplier having a high degree of freedom in handling can be provided.

【0017】[0017]

【発明の実施の形態】以下、本発明の好適な一実施例と
して、無電解めっき法により絶縁性基体上に析出させた
酸化亜鉛粒子を用いて二次電子増倍装置を作成する場合
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, as a preferred embodiment of the present invention, a case will be described in which a secondary electron multiplier is manufactured using zinc oxide particles deposited on an insulating substrate by electroless plating. I do.

【0018】本実施例において使用する薬品は、すべて
試薬特級(ナカライテスク(株))を使用する。また、
基体には中空状のパイレックスガラス管(長さ100m
m、外径3mm、内径1.5mm)を用い、常法に従い
脱脂、エッチング処理、感受性化、触媒化を行う。
All the chemicals used in the present embodiment use reagent grade (Nacalai Tesque, Inc.). Also,
The substrate is a hollow Pyrex glass tube (length 100 m)
m, outer diameter 3 mm, inner diameter 1.5 mm) and degreasing, etching, sensitizing, and catalyzing are performed in a conventional manner.

【0019】[0019]

【実験例】200mLトールビーカーに下記の組成の酸
化亜鉛粒子作成用無電解めっき液を入れたあと、恒温槽
中にセットしたのち、所定の条件下で試料作製を行う。
[Experimental Example] An electroless plating solution for preparing zinc oxide particles having the following composition was placed in a 200 mL tall beaker, set in a thermostat, and then a sample was prepared under predetermined conditions.

【0020】 硝酸亜鉛 0.05 mol/L ジメチルアミンボラン 0.05 mol/L (1重量%水酸化ナトリウム水溶液でpH6まで調整) 上記無電解めっき液中に上述のガラス管を浸漬し、液温
を60℃に保持し、30分間無電解めっきを行ったとこ
ろ、パイレックスガラス管の円筒内外に透明な付着物が
認められた。この付着物をX線回折法により測定したと
ころ、結晶性酸化亜鉛に起因するピークが認められた。
更に、走査電子顕微鏡による観察では、50〜200n
m程度の直径を持ち互いに独立した構造を有する六角柱
状の粒子が認められた。
Zinc nitrate 0.05 mol / L Dimethylamine borane 0.05 mol / L (adjusted to pH 6 with a 1% by weight aqueous solution of sodium hydroxide) Dip the above glass tube in the above electroless plating solution, Was maintained at 60 ° C., and electroless plating was performed for 30 minutes. As a result, transparent deposits were observed inside and outside the cylinder of the Pyrex glass tube. When the attached matter was measured by an X-ray diffraction method, a peak due to crystalline zinc oxide was observed.
Furthermore, in observation with a scanning electron microscope, 50 to 200 n
Hexagonal column-shaped particles having a diameter of about m and independent structures were observed.

【0021】上述の条件下で得られた試料の円筒外部両
端に、図2に示すように、アルミニウムからなる金属箔
21、22を巻き付け、さらにアルミニウム箔間の酸化
亜鉛粒子被覆の一部を0.1mol/Lの塩酸溶液にて
除去して酸化亜鉛粒子除去部23を設け、二次電子増倍
装置20を作製した。
As shown in FIG. 2, metal foils 21 and 22 made of aluminum are wound around both ends of the cylinder of the sample obtained under the above-mentioned conditions, and a part of the coating of the zinc oxide particles between the aluminum foils is removed. A zinc oxide particle removing unit 23 was provided by removing with a 0.1 mol / L hydrochloric acid solution, and a secondary electron multiplier 20 was manufactured.

【0022】次に、この二次電子増倍装置20を図3に
示すような回路に組み込み、二次電子の増倍利得を測定
した。図において9は増倍装置、10はフィラメント、
11はコレクタ、12はモニタ用コレクタ、13はフィ
ラメント電源、14は引き出し用電源、15は加速用電
源、16は増倍用電源、17はコレクタ用電源、18は
モニタ電流計、19は負荷抵抗、20は出力電流測定用
電流計である。上述の回路において、入射電子エネルギ
ーを300eV、増倍用電源16を3KVとして二次電
子増倍利得を測定したところ、3.5×106の利得が
確認できた。なお、従来から実用化されているチタン酸
バリウム系半導体磁器からなる同形状の二次電子増倍装
置を作製し、同様の回路にて二次電子増倍利得を測定し
たところ、3.0×106の利得であり、本発明により
作製した二次電子増倍装置が充分実用に耐えうる利得を
有することが確認できた。
Next, the secondary electron multiplier 20 was incorporated in a circuit as shown in FIG. 3, and the multiplication gain of the secondary electrons was measured. In the figure, 9 is a multiplier, 10 is a filament,
11 is a collector, 12 is a monitor collector, 13 is a filament power supply, 14 is a drawing power supply, 15 is an acceleration power supply, 16 is a multiplication power supply, 17 is a collector power supply, 18 is a monitor ammeter, and 19 is a load resistance. , 20 are ammeters for measuring the output current. In the circuit described above, when the incident electron energy was set to 300 eV and the power supply 16 for multiplication was set to 3 KV, and the secondary electron multiplication gain was measured, a gain of 3.5 × 10 6 was confirmed. A secondary electron multiplier of the same shape made of a barium titanate-based semiconductor porcelain that has been conventionally put into practical use was fabricated, and the secondary electron multiplication gain was measured using the same circuit. With a gain of 10 6 , it was confirmed that the secondary electron multiplier manufactured according to the present invention had a gain sufficient for practical use.

【0023】なお、上述の実施例では管状の二次電子増
倍装置に関して説明したが、本発明はこの実施例に限定
されることなく、平板を平行に配置したものやチャンネ
ルプレート型のものも含めた二次電子増倍装置に広く適
用することが可能である。さらに、二次電子増倍装置を
作成する基体としてガラスを使用したが、例えば絶縁性
樹脂等の可とう性を有する基体を使用しても構わない。
この場合、二次電子増倍装置をフレキシブルなものとし
て扱うことができ、本二次電子増倍装置を用いた周辺装
置(アッセンブリ)の設計の自由度を高めることがで
き、また、利得を可変とすることができる。
Although the above embodiment has been described with reference to a tubular secondary electron multiplier, the present invention is not limited to this embodiment, but may be applied to a flat plate or a channel plate type. It can be widely applied to secondary electron multipliers including the same. Further, although glass is used as a substrate for forming the secondary electron multiplier, a flexible substrate such as an insulating resin may be used.
In this case, the secondary electron multiplier can be treated as flexible, the degree of freedom in designing peripheral devices (assemblies) using the secondary electron multiplier can be increased, and the gain can be varied. It can be.

【0024】[0024]

【発明の効果】上述の説明からも明らかなように、本発
明によれば基体上に電気化学的手法によって酸化亜鉛粒
子を形成することにより、複雑形状の基体上にも二次電
子放出能を有する酸化亜鉛粒子を形成することができ、
しかも、その取り扱いの自由度が高く、生産性に優れ、
良好な特性を再現性良く得られる二次電子増倍装置を提
供することが可能になる。
As is clear from the above description, according to the present invention, by forming zinc oxide particles on a substrate by an electrochemical method, secondary electron emission ability can be improved even on a substrate having a complicated shape. Can form zinc oxide particles having
Moreover, the degree of freedom of handling is high, the productivity is excellent,
It is possible to provide a secondary electron multiplier capable of obtaining good characteristics with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 二次電子増倍装置の原理を示す断面図であ
る。
FIG. 1 is a sectional view showing the principle of a secondary electron multiplier.

【図2】 本発明の実施例の二次電子増倍装置を示す概
略斜視図である。
FIG. 2 is a schematic perspective view showing a secondary electron multiplier according to an embodiment of the present invention.

【図3】 本発明により得られた二次電子増倍装置の利
得を測定する回路図である。
FIG. 3 is a circuit diagram for measuring the gain of the secondary electron multiplier obtained according to the present invention.

【符号の説明】[Explanation of symbols]

1 ・・・ セラミックス半導体 2 ・・・ 入力端 3 ・・・ 出力端 4 ・・・ 入射電子 5 ・・・ コレクタ DESCRIPTION OF SYMBOLS 1 ... Ceramic semiconductor 2 ... Input terminal 3 ... Output terminal 4 ... Incident electron 5 ... Collector

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K022 AA03 AA33 AA41 BA15 BA25 BA33 CA02 CA03 CA05 CA06 DA01 5C038 BB02 BB06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K022 AA03 AA33 AA41 BA15 BA25 BA33 CA02 CA03 CA05 CA06 DA01 5C038 BB02 BB06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基体上に電気化学的手法によって酸化亜
鉛粒子を形成してなることを特徴とする二次電子増倍装
置。
1. A secondary electron multiplier comprising zinc oxide particles formed on a substrate by an electrochemical method.
【請求項2】 前記基体上に形成された酸化亜鉛粒子
は、それぞれ独立構造を有していることを特徴とする請
求項1記載の二次電子増倍装置。
2. The secondary electron multiplier according to claim 1, wherein each of the zinc oxide particles formed on the base has an independent structure.
【請求項3】 前記酸化亜鉛粒子には、B、Al、G
a、In、Tlのうちの少なくとも1種以上がドープさ
れていることを特徴とする請求項1または請求項2のい
ずれかに記載の二次電子増倍装置。
3. The zinc oxide particles include B, Al, G
3. The secondary electron multiplier according to claim 1, wherein at least one of a, In, and Tl is doped.
JP11021352A 1999-01-29 1999-01-29 Secondary electron multiplication device Pending JP2000223008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11021352A JP2000223008A (en) 1999-01-29 1999-01-29 Secondary electron multiplication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11021352A JP2000223008A (en) 1999-01-29 1999-01-29 Secondary electron multiplication device

Publications (1)

Publication Number Publication Date
JP2000223008A true JP2000223008A (en) 2000-08-11

Family

ID=12052716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11021352A Pending JP2000223008A (en) 1999-01-29 1999-01-29 Secondary electron multiplication device

Country Status (1)

Country Link
JP (1) JP2000223008A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170429A (en) * 2000-11-29 2002-06-14 C Uyemura & Co Ltd Base body having high density catalyst nuclei dispersion layer, and conductive product having modified zinc oxicide film and its manufacturing method
JP2002203916A (en) * 2001-01-05 2002-07-19 Sony Corp Semiconductor device and its manufacturing method
CN101150041B (en) * 2007-11-13 2011-03-23 上海宏力半导体制造有限公司 A method for medium granularity sediment at specified site

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170429A (en) * 2000-11-29 2002-06-14 C Uyemura & Co Ltd Base body having high density catalyst nuclei dispersion layer, and conductive product having modified zinc oxicide film and its manufacturing method
JP2002203916A (en) * 2001-01-05 2002-07-19 Sony Corp Semiconductor device and its manufacturing method
CN101150041B (en) * 2007-11-13 2011-03-23 上海宏力半导体制造有限公司 A method for medium granularity sediment at specified site

Similar Documents

Publication Publication Date Title
JP4855758B2 (en) Method for producing diamond having acicular protrusion arrangement structure on surface
KR100873634B1 (en) Electron amplifier including carbon nano tube and Method of manufacturing the same
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
US6045677A (en) Microporous microchannel plates and method of manufacturing same
JP6138686B2 (en) Electron multiplier with nanodiamond layer
JP3675326B2 (en) Multi-channel plate manufacturing method
JP5129530B2 (en) LiCoO2 deposition
WO2004114432A2 (en) Improved electrode and associated devices and methods
US4338164A (en) Method for producing planar surfaces having very fine peaks in the micron range
JP2007179963A (en) Manufacturing method of catalyst for fuel cell, and method for carrying catalyst
KR20060032402A (en) Carbon nanotube emitter and manufacturing method thereof and field emission device and manufacturing method thereof
KR20180044840A (en) Method, structure and super capacitor
JP2007504607A (en) Field emission device
JP5309320B2 (en) Method for producing carbon foil, carbon foil, stripper foil for charge conversion using this carbon foil, and apparatus for producing carbon foil
JP2009164412A (en) Porous metal thin film and manufacturing method thereof as well as capacitor
JP2000223008A (en) Secondary electron multiplication device
JPS5919190B2 (en) Manufacturing method of lead film
JP6656656B2 (en) Catalyst manufacturing equipment
KR100520337B1 (en) Metal-Oxygen-Carbon Field Emission Electron Emitter Composition, the Field Emission Cathode Comprising the Same, and the Process for the Production of the Field Emission Cathode
JP2006278103A (en) Manufacturing method of coating getter film for electron tube
JP3989507B2 (en) Gas atom inclusion fullerene production apparatus and method, and gas atom inclusion fullerene
KR20040025569A (en) Method for manufacturing graphite nanofiber, electron emitting source and display device
US20150076320A1 (en) Electronic multiplier porous glass plate and detector
EP1251543A1 (en) Vacuum power switches
JP4312331B2 (en) Electron emission device