JP2000222710A - Magneto-resistive thin-film magnetic head and its production - Google Patents

Magneto-resistive thin-film magnetic head and its production

Info

Publication number
JP2000222710A
JP2000222710A JP11024111A JP2411199A JP2000222710A JP 2000222710 A JP2000222710 A JP 2000222710A JP 11024111 A JP11024111 A JP 11024111A JP 2411199 A JP2411199 A JP 2411199A JP 2000222710 A JP2000222710 A JP 2000222710A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
withstand voltage
gap insulating
stencil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11024111A
Other languages
Japanese (ja)
Inventor
Satoshi Meguro
怜 目黒
Shigeo Fujii
重男 藤井
Hiroyuki Mima
宏行 美馬
Toshihiro Ifuku
俊博 伊福
Shinji Furuichi
眞治 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP11024111A priority Critical patent/JP2000222710A/en
Publication of JP2000222710A publication Critical patent/JP2000222710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To assure the stable insulation characteristic of an electrode film and an upper shielding film by subjecting the ends of a voltage resistant protective film formed in the state of resist masking of a stencil shape used in a stage for connecting electrodes and the end of a magnetosensitive part to self-alignment so as to approximately align both. SOLUTION: This magnetic head consists of the structure obtained by holding the magnetic domain control film 418 and electrode film 419 installed on both sides of an MR element part 425 between upper and lower shielding films 413 and 423 via gap insulating layer films 414 and 422 and connecting the electrode to both flanks of the MR element part 425. The magnetosensitive part is insulated by an upper gap insulating film 422 and is insulated from an upper shielding film 423 by the voltage resistant protective film 420 and the upper gap insulating film 422. The voltage resistant protective film 420 is formed in the state of resist masking of the stencil shape used in the stage for connecting the magnetic domain control film 418 and the electrode film 419 to both flanks of the MR element part 425. The end (c) of the magnetosensitive part and the ends (d) and d' of the voltage resistant protective film are subjected to self-alignment so as to be approximately aligned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大容量磁気記憶装
置特に磁気ディスク装置に用いられるもので、磁気信号
を書き込むのに誘導型ヘッドが、磁気信号を再生するの
に磁気抵抗効果ヘッド、あるいは巨大磁気抵抗効果型ヘ
ッド(以下これらを総称して再生ヘッドと略す)がもち
いられて、これらを積層一体化した磁気抵抗効果型薄膜
磁気ヘッドで、特にその再生ヘッドに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for a large-capacity magnetic storage device, particularly for a magnetic disk device, and uses an inductive head for writing a magnetic signal and a magnetoresistive head for reproducing a magnetic signal. A giant magnetoresistive head (hereinafter collectively referred to as a reproducing head) is used, and is a magnetoresistive thin film magnetic head obtained by laminating and integrating them, and particularly relates to the reproducing head.

【0002】[0002]

【従来の技術】図1に磁気抵抗効果型薄膜磁気ヘッドの
構造を示す。図1a,b)に示すようにスライダーの流
出端101に流入側102から磁気信号を再生する磁気
抵抗効果、あるいは巨大磁気抵抗効果を用いた再生ヘッ
ド103、磁気信号を書き込むのに誘導型ヘッド104
が配置されている。図1C)に再生ヘッド103の媒体
対向面より見た素子構造を示している。
2. Description of the Related Art FIG. 1 shows a structure of a magnetoresistive thin film magnetic head. As shown in FIGS. 1A and 1B), a reproducing head 103 using a magnetoresistive effect or a giant magnetoresistive effect for reproducing a magnetic signal from an inflow side 102 to an outflow end 101 of a slider, and an inductive head 104 for writing a magnetic signal.
Is arranged. FIG. 1C) shows the element structure of the read head 103 viewed from the medium facing surface.

【0003】再生ヘッドは、バルクハウゼンノイズを抑
制し、線形性の良い動作領域を得るため、磁気抵抗変化
膜117に縦および横方向にバイアス磁界を加える必要
がある。バイアス磁界の印加法として、特に狭トラック
幅に適する方法として、磁気抵抗変化膜を感磁部のみに
限定して配置し、磁気抵抗変化膜の側面に電極を接続し
たアバテッドジャンクションと呼ばれる構造が、例えば
特開平3−125311に開示されている。ここで言う
感磁部とは、磁気抵抗変化膜117の表面に磁区制御膜
118が付いていない部分で外部磁界により電気抵抗の
変化を起こす膜の主動作部分を言う。
In the reproducing head, it is necessary to apply a bias magnetic field to the magnetoresistive film 117 in the vertical and horizontal directions in order to suppress Barkhausen noise and obtain an operation region with good linearity. As a method suitable for applying a bias magnetic field, and particularly for a narrow track width, a structure called an abated junction in which a magnetoresistive variable film is arranged only in a magnetically sensitive portion and electrodes are connected to side surfaces of the magnetoresistive variable film. For example, it is disclosed in JP-A-3-125311. Here, the magnetically sensitive portion means a main operation portion of the film in which the electric resistance changes due to an external magnetic field in a portion where the magnetic domain control film 118 is not attached to the surface of the magnetoresistive change film 117.

【0004】この様にアバテッドジャンクション構造を
採ることにより、感度分布に優れ狭トラック幅の再生ヘ
ッドが得られている。
[0004] By adopting the abated junction structure in this manner, a reproducing head having an excellent sensitivity distribution and a narrow track width has been obtained.

【0005】この再生ヘッドは、アルミナチタンカーバ
イド等のセラミック基板111に、アルミナ等の絶縁膜
112、下シールド膜113、下ギャップ絶縁膜114
を付ける。SAL(Soft Adjacent La
yer)膜115、スペーサー膜116、磁気抵抗変化
膜117で構成される磁気抵抗効果素子部125が形成
される。磁気抵抗変化膜117の上にフォトレジストで
きのこ状(以下ステンシルと言う)のレジストマスク
(図示せず)を作製し、イオンミリング装置を用いイオ
ンビームの入射角を制御し、テーパーエッチングすると
共に、磁区制御膜118および電極膜119をスパッタ
ーで形成し感磁部のテーパーエッチングされた面と接続
させている。ステンシル形状のレジストマスクを除去し
上ギャップ絶縁膜122をスパッターし上シールド膜1
23を付加し磁気信号を再生する再生ヘッドができる。
磁気抵抗変化膜117の端部aに乗り上げたように形成
された電極膜119の屈曲部bに電界の集中が起こり、
上シールド膜123との間で電気的な短絡(以下ショー
トと言う)が発生しやすくなる。
In this reproducing head, an insulating film 112 such as alumina, a lower shield film 113, and a lower gap insulating film 114 are formed on a ceramic substrate 111 such as alumina titanium carbide.
Attached. SAL (Soft Adjacent La
(yer) film 115, a spacer film 116, and a magnetoresistive element portion 125 composed of a magnetoresistance change film 117 are formed. A mushroom-shaped (hereinafter, referred to as a stencil) resist mask (not shown) is formed on the magnetoresistive film 117, and the angle of incidence of the ion beam is controlled using an ion milling device, and the taper etching is performed. The magnetic domain control film 118 and the electrode film 119 are formed by sputtering and connected to the tapered surface of the magneto-sensitive portion. The stencil-shaped resist mask is removed, and the upper gap insulating film 122 is sputtered to form the upper shield film 1.
A reproducing head for reproducing a magnetic signal by adding 23 is obtained.
The electric field concentrates on the bent portion b of the electrode film 119 formed so as to ride on the end a of the magnetoresistive change film 117,
An electric short circuit (hereinafter referred to as a short circuit) easily occurs with the upper shield film 123.

【0006】ショートを防ぐ方法として図2に示すよう
に特開平7−192225には、電極膜219を付けた
後、感磁部にレジストマスク240を作製し、アルミナ
等をスパッター行ったのちリフトオフ法を用い、アルミ
ナ膜等で耐圧保護膜220を作製し、その後上ギャップ
絶縁膜222を付加する方法が開示されている。
As a method of preventing a short circuit, as shown in FIG. 2, as disclosed in Japanese Patent Application Laid-Open No. 7-192225, a resist mask 240 is formed on a magnetically sensitive portion after an electrode film 219 is formed, alumina or the like is sputtered, and a lift-off method is performed. A method is disclosed in which a pressure-resistant protective film 220 is formed using an alumina film or the like, and then an upper gap insulating film 222 is added.

【0007】[0007]

【発明の解決しようとする課題】しかしながら特開平7
−192225の方法を、感磁部の幅が1.5μm以下
の再生ヘッドの製造に適用して見ると、感磁部を確実に
レジストで覆うことが非常に難しくなってくる事が分か
った。
However, Japanese Patent Application Laid-Open No.
When the method of -192225 was applied to the manufacture of a reproducing head having a magnetically sensitive portion having a width of 1.5 μm or less, it was found that it was extremely difficult to reliably cover the magnetically sensitive portion with a resist.

【0008】これは図3に示す様に、レジストマスク3
40の幅が感磁部より細くなったり、大きくなったりま
た左右どちらかにずれる事で生じ、フォトリソグラフィ
ー工程での露光、現像のばらつきで容易に起こる事が理
解できる。図3a1)は感磁部よりレジストマスク幅が
小さくなった場合で、図3a2)に示すように耐圧保護
膜320が感磁部まで侵入し、上シールド膜との間隔を
広げてしまう。図3b1)は感磁部よりレジストマスク
幅が大きくなった場合で、図3b2)に示すように耐圧
保護膜320が電極膜319の屈曲部bから外れてしま
い、電極膜と上シールド膜間のショートが発生しやすく
なる。図3c1)はレジストマスクが左右どちらかにず
れた場合である。図3c2)は、図3a2),b2)で
説明したような問題が同時に発生している例を示してい
る。
[0008] As shown in FIG.
It can be understood that the width of the portion 40 is smaller, larger, or shifted to the left or right than the magnetic sensing portion, and easily occurs due to variations in exposure and development in the photolithography process. FIG. 3a1) shows a case where the width of the resist mask is smaller than that of the magnetically sensitive part. As shown in FIG. 3a2), the withstand voltage protection film 320 penetrates to the magnetically sensitive part and widens the gap with the upper shield film. FIG. 3b1) shows a case where the width of the resist mask is larger than that of the magnetically sensitive portion. As shown in FIG. 3b2), the withstand voltage protection film 320 comes off the bent portion b of the electrode film 319, and the gap between the electrode film and the upper shield film is lost. Shorts are likely to occur. FIG. 3c1) shows a case where the resist mask is shifted to the left or right. FIG. 3c2) shows an example in which the problems described in FIGS. 3a2) and b2) occur simultaneously.

【0009】この様に、後からレジストマスクを1.5
μm以下の幅の感磁部に設けることは非常に難しく、付
加した耐圧保護膜が初期の目的を達しないばかりでな
く、上シールド膜との間隔を広げてしまうと言う不具合
まで起こす事がある。
As described above, the resist mask is set to 1.5
It is very difficult to provide a magnetic sensing part having a width of μm or less, and not only does the added withstand voltage protective film not achieve its initial purpose, but also may cause a problem that the distance from the upper shield film is increased. .

【0010】磁気記録の分野では、面記録密度を上げる
ために、トラック密度に加え線記録密度も上げていく必
要がある。線記録密度を上げるためには、再生ヘッドの
ギャップ長、つまり感磁部の下シールド膜と上シールド
膜の間隔を小さくする必要がある。ギャップ長を狭くす
ると、感磁部と下シールド膜および上部シード間の絶縁
性を確保することが難しくなってくる。磁気抵抗変化膜
の感磁部以外の領域には、磁区制御膜、電極膜が磁気抵
抗変化膜に乗り上げた状態であるため、乗り上げた部分
は特に電界の集中が起こりやすく絶縁性の確保が難し
い。このためギャップ長を詰めることが出来ず線記録密
度の向上の障害となっている。
In the field of magnetic recording, it is necessary to increase the linear recording density in addition to the track density in order to increase the areal recording density. In order to increase the linear recording density, it is necessary to reduce the gap length of the reproducing head, that is, the distance between the lower shield film and the upper shield film of the magnetic sensing part. When the gap length is reduced, it becomes difficult to ensure insulation between the magnetic sensing part, the lower shield film, and the upper seed. Since the magnetic domain control film and the electrode film are on the magnetoresistive change film in a region other than the magneto-sensitive portion of the magnetoresistive change film, the portion on which the magnetic domain changes is particularly likely to concentrate an electric field, and it is difficult to secure insulation. . For this reason, the gap length cannot be reduced, which is an obstacle to the improvement of the linear recording density.

【0011】本発明の目的は、感磁部領域の下シールド
膜と上シールド膜の間隔が小さく、すなわちギャップ長
が狭いものであり、かつ電極膜と上シールド膜との安定
した絶縁性を確保した再生ヘッドを具備した磁気抵抗効
果型薄膜磁気ヘッドおよび製造方法を提供することにあ
る。
An object of the present invention is to provide a small gap between the lower shield film and the upper shield film, that is, a narrow gap length, and to ensure stable insulation between the electrode film and the upper shield film. To provide a magnetoresistive thin film magnetic head having a read head and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明の磁気抵抗効果型薄膜磁気ヘッドは、図4aお
よび図4bに示す様に磁気抵抗効果素子部425の両側
に設置した磁区制御膜418および電極膜419が上下
にギャップ絶縁膜414、422を介して上下のシール
ド膜413、423に挟まれ、磁気抵抗効果素子部42
5の両側面に電極を接続したアバテッドジャンクション
と呼ばれる構造で感磁部は上ギャップ絶縁膜422で絶
縁され、感磁部以外は少なくとも1層もしくは2層以上
の耐圧保護膜420と上ギャップ絶縁膜422で上シー
ルド膜423と絶縁されており、耐圧保護膜420は磁
気抵抗効果素子部425膜の両側面に磁区制御膜41
8、電極膜419を接続する工程で用いるステンシル形
状のレジストマスク付けた状態で形成し、図4bに示さ
れるように感磁部の端部cと耐圧保護膜の端部dおよび
d’が略一致するようにセルフアライメントされたこと
を特徴としている。耐圧保護膜の端部が磁区制御膜41
8より感磁部より外側に位置した状態を実線で示しその
端部をdで示している。同様に耐圧保護膜の端部が磁区
制御膜418より感磁部より内側に位置した状態を破線
で示しその端部をd’で示している。
In order to achieve the above object, a magnetoresistive thin film magnetic head according to the present invention is provided with magnetic domain control provided on both sides of a magnetoresistive element section 425 as shown in FIGS. 4a and 4b. The film 418 and the electrode film 419 are vertically sandwiched between the upper and lower shield films 413 and 423 via the gap insulating films 414 and 422, respectively.
The magnetic sensing portion is insulated by an upper gap insulating film 422 in a structure called an abutted junction in which electrodes are connected to both side surfaces of the insulating film 5, and at least one or two or more layers of the pressure-resistant protective film 420 and the upper gap insulating film except for the magnetic sensing portion. The film 422 is insulated from the upper shield film 423, and the withstand voltage protection film 420 is provided on both sides of the magnetoresistive element portion 425.
8, formed with a stencil-shaped resist mask used in the step of connecting the electrode film 419, and as shown in FIG. 4b, the end c of the magneto-sensitive portion and the ends d and d 'of the withstand voltage protection film are substantially It is characterized by being self-aligned to match. The end of the withstand voltage protection film is the magnetic domain control film 41.
The position outside the magneto-sensitive portion from position 8 is indicated by a solid line, and its end is indicated by d. Similarly, a state in which the end of the breakdown voltage protective film is located inside the magnetic sensing portion from the magnetic domain control film 418 is indicated by a broken line, and the end is indicated by d '.

【0013】本発明におけるセルフアライメントとは、
一つのステンシル形状のレジストマスクの「笠」および
「茎」の高さと幅で、磁気抵抗効果素子部425の傾斜
加工寸法、磁区制御膜418および電極膜419、耐圧
保護膜420のパターン寸法および位置関係を決めるこ
とを言い、特に断りのない限り本発明では、電極膜41
9上に付加される耐圧保護膜420の寸法、位置関係を
決めることである。
The self-alignment in the present invention is
The height and width of the “shadow” and “stalk” of one stencil-shaped resist mask are used to determine the inclination processing size of the magnetoresistive element 425, the pattern size and the position of the magnetic domain control film 418, the electrode film 419, and the withstand voltage protection film 420. In the present invention, unless otherwise specified, the electrode film 41 is determined.
9 is to determine the dimensions and the positional relationship of the breakdown voltage protective film 420 to be added on the substrate 9.

【0014】また、本発明の磁気抵抗効果型薄膜磁気ヘ
ッドは、セルフアライメントされた耐圧保護膜420の
端部dと、感磁部の端部cは上ギャップ絶縁膜の厚み数
値tの範囲内で揃っていることを特徴としている。図4
bで言えばcとdの間隔、cとd’の間隔がいずれもt
以下になっている構造を有する。
In the magnetoresistive thin-film magnetic head of the present invention, the end d of the self-aligned withstand voltage protection film 420 and the end c of the magnetically sensitive portion are within the range of the thickness value t of the upper gap insulating film. It is characterized by being aligned in. FIG.
In the case of b, the interval between c and d and the interval between c and d 'are both t.
It has the following structure.

【0015】本発明において、耐圧保護膜420は1層
もしくは2層以上膜で構成され、上ギャップ絶縁膜42
2と電極膜419の間にあり、上シールド膜423と電
極膜間の距離を大きくし絶縁性をあげたことを特徴とし
ている。
In the present invention, the withstand voltage protection film 420 is composed of one or more layers,
2 and the electrode film 419, characterized in that the distance between the upper shield film 423 and the electrode film is increased to increase the insulating property.

【0016】本発明の細部を説明する図4bにおいて、
感磁部に接する部分の耐圧保護膜の厚みgは、磁気抵抗
効果素子部から外れた電極上での厚みh(図4aに示さ
れている)より薄いことをが望ましい。
In FIG. 4b, which illustrates details of the invention,
It is desirable that the thickness g of the pressure-resistant protective film at the portion in contact with the magnetic sensing portion is smaller than the thickness h (shown in FIG. 4A) on the electrode outside the magnetoresistive element portion.

【0017】本発明の磁気抵抗効果型薄膜磁気ヘッド
は、絶縁性をより確実にし線記録密度を上げるため、感
磁部より離れた部分での耐圧保護膜の厚みh(図4aに
示されている)を上ギャップ絶縁膜の厚みtより厚く
し、その比率は耐圧保護膜/上ギャップ絶縁膜≧1.3
とすることが望ましい。
In the magnetoresistive thin-film magnetic head of the present invention, the thickness h of the pressure-resistant protective film at a portion away from the magnetic sensing portion (shown in FIG. Is larger than the thickness t of the upper gap insulating film, and the ratio thereof is as follows: breakdown voltage protective film / upper gap insulating film ≧ 1.3.
It is desirable that

【0018】また、磁気抵抗効果素子部の角部aへの乗
り上げ部分の耐圧保護膜の厚みjは、感磁部より離れた
部分での耐圧保護膜の厚みhの20%以上あることが望
ましい。
It is desirable that the thickness j of the pressure-resistant protective film at the portion of the magnetoresistive element portion riding on the corner a is at least 20% of the thickness h of the voltage-resistant protective film at a portion away from the magnetically sensitive portion. .

【0019】耐圧保護膜420は、上ギャップ絶縁膜4
23にも多用されているアルミナ、もしくはベリリウム
の酸化物、ホウ素の窒化物、チタン酸アルミニウムより
選ばれ、電気抵抗が1010(Ω−cm)以上である非
磁性絶縁材である事が望ましい。
The withstand voltage protection film 420 is formed of the upper gap insulating film 4.
It is preferable to use a non-magnetic insulating material selected from alumina or beryllium oxide, boron nitride, and aluminum titanate, which is frequently used for 23, and having an electric resistance of 10 10 (Ω-cm) or more.

【0020】耐圧保護膜420および上ギャップ絶縁膜
422は、感磁部および電極膜419、上シールド膜4
23と固着されるため、これらの金属の熱膨張係数と離
れすぎた材料、例えば上ギャップ絶縁膜422にアルミ
ナを使用した場合、アルミナに比べ熱膨張係数が1桁小
さい石英の様な材質を使用すると、製造工程中の熱履歴
等によりクラックが入ったり、応力により感磁部等の磁
気的な特性を劣化させることから、耐圧保護膜420お
よび上ギャップ絶縁膜422に用いる材料の熱膨張係数
は30x10−7/deg.以上であることが望まし
い。
The withstand voltage protection film 420 and the upper gap insulating film 422 are formed of a magnetic sensing part and an electrode film 419 and an upper shield film 4.
23, the material is too far from the coefficient of thermal expansion of these metals, for example, if alumina is used for the upper gap insulating film 422, use a material such as quartz whose coefficient of thermal expansion is one digit smaller than that of alumina. Then, cracks occur due to the thermal history during the manufacturing process and the like, and magnetic characteristics of the magnetic sensing portion and the like are deteriorated by stress. Therefore, the thermal expansion coefficient of the material used for the breakdown voltage protective film 420 and the upper gap insulating film 422 is 30 × 10 −7 / deg. It is desirable that this is the case.

【0021】また、耐圧保護膜420と上ギャップ絶縁
膜422に異なった材料を用いる場合は、熱膨張係数の
差が70x10−7/deg.以下であることがクラッ
ク発生の上からより望ましいものである。
When different materials are used for the breakdown voltage protective film 420 and the upper gap insulating film 422, the difference in the coefficient of thermal expansion is 70 × 10 −7 / deg. The following is more desirable from the viewpoint of crack generation.

【0022】同様に耐圧保護層420に2種類以上の材
料を使用した場合も、各々の熱膨張係数の差が70x1
−7/deg.以下であることがクラック発生の上か
ら望ましいものである。
Similarly, when two or more types of materials are used for the breakdown voltage protective layer 420, the difference between the respective thermal expansion coefficients is 70 × 1.
0-7 / deg. The following is desirable from the viewpoint of crack generation.

【0023】特に酸化ベリリウムは、熱膨張係数、電気
抵抗はアルミナとほぼ同じ値であるが、アルミナに比べ
熱伝導率が10倍近く大きいため、感磁部での発熱を効
率よく放散出来る効果が期待できことからより望ましい
材料である。
In particular, beryllium oxide has substantially the same coefficient of thermal expansion and electrical resistance as alumina, but has a thermal conductivity nearly 10 times greater than that of alumina, so that the effect of efficiently dissipating heat generated in the magnetically sensitive portion can be obtained. It is a more desirable material because it can be expected.

【0024】本発明の磁気抵抗効果型磁気ヘッドの製造
方法は、耐圧保護膜の端部と感磁部の端部を揃える方法
として特徴付けられる。具体的にその方法は同一のステ
ンシル形状のレジストマスクを用い磁気抵抗効果素子部
425の傾斜加工、磁区制御膜418の形成、電極膜4
19の形成、耐圧保護膜420の形成を行った後、ステ
ンシル形状のレジストマスクを除去し、耐圧保護膜42
0の端部dもしくはd’と感磁部の端部cが上ギャップ
絶縁膜422の厚み数値tの範囲内で揃うように耐圧保
護膜420をセルフアライメント形成する事を特徴とし
ている。
The method of manufacturing a magneto-resistance effect type magnetic head according to the present invention is characterized as a method of aligning an end of a withstand voltage protective film with an end of a magnetically sensitive portion. Specifically, the method employs the same stencil-shaped resist mask, inclines the magnetoresistive element 425, forms the magnetic domain control film 418, and forms the electrode film 4
19, and the formation of the breakdown voltage protection film 420, the stencil-shaped resist mask is removed.
It is characterized in that the withstand voltage protection film 420 is self-aligned so that the end d or d 'of 0 and the end c of the magneto-sensitive portion are aligned within the range of the thickness value t of the upper gap insulating film 422.

【0025】さらに本発明の多の方法は、下シールド膜
413、下ギャップ絶縁膜414、SAL膜415、ス
ペーサー膜416、磁気抵抗変化膜417の形成、ステ
ンシル形状レジストマスクの作製、磁気抵抗効果素子部
425の傾斜加工、磁区制御膜418の形成、電極膜4
19の形成、耐圧保護膜420の形成を行った後、ステ
ンシル形状のレジストマスクを除去し、上ギャップ絶縁
膜422の形成、上シールド膜423を、形成する工程
を用いることにより位置ズレを防ぐことのでき電極膜4
19が磁気抵抗変化膜417に乗り上げた部分にも確実
に耐圧保護膜420を付加できるを特徴としている。
Further, various methods of the present invention include forming a lower shield film 413, a lower gap insulating film 414, a SAL film 415, a spacer film 416, a magnetoresistive film 417, forming a stencil-shaped resist mask, a magnetoresistive element, Of the part 425, formation of the magnetic domain control film 418, and the electrode film 4
19, the resist mask in the stencil shape is removed, and the formation of the upper gap insulating film 422 and the formation of the upper shield film 423 are prevented from being displaced. Electrode film 4
19 is characterized in that the withstand voltage protection film 420 can be reliably added also to the portion on which the magnetoresistance change film 417 runs.

【0026】[0026]

【作用】磁気抵抗効果型薄膜磁気ヘッドでは、感磁部と
上シールド膜間の間隔を小さくすることが線記録密度の
向上から望ましいため、上および下ギャップ絶縁膜41
4、422の厚さは薄い方が好ましい。一方、同間隔を
狭くすることは絶縁性の点から好ましい事ではない。特
に磁気抵抗効果素子部425の傾斜部の端部aに付加さ
れた電極膜419の屈曲部bでは特に電界集中が起こり
やすいため、絶縁破壊を起こし易いため絶縁性の確保を
行うことが重要である。磁気抵抗変化膜の両側面に電極
を接続したアバテッドジャンクションと呼ばれる構造
で、磁気抵抗効果素子の感磁部は上ギャップ絶縁膜で絶
縁され、感磁部以外は少なくとも1層もしくは2層以上
の耐圧保護膜と上ギャップ絶縁膜で上シールド膜と絶縁
されており、前記電極を接続する工程で用いるステンシ
ル形状のレジストマスク付けた状態で形成された耐圧保
護膜の端部と前記感磁部の端部が、略一致するようにセ
ルフアライメントされる事により、絶縁性の確保が確実
にできる。
In the magnetoresistive thin film magnetic head, it is desirable to reduce the distance between the magnetically sensitive portion and the upper shield film from the viewpoint of improving the linear recording density.
It is preferable that the thicknesses of 4, 422 are thin. On the other hand, narrowing the interval is not preferable from the viewpoint of insulating properties. In particular, electric field concentration is particularly likely to occur at the bent portion b of the electrode film 419 added to the end a of the inclined portion of the magnetoresistive element portion 425, so that dielectric breakdown is likely to occur. is there. In a structure called an abutted junction in which electrodes are connected to both side surfaces of the magnetoresistive change film, the magnetosensitive portion of the magnetoresistive effect element is insulated by an upper gap insulating film, and at least one or two or more layers other than the magnetosensitive portion are provided. The insulating layer is insulated from the upper shield film by the withstand voltage protective film and the upper gap insulating film, and the end portion of the withstand voltage protective film and the magneto-sensitive portion are formed with a stencil-shaped resist mask used in the step of connecting the electrodes. By self-aligning the ends so that they substantially coincide with each other, it is possible to ensure insulation.

【0027】本発明のより望ましいヘッド構造を適用す
れば、前記電極膜419の屈曲部bに耐圧保護膜420
を確実に付加することができ、絶縁性の確保ができるこ
とと、耐圧保護膜420の端部dもしくはd’と、感磁
部の端部cは上ギャップ絶縁膜の厚みtの数値範囲内で
一致していることから、感磁部と上シールド膜間の間隔
を広げることなく絶縁性に優れた線記録密度の高い磁気
抵抗効果型薄膜磁気ヘッドの提供が可能となる。
If a more desirable head structure of the present invention is applied, a withstand voltage protection film 420 is formed at the bent portion b of the electrode film 419.
And the end d or d 'of the withstand voltage protection film 420 and the end c of the magneto-sensitive portion are within the numerical range of the thickness t of the upper gap insulating film. Since they match, it is possible to provide a magnetoresistive thin-film magnetic head having excellent insulating properties and high linear recording density without increasing the distance between the magnetically sensitive portion and the upper shield film.

【0028】具体的には、磁気抵抗効果素子部425か
ら外れた電極上での厚さで規定した耐圧保護膜の厚みh
を、上ギャップ絶縁膜の膜厚tの1.3倍以上にし、電
極膜の屈曲部での厚さjは耐圧保護膜厚hの20%以上
の厚みとすることにより、電極膜419と上シールド膜
423間の絶縁性および、ヘッドの信頼性の向上が実現
できる。電極膜の屈曲部上での耐圧保護膜の厚さjが耐
圧保護膜hに対し20%未満のヘッドを作製すると、絶
縁性が低下してしまう問題が生じる。耐圧保護膜厚の付
加をステンシル形状のレジストマスク付けた状態で行う
ため、ステンシル形状のレジストマスクの笠の部分で半
影状態となるため、電極膜の屈曲部での耐圧保護膜の厚
さはjの様に薄くなることから、電界集中の起こりやす
い屈曲部の耐圧保護膜の厚みを確保するため、耐圧保護
膜の厚みhを上ギャップ絶縁膜の膜厚tの1.3倍以上
にすることで、最低でも上ギャップ絶縁膜の膜厚tの約
25%の厚みの耐圧保護膜が確保できる。
More specifically, the thickness h of the withstand voltage protection film defined by the thickness on the electrode deviated from the magnetoresistive element portion 425
Is set to be at least 1.3 times the thickness t of the upper gap insulating film, and the thickness j at the bent portion of the electrode film is set to 20% or more of the withstand voltage protection film thickness h. The insulation between the shield films 423 and the reliability of the head can be improved. If a head in which the thickness j of the breakdown voltage protection film on the bent portion of the electrode film is less than 20% of the breakdown voltage protection film h is manufactured, there is a problem that the insulating property is reduced. Since the addition of the withstand voltage protection film is performed with the stencil-shaped resist mask attached, the shade of the shade portion of the stencil-shaped resist mask is shaded. The thickness h of the withstand voltage protection film is set to be 1.3 times or more the thickness t of the upper gap insulating film in order to secure the thickness of the withstand voltage protection film in the bent portion where the electric field concentration is likely to occur since the thickness becomes small as j. Thus, a withstand voltage protection film having a thickness of at least about 25% of the thickness t of the upper gap insulating film can be secured.

【0029】耐圧保護膜としては、アルミニウム、ベリ
リウムの酸化物、ホウ素の窒化物、チタン酸アルミニウ
ムで、比抵抗1010(Ω−cm)以上が得られる条件
下でスパッターを用いて膜が作製できる材料を用いるこ
とが、絶縁性を確保し感磁部と上シールド間の間隔を小
さくした線記録密度の高いヘッドが実現できる。
As the pressure-resistant protective film, a film of an oxide of aluminum, beryllium, a nitride of boron, and aluminum titanate can be formed by sputtering under the condition that a specific resistance of 10 10 (Ω-cm) or more can be obtained. By using a material, it is possible to realize a head having a high linear recording density in which insulation properties are secured and the distance between the magnetically sensitive portion and the upper shield is reduced.

【0030】また、本発明の磁気抵抗効果型薄膜磁気ヘ
ッドにおいて、感磁部、電極膜419と上シールド膜4
23の合金膜の熱膨張係数は約110〜150x10
−7/deg.であるため、耐圧保護膜420および上
ギャップ絶縁膜422の熱膨張係数は30x10−7
deg.以上、合金膜と接する耐圧保護膜420および
上ギャップ絶縁膜422の熱膨張係数と合金膜の熱膨張
係数の差が70x10 /deg.以下とすること
で、合金膜と耐圧保護膜420および上ギャップ絶縁膜
422の応力を下げ膜の付着力を向上させ、膜剥がれの
ないヘッドが実現できる。
In the magnetoresistive thin film magnetic head according to the present invention, the magnetic sensing portion, the electrode film 419 and the upper shield film 4
The thermal expansion coefficient of the alloy film No. 23 is about 110 to 150 × 10
−7 / deg. Therefore, the thermal expansion coefficient of the breakdown voltage protection film 420 and the upper gap insulating film 422 is 30 × 10 −7 /
deg. Above, the difference in thermal expansion coefficient of the alloy film of the pressure-resistant protective film 420 and the upper gap insulating film 422 in contact with the alloy film 70x10 - 7 / deg. By doing so, the stress of the alloy film, the withstand voltage protection film 420 and the upper gap insulating film 422 is reduced, the adhesion of the film is improved, and a head without film peeling can be realized.

【0031】また、耐圧保護膜420を2層以上とした
場合は、上層の耐圧保護膜と下層の耐圧保護膜、上ギャ
ップ絶縁膜間の熱膨張係数の差が70x10−7/de
g.以下とすることで、各層間の応力を下げ膜の付着力
を向上させ、膜剥がれのないヘッドが実現できる。
When the withstand voltage protection film 420 has two or more layers, the difference in thermal expansion coefficient between the upper withstand voltage protection film, the lower withstand voltage protection film, and the upper gap insulating film is 70 × 10 −7 / de.
g. By setting the following, the stress between the layers is reduced, the adhesion of the film is improved, and a head without film peeling can be realized.

【0032】上ギャップ絶縁膜422には、アルミナが
多く用いられている。耐圧保護膜に熱膨張係数が約6x
10−7/deg.の石英を用いた場合、合金膜との熱
膨張差が約104〜144x10−7/deg.アルミ
ナ膜との熱膨張差が約74x10−7/deg.とな
る。電極膜上に石英をスパッターを用い製膜行う工程で
は、スパッター作業中に温度が上がるため、スパッター
が終了し常温に戻った時点で石英膜は容易に剥がれてし
まう問題が生じる。
Alumina is often used for the upper gap insulating film 422. The thermal expansion coefficient of the pressure-resistant protective film is about 6x
10 −7 / deg. In the case of using quartz, the difference in thermal expansion from the alloy film is about 104 to 144 × 10 −7 / deg. The difference in thermal expansion from the alumina film is about 74 × 10 −7 / deg. Becomes In the process of forming quartz on the electrode film by sputtering, the temperature rises during the sputtering operation, so that there is a problem that the quartz film is easily peeled off when the sputtering is completed and the temperature returns to room temperature.

【0033】本発明の同一のステンシル形状のレジスト
マスクを用い磁気抵抗効果素子部425の傾斜加工、磁
区制御膜418の形成、電極膜419の形成、耐圧保護
膜420の形成を行った後、ステンシル形状のレジスト
マスクを除去する製造方法を適用すれば、一つのステン
シル形状のレジストマスクの「笠」および「茎」の高さ
と幅で、磁気抵抗効果素子部の傾斜加工寸法、磁区制御
膜および電極膜、耐圧保護膜のパターン寸法を一度に決
められるため、寸法精度を向上させることが可能にな
り、特にセルフアライメント効果を活用して、前述パタ
ーンの位置ずれを最小限に抑えることができる。
After using the same stencil-shaped resist mask of the present invention to perform the inclination processing of the magnetoresistive element portion 425, the formation of the magnetic domain control film 418, the formation of the electrode film 419, and the formation of the withstand voltage protection film 420, the stencil is formed. If the manufacturing method of removing the resist mask of the shape is applied, the height and width of the "shade" and "stalk" of one stencil-shaped resist mask, the inclination processing dimensions of the magnetoresistive effect element portion, the magnetic domain control film and the electrode Since the pattern dimensions of the film and the withstand voltage protection film can be determined at one time, it is possible to improve the dimensional accuracy. In particular, the self-alignment effect can be utilized to minimize the pattern displacement.

【0034】また、磁気抵抗効果素子部425の傾斜加
工、磁区制御膜418の形成、電極膜419の形成が終
了した時点でステンシル形状のレジストマスクを除去
し、再度レジストマスクを形成し耐圧保護膜420を作
製する従来の特開平7−192225で開示されている
方法に比べ、耐圧保護膜作製用のレジストマスクの製造
工程、具体的には図2b)のレジストマスク240の作
製が省けることから、製造工数を削減することもでき
る。
When the tilting of the magnetoresistive element 425, the formation of the magnetic domain control film 418, and the formation of the electrode film 419 are completed, the stencil-shaped resist mask is removed, and a resist mask is formed again to form a withstand voltage protection film. As compared with the method disclosed in the conventional Japanese Patent Application Laid-Open No. 7-192225 for manufacturing the resist mask 420, the step of manufacturing a resist mask for forming a pressure-resistant protective film, specifically, the manufacturing of the resist mask 240 in FIG. Manufacturing man-hours can also be reduced.

【0035】[0035]

【発明の実施の形態】以下、図面を用いて本発明の実施
例を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0036】図4に本発明の第1の適用例である磁気抵
抗効果型薄膜磁気ヘッドの再生ヘッド部の摺動面からの
構造を示す。磁気抵抗効果素子部425は、磁気により
電気抵抗が変化する磁気抵抗変化膜417、磁気的に磁
気抵抗変化膜417とSAL膜415を分離するスペー
サー膜416、磁気抵抗変化膜417にバイアス磁界を
かけるSAL膜415の3層で構成されており、略台形
形状をしている。その両端は磁区制御膜418と電極膜
419に隣接している。電極膜419の上にはセルフア
ライメントされた耐圧絶縁膜420が付加されている。
さらに感磁部と耐圧絶縁膜420を覆うように上ギャッ
プ絶縁膜422、上シールド膜423が形成されてい
る。
FIG. 4 shows a structure of a reproducing head portion of a magnetoresistive thin film magnetic head according to a first application example of the present invention as viewed from a sliding surface. The magnetoresistive element portion 425 applies a bias magnetic field to the magnetoresistive change film 417 whose electric resistance changes due to magnetism, a spacer film 416 for magnetically separating the magnetoresistive change film 417 and the SAL film 415, and the magnetoresistive change film 417. It is composed of three layers of the SAL film 415 and has a substantially trapezoidal shape. Both ends are adjacent to the magnetic domain control film 418 and the electrode film 419. A self-aligned withstand voltage insulating film 420 is added on the electrode film 419.
Further, an upper gap insulating film 422 and an upper shield film 423 are formed so as to cover the magnetic sensing portion and the withstand voltage insulating film 420.

【0037】図5に本発明の第2の適用例である巨大磁
気抵抗効果型ヘッドの再生ヘッド部の摺動面からの構造
を示す。磁気抵抗効果素子部525にスピンバルブ膜が
用いられる。スピンバルブ膜は磁気記録媒体に記録され
外部に漏れ出ている記録磁場の向きに沿った方向へ自由
に磁化の方向を回転することの出来る自由層535と称
する強磁性膜、反強磁性膜により強制的に磁化の向きを
固定した固定層537と称する強磁性膜、自由層と固定
層の間に配置する非磁性金属膜でなるスペーサ膜536
及び前記固定層の磁化向きを固定する反強磁性膜538
の4層で主に構成されている。その両端は磁区制御膜5
18と電極膜519に隣接している。電極膜519の上
にはセルフアライメントされた耐圧絶縁膜520が付加
されている。さらに感磁部と耐圧保護膜520を覆うよ
うに上ギャップ絶縁膜522、上シールド膜523が形
成されている。
FIG. 5 shows the structure of the reproducing head of the giant magnetoresistive head according to the second application of the present invention, as viewed from the sliding surface. A spin valve film is used for the magnetoresistive element portion 525. The spin valve film is made of a ferromagnetic film called a free layer 535 which can freely rotate the direction of magnetization in a direction along the direction of the recording magnetic field which is recorded on the magnetic recording medium and leaks to the outside. A ferromagnetic film called a fixed layer 537 in which the direction of magnetization is forcibly fixed, and a spacer film 536 made of a nonmagnetic metal film disposed between the free layer and the fixed layer.
And an antiferromagnetic film 538 for fixing the magnetization direction of the fixed layer
Mainly composed of four layers. Both ends are magnetic domain control films 5
18 and the electrode film 519. A self-aligned breakdown voltage insulating film 520 is added on the electrode film 519. Further, an upper gap insulating film 522 and an upper shield film 523 are formed so as to cover the magnetic sensing portion and the withstand voltage protection film 520.

【実施例】【Example】

【0038】図6を用いて本発明の再生ヘッド部の製造
方法を説明する。説明には磁気抵抗効果素子部625が
3層で構成される磁気抵抗効果型ヘッドを用いている
が、巨大磁気抵抗効果型ヘッドでも図6a)の膜構成以
外は同じものである。
Referring to FIG. 6, a method of manufacturing the reproducing head according to the present invention will be described. In the description, a magneto-resistance effect type head in which the magneto-resistance effect element portion 625 is formed of three layers is used, but the giant magneto-resistance effect type head has the same configuration except for the film configuration of FIG. 6A).

【0039】図6a)ではアルミナチタンカーバイド等
の非磁性セラミックで出来た基板611にアルミナ等の
絶縁層612を形成した。絶縁層612上に下シールド
膜613となる磁性材をめっきやスパッター等で形成
し、さらに下ギャップ絶縁膜614となるアルミナ等の
絶縁層を約0.2μm厚で形成した。次に磁気抵抗効果
素子部625となるSAL膜615、スペーサー膜61
6、磁気抵抗変化膜617をスパッターで各層とも約2
0nm厚に製膜した。図6b)では、ステンシル形状の
レジストマスク640をフォトリソグラフィー技術で形
成した。ステンシルの形状としては、笠の幅w1.5
μm、笠の厚みd0.85μm、茎の幅w1.2μ
m、茎の高さd0.1μmとした。次に図6c)でア
ルゴンイオンによるミリング加工を行うが、ステンシル
の茎部分の高さd2、笠部分の高さdと張り出し寸法
(w−w)/2、とミリング中のアルゴンイオンビ
ームの入射角度を決めることにより略台形の傾斜角度が
決まる。基板を回転しながらミリング加工を行うので、
ステンシルの周辺付近は、ミリング角度でミリング加工
を受けるが、基板回転中のある時間は、ステンシル笠部
分によりアルゴンイオンビームが遮られてしまう部分で
ある。このためステンシル周辺部は完全にステンシルの
影にならず、半影状態の区域である。これにより、ステ
ンシル周辺部は他の部分と比較してアルゴンイオンの入
射頻度が少なくなるのでミリングレートが小さくなる。
その結果略台形状の磁気抵抗効果素子部625を作るこ
とが出来るものである。略台形の上辺kは1.3μm
で底辺kは1.42μmの傾斜角度θは45度の形状
とした。ミリングは磁気抵抗効果素子部625以外の領
域のSAL膜615まで完全に除去出来た時点で終了さ
れるものである。この時ステンシル形状のレジストマス
ク640の笠の高さd1はアルゴンイオンビームに曝さ
れるためミリングされ笠の高さがd’となったステン
シル形状のレジストマスク640’となる。図6d)で
は磁気抵抗効果素子部625に磁区制御膜618および
電極膜619、耐圧保護膜620をステンシル形状のレ
ジストマスク640’を利用して製膜する工程を表して
いる。基板を回転させながら、磁区制御膜618を0.
1μm、電極膜619を0.5μm、耐圧保護膜620
を0.2μmの膜厚になるよう順にスパッターを行なっ
た。基板を回転させながらスパッター行うため、笠の内
側にも膜が形成され、その寸法は約0.05μm膜であ
るため、1.2μm感磁部が形成される。図6e)で
は、リフトオフと言われる手法により、ステンシル形状
のレジストパターン640’をアセトン等の有機溶剤で
溶解除去と同時に、ステンシル形状のレジストマスク6
40’の笠の上部分に堆積した磁区制御膜618’、電
極膜619’、耐圧保護膜620’を除去する。図6
f)で0.15μm厚で上ギャップ絶縁膜622を、全
面にスパッターすることで感磁部は上ギャップ絶縁膜6
22で、感磁部以外の部分は耐圧絶縁膜620と上ギャ
ップ絶縁膜622の2層となった形状ができる。
In FIG. 6A, an insulating layer 612 made of alumina or the like is formed on a substrate 611 made of a nonmagnetic ceramic such as alumina titanium carbide. A magnetic material to be the lower shield film 613 was formed on the insulating layer 612 by plating or sputtering, and an insulating layer of alumina or the like to be the lower gap insulating film 614 was formed to a thickness of about 0.2 μm. Next, the SAL film 615 serving as the magnetoresistive element 625 and the spacer film 61
6. The magnetoresistive change film 617 is sputtered to about 2
A film was formed to a thickness of 0 nm. In FIG. 6B), a stencil-shaped resist mask 640 is formed by photolithography. As the shape of the stencil, the width of the shade is w 1 1.5
μm, shade thickness d 1 0.85 μm, stem width w 2 1.2 μm
m and stem height d 2 were 0.1 μm. Then is performed the milling with argon ion in Figure 6c), the height d 1 and projecting a height dimension d2, shade part of the stem portion of the stencil (w 1 -w 2) / 2 , and argon ions in the milling By determining the incident angle of the beam, a substantially trapezoidal inclination angle is determined. Since milling is performed while rotating the substrate,
The vicinity of the periphery of the stencil undergoes a milling process at a milling angle, but for a certain time during the rotation of the substrate, the stencil shade portion blocks the argon ion beam. Therefore, the periphery of the stencil is not completely shadowed by the stencil but is a penumbra area. As a result, the frequency of incidence of argon ions in the peripheral portion of the stencil is lower than in other portions, so that the milling rate is reduced.
As a result, a substantially trapezoidal magnetoresistance effect element portion 625 can be produced. The upper edge k 1 of substantially trapezoidal is 1.3μm
In base k 2 are the inclination angle θ of 1.42μm was 45 ° shape. The milling is completed when the SAL film 615 in the area other than the magnetoresistive element section 625 has been completely removed. The height d1 of the shade of the resist mask 640 in this case stencil shape becomes 'resist mask 640 of stencil shapes became' height of the milled bulk d 1 because it is exposed to an argon ion beam. FIG. 6D shows a process of forming the magnetic domain control film 618, the electrode film 619, and the withstand voltage protection film 620 in the magnetoresistive element portion 625 using a stencil-shaped resist mask 640 '. While rotating the substrate, the magnetic domain control film 618 is set to 0.
1 μm, 0.5 μm for electrode film 619, withstand voltage protection film 620
Were sequentially sputtered so as to have a thickness of 0.2 μm. Since the sputtering is performed while rotating the substrate, a film is also formed on the inner side of the shade, and since the size of the film is about 0.05 μm, a 1.2 μm magnetic sensing part is formed. In FIG. 6e), the stencil-shaped resist pattern 640 'is dissolved and removed with an organic solvent such as acetone and the stencil-shaped resist mask 6
The magnetic domain control film 618 ', the electrode film 619', and the withstand voltage protection film 620 'deposited on the upper portion of the shade 40' are removed. FIG.
In (f), an upper gap insulating film 622 having a thickness of 0.15 μm is sputtered over the entire surface, so that the magnetically sensitive portion is formed on the upper gap insulating film 6.
At 22, the portion other than the magnetic sensing portion has a two-layered shape of the breakdown voltage insulating film 620 and the upper gap insulating film 622.

【0040】この様に同一のステンシル形状のレジスト
マスクを使用し連続して磁区制御膜、電極膜、耐圧保護
膜の順にスパッター行うため、各々の膜の位置はセルフ
アライメントされるため、位置ずれを起こすことなく形
成される上、電極膜の屈曲部にも完全に耐圧保護膜を形
成することが出来る。本実施例では耐圧保護膜と上ギャ
ップ絶縁膜には、アルミナを用いた。
As described above, since the magnetic domain control film, the electrode film, and the withstand voltage protection film are successively sputtered using the same stencil-shaped resist mask, the positions of the films are self-aligned. In addition to being formed without raising, the withstand voltage protection film can be completely formed even at the bent portion of the electrode film. In this embodiment, alumina is used for the breakdown voltage protection film and the upper gap insulating film.

【0041】第2の耐圧保護膜の実施例として、図7に
耐圧保護膜720を2層にした構造を示している。製造
工程としては図6C)までは第1の実施例と同じであ
る。電極膜719に接する下層の耐圧保護膜721を熱
電導率の良い酸化ベリリウムを、上層の耐圧保護膜72
1’にはアルミナをそれぞれ0.1μm厚で形成した。
また、上ギャップ絶縁膜722には、0.15μm厚の
アルミナを用いた。
As an embodiment of the second withstand voltage protection film, FIG. 7 shows a structure in which the withstand voltage protection film 720 has two layers. The manufacturing process is the same as that of the first embodiment up to FIG. 6C). The lower withstand voltage protective film 721 in contact with the electrode film 719 is made of beryllium oxide having good thermal conductivity, and the upper withstand voltage protective film 72 is
Alumina was formed in a thickness of 0.1 μm on each 1 ′.
The upper gap insulating film 722 was made of alumina having a thickness of 0.15 μm.

【0042】セルフアライメントで耐圧保護膜を付与す
る本発明の再生ヘッドのショートに対する効果を、明ら
かにするため、セルフアライメント機能を有しない例え
ば特開平7−192225で開示されている方法で耐圧
保護膜を付与したものと比較した。上ギャップ絶縁膜の
厚みを、0.2、0.15、0.13μmの3種類、耐
圧保護膜は1層とし厚みは上ギャップ絶縁膜厚の1.3
〜1.4倍、感磁部の幅は、1.2μmとした。耐圧保
護膜と上ギャップ絶縁膜にはアルミナを使用した。耐シ
ョート性を見るため、電極と上部シールドに15Vの直
流電圧を印加したのち、2Vの電圧で電極膜と上シール
ド膜間のショートの有無を測定した。ショートしている
素子を不良として、不良素子を供試素子数で除し、百分
率表示で不良率を算出した。結果を表1に示す。
In order to clarify the effect on the short-circuit of the reproducing head of the present invention in which the breakdown voltage protective film is provided by the self-alignment method, for example, a method disclosed in JP-A-7-192225 having no self-alignment function is used. Was compared with the one to which. The thickness of the upper gap insulating film is three types of 0.2, 0.15, and 0.13 μm, the withstand voltage protection film is one layer, and the thickness is 1.3 times the upper gap insulating film thickness.
The width of the magnetically sensitive portion was set to 1.2 μm. Alumina was used for the breakdown voltage protective film and the upper gap insulating film. In order to check the short-circuit resistance, a DC voltage of 15 V was applied to the electrode and the upper shield, and then the presence or absence of a short circuit between the electrode film and the upper shield film was measured at a voltage of 2 V. The defective element was divided by the number of test elements, and the defective rate was calculated in percentage. Table 1 shows the results.

【表1】 [Table 1]

【0043】実施例1と比較例1を比べると耐圧保護膜
をセルフアライメントで付加することにより、12.1
%の不良率改善が図られていることがわかる。同様に実
施例3と比較例3を比べると、約45%の差が見られ
る。このことから本発明の磁気抵抗効果型薄膜磁気ヘッ
ドは、上ギャップ絶縁膜および耐圧保護膜の厚みを約2
/3まで減じても比較例1よりも非常に低い不良率で製
造できることがわかる。
The comparison between Example 1 and Comparative Example 1 shows that 12.1
It can be seen that the percent defective is improved. Similarly, when Example 3 is compared with Comparative Example 3, a difference of about 45% is found. Therefore, the magnetoresistive thin-film magnetic head of the present invention has a thickness of about 2
It can be seen that even with the reduction to / 3, the device can be manufactured with a rejection rate much lower than that of Comparative Example 1.

【0044】[0044]

【発明の効果】本発明のMRヘッドは、感磁部を上下方
向から挟む様に配置された下シールド膜と上シールド膜
の間隔を狭くすることができ、高い線記録密度が達成で
きると共に、電極膜と上シールド膜間の絶縁性を高める
ことができる。特にセルフアライメントされた耐圧保護
膜を形成することにより、電極膜と上部シールド膜間の
絶縁性を確実なものとし、従来方法に比べ上シールド膜
と電極膜間のショートを大幅に減らし、同一のステンシ
ル形状のレジストマスクを用い磁気抵抗効果素子部の傾
斜加工、磁区制御膜の形成、電極膜の形成、耐圧保護膜
の形成を行うことにより、耐圧保護膜を付与するための
矩形レジストマスク(図2の240)の作製を省略する
ことが出来るものである。
According to the MR head of the present invention, the distance between the lower shield film and the upper shield film arranged so as to sandwich the magnetic sensing portion from above and below can be reduced, and a high linear recording density can be achieved. The insulation between the electrode film and the upper shield film can be improved. In particular, by forming a self-aligned withstand voltage protection film, the insulation between the electrode film and the upper shield film is ensured, and the short-circuit between the upper shield film and the electrode film is greatly reduced compared to the conventional method. Using a stencil-shaped resist mask, a rectangular resist mask for providing a withstand voltage protection film is formed by performing tilt processing of the magnetoresistive element portion, forming a magnetic domain control film, forming an electrode film, and forming a withstand voltage protection film. 2 240) can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁気抵抗効果型薄膜磁気ヘッドの構造図。FIG. 1 is a structural diagram of a magnetoresistive thin-film magnetic head.

【図2】耐圧保護膜付加の従来方法を示す図FIG. 2 is a diagram showing a conventional method of adding a withstand voltage protection film.

【図3】耐圧保護膜を従来方法で付加した時の問題点を
説明する図
FIG. 3 is a diagram illustrating a problem when a withstand voltage protection film is added by a conventional method.

【図4】a)本発明の磁気抵抗効果型薄膜磁気ヘッドの
構造図b)本発明の磁気抵抗効果型薄膜磁気ヘッドの拡
大構造図
4A is a structural diagram of a magnetoresistive thin film magnetic head of the present invention. FIG. 4B is an enlarged structural diagram of a magnetoresistive thin film magnetic head of the present invention.

【図5】本発明の磁気抵抗効果型薄膜磁気ヘッドの第2
の実施例を説明する構造図
FIG. 5 shows a second example of the magnetoresistive thin film magnetic head of the present invention.
Structural diagram illustrating an embodiment of

【図6】本発明の磁気抵抗効果型薄膜磁気ヘッドの製造
方法を説明する図
FIG. 6 is a diagram illustrating a method of manufacturing a magnetoresistive thin-film magnetic head according to the present invention.

【図7】本発明の磁気抵抗効果型薄膜磁気ヘッドの第3
の実施例を説明する構造図
FIG. 7 shows a third example of the magnetoresistive thin film magnetic head according to the present invention;
Structural diagram illustrating an embodiment of

【符号の説明】[Explanation of symbols]

101 スライダー流出端、102 スライダー流入
端、103 再生ヘッド、104 誘導型ヘッド、11
1,611 セラミック基板、112,412,51
2,612 絶縁膜、113,413,513,613
下シールド膜、114,414,514,614 下
ギャップ絶縁膜、115,415,615 SAL膜、
116,416,616 スペーサー膜、117,41
7,617 磁気抵抗変化膜、118,418,51
8,618,618’ 磁区制御膜、119,219,
319,419,519,619,619’ 電極膜、
122,322,422,522,622,722 上
ギャップ絶縁膜、123,423,523,723 上
シールド膜、125,425,525 磁気抵抗素子
部、220,320,420,520,620,62
0’,720,721,721’ 耐圧保護膜、24
0,340,640,640’ レジストマスク、53
5 自由層、536 スペーサー膜、537 固定層、
538 反強磁性膜
101 slider outflow end, 102 slider inflow end, 103 reproduction head, 104 inductive head, 11
1,611 ceramic substrate, 112,412,51
2,612 insulating film, 113,413,513,613
Lower shield film, 114, 414, 514, 614 Lower gap insulating film, 115, 415, 615 SAL film,
116, 416, 616 Spacer film, 117, 41
7,617 Magnetoresistance change film, 118,418,51
8,618,618 'domain control film, 119,219,
319, 419, 519, 619, 619 'electrode film,
122, 322, 422, 522, 622, 722 Upper gap insulating film, 123, 423, 523, 723 Upper shield film, 125, 425, 525 Magnetoresistance element portion, 220, 320, 420, 520, 620, 62
0 ', 720, 721, 721' withstand voltage protection film, 24
0, 340, 640, 640 'resist mask, 53
5 free layer, 536 spacer film, 537 fixed layer,
538 Antiferromagnetic film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊福 俊博 栃木県真岡市松山町18番地 日立金属株式 会社電子部品事業部内 (72)発明者 古市 眞治 栃木県真岡市松山町18番地 日立金属株式 会社電子部品事業部内 Fターム(参考) 5D034 BA04 BA09 BA15 BA17 BB08 CA06 DA07  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Toshihiro Ifuku 18 Matsuyama-cho, Moka-shi, Tochigi Hitachi Metals Co., Ltd. F-term in the parts division (reference) 5D034 BA04 BA09 BA15 BA17 BB08 CA06 DA07

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁気抵抗効果素子と前記磁気抵抗効果素
子の両側に設置した電極が、上下にギャップ絶縁膜を介
して上下のシールドに挟まれた磁気抵抗効果型薄膜磁気
ヘッドにおいて磁気抵抗変化膜の両側面に電極を接続し
たアバテッドジャンクションと呼ばれる構造で、磁気抵
抗効果素子の感磁部は上ギャップ絶縁膜で絶縁され、感
磁部以外は少なくとも1層もしくは2層以上の耐圧保護
膜と上ギャップ絶縁膜で上シールド膜と絶縁されてお
り、前記電極を接続する工程で用いるステンシル形状の
レジストマスク付けた状態で形成された耐圧保護膜の端
部と前記感じ部の端部が、略一致するようにセルフアラ
イメントされたことを特徴とする磁気抵抗効果型薄膜磁
気ヘッド。
In a magnetoresistive thin film magnetic head, a magnetoresistive element and electrodes disposed on both sides of the magnetoresistive element are vertically sandwiched between upper and lower shields via a gap insulating film. The magneto-sensitive portion of the magnetoresistive element is insulated by an upper gap insulating film, and the other than the magneto-sensitive portion is provided with at least one or two or more layers of a withstand voltage protective film. The upper gap insulating film is insulated from the upper shield film, and the end of the pressure-resistant protective film and the end of the sensing portion, which are formed in a state where a stencil-shaped resist mask is used in the step of connecting the electrodes, are substantially formed. A magnetoresistive thin-film magnetic head characterized by being self-aligned to match.
【請求項2】 セルフアライメントされた耐圧保護膜の
端部と、感磁部の端部は上ギャップ絶縁膜の厚み数値範
囲内で揃っていることを特徴とする請求項1に記載の磁
気抵抗効果型薄膜磁気ヘッド。
2. The magnetoresistive device according to claim 1, wherein the end of the self-aligned withstand voltage protective film and the end of the magneto-sensitive portion are aligned within the thickness range of the upper gap insulating film. Effect type thin film magnetic head.
【請求項3】 耐圧保護膜の厚みは、感磁部に接する部
分では磁気抵抗効果素子部から外れた電極上での厚みよ
り薄いことを特徴とする請求項1および2に記載の磁気
抵抗効果型薄膜磁気ヘッド。
3. The magnetoresistive effect according to claim 1, wherein a thickness of the withstand voltage protection film is smaller at a portion in contact with the magneto-sensitive portion than on a portion of the electrode which is separated from the magnetoresistive effect element portion. Type thin film magnetic head.
【請求項4】 同一のステンシル形状のレジストマスク
を用い磁気抵抗効果素子部の傾斜加工、磁区制御膜の形
成、電極膜の形成、耐圧保護膜の形成を行った後、ステ
ンシル形状のレジストマスクを除去し、耐圧保護膜の端
部と感磁部の端部が上ギャップ絶縁膜の厚み数値範囲内
で揃うように耐圧保護膜をセルフアライメント形成する
事を特徴する磁気抵抗効果型薄膜磁気ヘッドの製造方
法。
4. After sloping the magnetoresistive element, forming a magnetic domain control film, forming an electrode film, and forming a withstand voltage protection film using the same stencil-shaped resist mask, the stencil-shaped resist mask is used. The thin film magnetic head of the magnetoresistive effect type, characterized in that the withstand voltage protective film is removed and self-aligned with the withstand voltage protective film so that the end of the withstand voltage protective film and the end of the magneto-sensitive portion are aligned within the numerical value range of the thickness of the upper gap insulating film. Production method.
【請求項5】 下シールド膜、下ギャップ絶縁膜、磁気
抵抗効果素子膜の形成、ステンシル形状レジストマスク
の作製、磁気抵抗効果素子部の傾斜加工、磁区制御膜の
形成、電極膜の形成、耐圧保護膜の形成を行った後、ス
テンシル形状のレジストマスクを除去し、上ギャップ絶
縁膜の形成、上シールド膜の形成を行うことを特徴とす
る磁気抵抗効果型薄膜磁気ヘッドの製造方法。
5. A lower shield film, a lower gap insulating film, a magnetoresistive element film, a stencil-shaped resist mask, a tilting of a magnetoresistive element, a magnetic domain control film, an electrode film, and a breakdown voltage. A method of manufacturing a magnetoresistive thin film magnetic head, comprising: forming a protective film, removing a stencil-shaped resist mask, forming an upper gap insulating film, and forming an upper shield film.
JP11024111A 1999-02-01 1999-02-01 Magneto-resistive thin-film magnetic head and its production Pending JP2000222710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11024111A JP2000222710A (en) 1999-02-01 1999-02-01 Magneto-resistive thin-film magnetic head and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11024111A JP2000222710A (en) 1999-02-01 1999-02-01 Magneto-resistive thin-film magnetic head and its production

Publications (1)

Publication Number Publication Date
JP2000222710A true JP2000222710A (en) 2000-08-11

Family

ID=12129233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11024111A Pending JP2000222710A (en) 1999-02-01 1999-02-01 Magneto-resistive thin-film magnetic head and its production

Country Status (1)

Country Link
JP (1) JP2000222710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636392B2 (en) * 2000-07-11 2003-10-21 Tdk Corporation Thin-film magnetic head with magnetoresistive effect element
CN114067846A (en) * 2020-07-30 2022-02-18 西部数据技术公司 Heat Assisted Magnetic Recording (HAMR) write head with improved corrosion resistance and method of making the head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636392B2 (en) * 2000-07-11 2003-10-21 Tdk Corporation Thin-film magnetic head with magnetoresistive effect element
CN114067846A (en) * 2020-07-30 2022-02-18 西部数据技术公司 Heat Assisted Magnetic Recording (HAMR) write head with improved corrosion resistance and method of making the head
CN114067846B (en) * 2020-07-30 2023-07-21 西部数据技术公司 Heat Assisted Magnetic Recording (HAMR) write head with improved corrosion resistance and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6943993B2 (en) Magnetic recording head with a side shield structure for controlling side reading of thin film read sensor
US6535363B1 (en) Magnetic resistance effect type thin-film magnetic head and method for manufacturing the same
US20060018055A1 (en) Magnetic head with side shield and manufacturing method thereof
US6665156B2 (en) Magnetoresistive head, manufacture thereof, and magnetic recording/reproducing apparatus with such magnetic head
JP2002280643A (en) Magnetic detection element and its manufacturing method
JP2003218426A (en) Magnetic detecting element and its manufacturing method
JP2014225318A (en) Current-perpendicular-to-plane (cpp) magnetoresistive sensor with reduced-width top and bottom electrodes and method for making the same
US6614629B1 (en) Thin film magnetic head providing an essentially warp-free upper shield layer and floating magnetic head using the same
US7405908B2 (en) Magnetic head with improved free magnetic layer biasing for thinner CPP sensor stack
US6718623B2 (en) Magnetoresistive device and method of manufacturing same, and thin-film magnetic head and method of manufacturing same
US6228276B1 (en) Method of manufacturing magnetoresistive (MR) sensor element with sunken lead structure
JP2006024294A (en) Magnetic head, its manufacturing method, and magnetic disk unit mounting the same
US7675715B2 (en) Magnetoresistive head and fabricating method thereof, and read write separation type head
JP2000222710A (en) Magneto-resistive thin-film magnetic head and its production
US7469466B2 (en) Method for providing a temporary, deep shunt on wafer structures for electrostatic discharge protection during processing
US6842314B2 (en) Magnetoresistive device and method of manufacturing same, and thin-film magnetic head and method of manufacturing same
JP2004031544A (en) Magnetic detector and its manufacturing method
JP3677582B2 (en) Thin film magnetic head
US6433969B1 (en) Compound magnetoresistive head and method for manufacturing same
US20030150835A1 (en) Magnetoresistive (MR) sensor element with sunken lead structure
US6851179B2 (en) Magnetic head producing method
JP2000113419A (en) Magnetic head provided with magnetoresistive element
JPS61267914A (en) Production of magneto-resistance effect head
US20100214699A1 (en) Magnetoresistive sensor with overlaid combined leads and shields
JP2000155913A (en) Thin film magnetic head and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116