JP2000221659A - Light intensity calculating method for pattern - Google Patents

Light intensity calculating method for pattern

Info

Publication number
JP2000221659A
JP2000221659A JP2232399A JP2232399A JP2000221659A JP 2000221659 A JP2000221659 A JP 2000221659A JP 2232399 A JP2232399 A JP 2232399A JP 2232399 A JP2232399 A JP 2232399A JP 2000221659 A JP2000221659 A JP 2000221659A
Authority
JP
Japan
Prior art keywords
pattern
light intensity
intensity distribution
stage
kernel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232399A
Other languages
Japanese (ja)
Inventor
Hirotomo Inui
博智 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2232399A priority Critical patent/JP2000221659A/en
Publication of JP2000221659A publication Critical patent/JP2000221659A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions

Abstract

PROBLEM TO BE SOLVED: To provide a light intensity calculating method by which accurate calculation is realized and calculating speed is improved as a method for calculating the light intensity distribution of a mask by simulation. SOLUTION: This method includes a stage (S101) to make a table on the kernel ϕ and the characteristic value α of a stepper optical system, a stage (S102) to obtain a value Φ by extending the size L×L of the kernel to 2L×2L and setting it as a cyclic boundary and Fourier-transforming what is obtained by filling the extended part with 0, a stage (S103) to segment a pattern being a calculation object to the size of 2L×2L with a point P as center, a stage (S104) to divide the segmented pattern to a rectangle and a triangle so as to calculate the transmissivity as the sum F of the analysis Fourier of a cycle 2L, a stage (S105) to calculate a convolution integration I' by inversely Fourier- transforming the product of F and Φ, a stage (S106) to obtain the light intensity distribution I except the area of L/2 of the periphery of I' and stages (S107 and S108) to obtain the light intensity distribution of the pattern by moving the point P by L and repeating the respective stages.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリソグラフィ工程で
行われるマスクパターンの露光技術に関し、特にウェハ
上におけるマスクパターンの光強度をシミュレーション
により計算する方法に関する。
The present invention relates to a technique for exposing a mask pattern in a lithography process, and more particularly to a method for calculating the light intensity of a mask pattern on a wafer by simulation.

【0002】[0002]

【従来の技術】一般に、リソグラフィーシミュレーショ
ンにおける光強度分布計算を行う方法として、Y.C.Pat
i, T.Kailath, J.Opt.Soc.Am. A, vol.11,No.9, 1994
に開示されている計算方法がある。この従来方法を図3
のフローチャートを参照して説明する。ここでは、図4
(a)に模式的に示すマスクパターンMPでのウェハ上
での光強度分布を計算するものとする。通常、ウェハ上
の光強度分布I(x,y)はマスクの透過率f(x,
y)とステッパ光学系の特性を表すカーネルφ(x,
y)および固有値αによって次の(式1)で計算され
る。 I(x,y)=Σα|(f* φ)(x,y)|2 (式1) ここで(f* φ)(x,y)はfとφのコンボリューショ
ン積分を表す。
2. Description of the Related Art In general, as a method of calculating a light intensity distribution in a lithography simulation, YCPat
i, T.Kailath, J.Opt.Soc.Am.A, vol.11, No.9, 1994
There is a calculation method disclosed in US Pat. This conventional method is shown in FIG.
This will be described with reference to the flowchart of FIG. Here, FIG.
It is assumed that the light intensity distribution on the wafer at the mask pattern MP schematically shown in FIG. Usually, the light intensity distribution I (x, y) on the wafer is determined by the transmittance f (x,
y) and a kernel φ (x,
y) and the eigenvalue α are calculated by the following (Equation 1). I (x, y) = Σα | (f * φ) (x, y) | 2 (Equation 1) where (f * φ) (x, y) represents the convolution integral of f and φ.

【0003】そこで、先ず、(式1)の固有値α、カー
ネルφを計算してカーネルφのテーブルを作成する (S
201)。次いで、前記マスクパターンMP上に設定し
た計算点Pを中心に、前記マスクパターンMP全体から
カーネルの大きさL×Lの矩形領域に含まれるパターン
を切り出す(S202)。図4(b)は切り出したパタ
ーンの拡大図である。そして、この切り出したパターン
に、矩形ではない斜めパターンが含まれている場合は、
図4(c)に示すように、当該斜めパターンの部分を階
段近似して複数の矩形パターンで置換する(S20
3)。そして、前記したコンボリューション積分をステ
ップS201のカーネルテーブルからステップS203
で作成した矩形パターンの領域について行い、そのテー
ブル値の和として計算点Pにおける光強度を得る(S2
04)。そして、図4(a)に矢印で示すように、前記
計算点Pを微小ピッチで順次動かしながら、前記したス
テップS201からステップS204を前記マスクパタ
ーンの全解析領域にわたって計算する(S205,S2
06)。
Accordingly, first, the eigenvalue α and the kernel φ of (Equation 1) are calculated to create a table of the kernel φ (S
201). Next, a pattern included in a rectangular area having a size of L × L of the kernel is cut out from the entire mask pattern MP with the calculation point P set on the mask pattern MP as a center (S202). FIG. 4B is an enlarged view of the cut pattern. Then, if the cut pattern includes a diagonal pattern that is not rectangular,
As shown in FIG. 4C, the oblique pattern portion is replaced with a plurality of rectangular patterns by performing step approximation (S20).
3). Then, the above-described convolution integration is performed from the kernel table in step S201 to step S203.
The light intensity at the calculation point P is obtained as the sum of the table values (S2).
04). Then, as shown by arrows in FIG. 4A, the above-described steps S201 to S204 are calculated over the entire analysis area of the mask pattern while sequentially moving the calculation point P at a fine pitch (S205, S2).
06).

【0004】[0004]

【発明が解決しようとする課題】このような従来の光強
度計算方法では、マスクパターンを分割した矩形パター
ンに基づいて計算を行っているため、斜めパターンが存
在する場合には、その斜めパターンを階段近似した矩形
パターンとして計算を行う必要がある。そのため、近似
した部分でのビットマップ変換等による誤差によって計
算精度が低くなるという問題がある。この場合、階段近
似の分割数を多くして近似による誤差を低減することが
考えられるが、その場合には前記したコンボリューショ
ン積分での処理数が増大し、計算速度が極端に低下され
ることになる。
In such a conventional light intensity calculation method, since the calculation is performed based on a rectangular pattern obtained by dividing a mask pattern, if a diagonal pattern exists, the diagonal pattern is calculated. It is necessary to calculate as a rectangular pattern approximated by stairs. Therefore, there is a problem in that the calculation accuracy is reduced due to an error due to bitmap conversion or the like in the approximated portion. In this case, it is conceivable to reduce the error due to approximation by increasing the number of divisions of the step approximation, but in that case, the number of processes in the convolution integration described above increases, and the calculation speed is extremely reduced. become.

【0005】本発明の目的は、高精度な計算を可能とす
る一方で、計算速度の向上を図った光強度計算方法を提
供するものである。
[0005] An object of the present invention is to provide a light intensity calculation method which enables high-precision calculation while improving the calculation speed.

【0006】[0006]

【課題を解決するための手段】本発明の光強度計算方法
は、ステッパ光学系のカーネルの境界を拡張して周期境
界としたテーブルのフーリエ変換と、パターンを矩形と
三角形のパターン片に分割し、かつ分割した各パターン
片の透過率の解析フーリエの和からコンボリューション
積分を行って光強度分布を求めることを特徴とする。
The light intensity calculation method according to the present invention comprises a Fourier transform of a table in which the boundaries of the kernel of the stepper optical system are extended to be periodic boundaries, and the pattern is divided into rectangular and triangular pattern pieces. In addition, the light intensity distribution is obtained by performing convolution integration from the sum of the analysis Fourier of the transmittance of each divided pattern piece.

【0007】すなわち、前記した(式1)のコンボリュ
ーション積分はその定義から次のようにフーリエ変換を
用いて表される。 (f* φ)(x,y)=F-1{F(f)F(φ)} (式2) ここで、F(f)はマスクの透過率fのフーリエ変換、
F(φ)はカーネル関数φのフーリエ変換、F-1は逆フ
ーリエ変換を表す。すなわち、F(f)とF(φ)の積
を逆フーリエ変換することにより、コンボリューション
積分を得ることが判る。
[0007] That is, the convolution integral of the above (Equation 1) is expressed by using the Fourier transform as follows from its definition. (F * φ) (x, y) = F −1 {F (f) F (φ)} (Equation 2) where F (f) is the Fourier transform of the transmittance f of the mask,
F (φ) represents the Fourier transform of the kernel function φ, and F −1 represents the inverse Fourier transform. That is, it can be seen that the convolution integral is obtained by performing an inverse Fourier transform on the product of F (f) and F (φ).

【0008】また、(式2)のマスクの透過率fを次の
ように複数の矩形、三角形のマスク片fi(iは1〜
n)の和として表すものとする。 f=f1+f2+…+fn (式3) このとき、マスクfiのフーリエ変換は各マスク片のフ
ーリエ変換をFiとすると次のように各マスク片のフー
リエ変換の線形和で表される。 F=F1+F2+…+Fn (式4) これから、前記マスクの透過率fのフーリエ変換F
(f)は、(式3),(式4)に基づいて、複数の矩形
及び三角形のマスク片のフーリエ変換の和として求める
ことが可能となる。
Further, the transmittance f of the mask of (Equation 2) is set to a plurality of rectangular and triangular mask pieces fi (i is 1 to
n). f = f1 + f2 +... + fn (Equation 3) At this time, when the Fourier transform of each mask piece is Fi, the Fourier transform of the mask fi is represented by a linear sum of the Fourier transform of each mask piece as follows. F = F1 + F2 +... + Fn (Equation 4) From this, the Fourier transform F of the transmittance f of the mask is obtained.
(F) can be obtained as the sum of Fourier transforms of a plurality of rectangular and triangular mask pieces based on (Equation 3) and (Equation 4).

【0009】したがって、(式2)におけるF(f)と
して、複数の矩形及び三角形のマスク片のフーリエ変換
の和を用いることができ、また、この矩形および三角形
のマスク片fiのフーリエ変換Fiは解析的に計算する
ことができるので、この解析解を使うことによって斜め
パターンの階段近似が不要となり、この階段近似による
ビットマップ変換等による誤差を除いて精度良く光強度
を計算することが可能となる。
Therefore, the sum of the Fourier transforms of a plurality of rectangular and triangular mask pieces can be used as F (f) in (Equation 2), and the Fourier transform Fi of the rectangular and triangular mask pieces fi is Since it can be calculated analytically, the use of this analytical solution eliminates the need for staircase approximation of diagonal patterns. Become.

【0010】[0010]

【発明の実施の形態】次に、本発明の実施形態を図面を
参照して説明する。図1は本実施形態の流れを示すフロ
ーチャートである。ここでは、図4(a)に示したと同
様な図2(a)に示すマスクパターンMPでのウェハ上
での光強度分布を計算するものとする。先ず、これまで
と同様に、固有値αとカーネルφのテーブルを計算する
(S101)。次いで、周期境界条件を満たすように、
図2(b)にあるようにカーネルサイズLに対して境界
部分を上下、左右にL/2だけ拡張して2L×2Lの領
域を形成し、この領域のうち拡張部分に「0」を詰めた
ものをフーリエ変換して、これをΦとする(S10
2)。そして、図2(a)に示すマスクパターンMP上
に点Pを設定し、この点Pを中心として2L×2Lの領
域に含まれるパターンを切り出す(S103)。図2
(c)は切り出されたパターンの図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing the flow of this embodiment. Here, it is assumed that the light intensity distribution on the wafer at the mask pattern MP shown in FIG. 2A similar to that shown in FIG. 4A is calculated. First, a table of eigenvalues α and kernels φ is calculated as before (S101). Next, to satisfy the periodic boundary condition,
As shown in FIG. 2 (b), the boundary portion is extended vertically and horizontally by L / 2 with respect to the kernel size L to form a 2L × 2L region, and “0” is filled in the extended portion of this region. Is subjected to a Fourier transform, and this is defined as Φ (S10
2). Then, a point P is set on the mask pattern MP shown in FIG. 2A, and a pattern included in an area of 2L × 2L is cut out around the point P (S103). FIG.
(C) is a diagram of the cut-out pattern.

【0011】次いで、切り出されたマスクパターンを複
数のマスク片に分割する。ここでは、斜めパターンが存
在しているため、図2(c)に示したように、複数の矩
形と三角形のマスク片に分割する。そして、切り出され
たマスクパターンの透過率fは、(式3)に基づいて、
分割した各マスク片の透過率の和として表され、さらに
そのフーリエ変換Fは、(式4)に基づけば、各マスク
片のフーリエ変換の線形和で表される。また、前記した
ように、矩形および三角形のマスク片fiのフーリエ変
換Fiは解析的に計算することができるので、前記切り
出されたマスクパターンのフーリエ変換Fは各マスク片
の周期2Lとした解析フーリエの和によって計算する
(S104)。次いで、ステップS102で求めたΦと
ステップS104で求めたFを使って(式2)からコン
ボリューション積分、すなわち、F×Φの逆フーリエ変
換を行い、2Lの周期での逆フーリエ変換の値I’を計
算する (S105)。次いで、ステップS105で求め
たコンボリューション積分の値I’の周辺部の、ステッ
プS102において拡張したL/2の領域のデータを除
いて点Pを中心としたL×Lの矩形領域の光強度分布I
を得る(S106)。
Next, the cut mask pattern is divided into a plurality of mask pieces. Here, since a diagonal pattern exists, as shown in FIG. 2C, the mask is divided into a plurality of rectangular and triangular mask pieces. Then, the transmittance f of the cut mask pattern is calculated based on (Equation 3).
It is expressed as the sum of the transmittances of the divided mask pieces, and the Fourier transform F thereof is expressed as a linear sum of the Fourier transform of each mask piece based on (Equation 4). As described above, since the Fourier transform Fi of the rectangular and triangular mask pieces fi can be calculated analytically, the Fourier transform F of the cut-out mask pattern is an analysis Fourier transform in which the period of each mask piece is 2L. (S104). Then, using Φ obtained in step S102 and F obtained in step S104, the convolution integration, that is, the inverse Fourier transform of F × Φ is performed from (Equation 2), and the value I of the inverse Fourier transform in a cycle of 2L is obtained. Is calculated (S105). Next, the light intensity distribution of the L × L rectangular area around the point P except for the data of the area of L / 2 expanded in step S102 around the convolution integral value I ′ obtained in step S105. I
Is obtained (S106).

【0012】以上により、切り出されたマスクパターン
MPでの光強度分布Iが得られるため、今度は図2
(a)に矢印で示すように、点PをLだけ移動する。そ
して、この点Pについて、前記したステップS103か
らステップS107を繰り返すことで、同様にして次の
矩形領域L×Lの光強度分布Iを得る。以下、この処理
をマスクパターンの解析領域全体について行うことで、
当該解析領域全体の光強度分布を計算する(S10
8)。
As described above, the light intensity distribution I in the cut mask pattern MP can be obtained.
As shown by an arrow in (a), the point P is moved by L. Then, the light intensity distribution I of the next rectangular area L × L is similarly obtained by repeating steps S103 to S107 for the point P. Hereinafter, by performing this process on the entire analysis region of the mask pattern,
The light intensity distribution of the entire analysis area is calculated (S10
8).

【0013】[0013]

【発明の効果】以上のように、本発明による光強度の計
算方法では、斜めパターンのフーリエ変換を解析的に計
算しているので、従来のように斜めパターンを階段近似
する必要がなく、マスク形状のビットマップ変換による
誤差が生じないため計算精度が高くなる。また、マスク
パターン全体からカーネル領域に含まれるパターンを切
り出す処理はパターン数が多いほど処理時間が長くな
り、従来方法では1点計算するたびにパターン切り出し
が必要であるが、本実施形態ではL×Lの領域を一度に
計算できるのでパターンの切り出し回数を減らすことが
でき、計算速度が向上する。
As described above, in the method for calculating the light intensity according to the present invention, the Fourier transform of the oblique pattern is analytically calculated. Since no error occurs due to the bitmap conversion of the shape, the calculation accuracy is increased. In addition, the processing for cutting out the pattern included in the kernel area from the entire mask pattern requires a longer processing time as the number of patterns is larger. In the conventional method, it is necessary to cut out the pattern every time one point is calculated. Since the region of L can be calculated at a time, the number of times of pattern cutting can be reduced, and the calculation speed is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光強度計算方法を説明するためのフロ
ーチャートである。
FIG. 1 is a flowchart for explaining a light intensity calculation method of the present invention.

【図2】本発明の計算方法を説明するためのマスクパタ
ーンの模式図である。
FIG. 2 is a schematic diagram of a mask pattern for explaining a calculation method of the present invention.

【図3】従来の光強度計算方法を説明するためのフロー
チャートである。
FIG. 3 is a flowchart for explaining a conventional light intensity calculation method.

【図4】本発明の計算方法を説明するためのマスクパタ
ーンの模式図である。
FIG. 4 is a schematic diagram of a mask pattern for explaining a calculation method of the present invention.

【符号の説明】[Explanation of symbols]

MP マスクパターン MP mask pattern

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ステッパ光学系のカーネルの境界を拡張
して周期境界としたテーブルのフーリエ変換と、パター
ンを矩形と三角形のパターン片に分割し、かつ分割した
各パターン片の透過率の解析フーリエの和からコンボリ
ューション積分を行って光強度分布を求めることを特徴
とするパターンの光強度計算方法。
1. A Fourier transform of a table in which a boundary of a kernel of a stepper optical system is extended to be a periodic boundary, a pattern is divided into rectangular and triangular pattern pieces, and an analysis Fourier analysis of transmittance of each of the divided pattern pieces is performed. A light intensity distribution obtained by performing convolution integration from the sum of
【請求項2】 ステッパ光学系のカーネルφと固有値α
のテーブルを作成する工程と、前記カーネルのサイズL
×Lを2L×2Lに拡張して周期境界とし、かつその拡
張部分に0を詰めたものをフーリエ変換した値Φを求め
る工程と、計算対象のパターンを点Pを中心として2L
×2Lの大きさに切り出す工程と、前記切り出したパタ
ーンを矩形、三角形に分割し、その透過率を周期2Lの
解析フーリエの和Fとして計算する工程と、前記FとΦ
の積を逆フーリエ変換してコンボリューション積分I’
を計算する工程と、前記I’の周辺のL/2の領域を除
いて光強度分布Iを求める工程とを含み、前記点PをL
だけ移動して前記各工程を繰り返して前記パターンの光
強度分布を求めることを特徴とするパターンの光強度計
算方法。
2. A kernel φ and an eigenvalue α of a stepper optical system.
Creating a table, and the size L of the kernel
× L to 2L × 2L to form a periodic boundary and obtain a value Φ obtained by performing a Fourier transform on the expanded portion padded with 0s.
A step of cutting out the cut out pattern into rectangles and triangles, and calculating the transmittance as a sum F of analytical Fourier with a period of 2 L;
Is inverse Fourier transformed to the convolution integral I '
And calculating the light intensity distribution I excluding the area of L / 2 around the I ′.
A method of calculating the light intensity distribution of the pattern by repeating the above steps while moving the light intensity distribution of the pattern.
JP2232399A 1999-01-29 1999-01-29 Light intensity calculating method for pattern Pending JP2000221659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232399A JP2000221659A (en) 1999-01-29 1999-01-29 Light intensity calculating method for pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232399A JP2000221659A (en) 1999-01-29 1999-01-29 Light intensity calculating method for pattern

Publications (1)

Publication Number Publication Date
JP2000221659A true JP2000221659A (en) 2000-08-11

Family

ID=12079518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232399A Pending JP2000221659A (en) 1999-01-29 1999-01-29 Light intensity calculating method for pattern

Country Status (1)

Country Link
JP (1) JP2000221659A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520999A (en) * 2000-01-20 2003-07-08 エルエスアイ ロジック コーポレーション Geometric aerial image simulation
JP2008218747A (en) * 2007-03-05 2008-09-18 Toshiba Corp Lithography simulation method and program
JP2013214104A (en) * 2008-11-24 2013-10-17 Asml Netherlands Bv Harmonic resist model for use in lithographic apparatus, and device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520999A (en) * 2000-01-20 2003-07-08 エルエスアイ ロジック コーポレーション Geometric aerial image simulation
JP2008218747A (en) * 2007-03-05 2008-09-18 Toshiba Corp Lithography simulation method and program
JP2013214104A (en) * 2008-11-24 2013-10-17 Asml Netherlands Bv Harmonic resist model for use in lithographic apparatus, and device manufacturing method
US8942463B2 (en) 2008-11-24 2015-01-27 Asml Netherlands B.V. Harmonic resist model for use in a lithographic apparatus and a device manufacturing method

Similar Documents

Publication Publication Date Title
CN108073047B (en) Optical proximity effect correction method and system
US6777138B2 (en) Mask product made by selection of evaluation point locations based on proximity effects model amplitudes for correcting proximity effects in a fabricat layout
US6807663B2 (en) Accelerated layout processing using OPC pre-processing
US6792590B1 (en) Dissection of edges with projection points in a fabrication layout for correcting proximity effects
JP2715895B2 (en) Light intensity distribution simulation method
US6625801B1 (en) Dissection of printed edges from a fabrication layout for correcting proximity effects
US6539521B1 (en) Dissection of corners in a fabrication layout for correcting proximity effects
JP2531114B2 (en) Light intensity distribution analysis method
JP3805936B2 (en) Mask pattern correction method and mask pattern creation system
JP2910716B2 (en) Parametric analysis method of light intensity calculation
US7328424B2 (en) Method for determining a matrix of transmission cross coefficients in an optical proximity correction of mask layouts
JP2011151423A (en) Light source optimization for image fidelity and throughput
US7523437B2 (en) Pattern-producing method for semiconductor device
US6553558B2 (en) Integrated circuit layout and verification method
US6536032B1 (en) Method of processing exposure mask-pattern data, simulation using this method, and recording medium
JP5052625B2 (en) Method and program for designing mask layout
JP2006292941A (en) Optical proximity effect correction method and apparatus therefor
JP4257088B2 (en) Method of correcting and exposing a change in line width that occurs in the development stage during photomask manufacture, and computer-readable recording medium having recorded a program therefor
CN114415466B (en) Method and system for correcting layout graph
JP2005165282A (en) Improvement in performance in model-based optical proximity correction engine utilizing efficient polygon pinning method
US8056032B2 (en) Methods for measuring mean-to-target (MTT) based on pattern area measurements and methods of correcting photomasks using the same
US11281839B2 (en) Method, apparatus and electronic device for photolithographic mask optimization of joint optimization of pattern and image
Yao et al. Efficient proximity effect correction using fast multipole method with unequally spaced grid for electron beam lithography
JP4791020B2 (en) Simultaneous calculation of multiple points on one or more cut lines
JP2000221659A (en) Light intensity calculating method for pattern