JP2000221214A - Photovoltaic sensor for high voltage - Google Patents

Photovoltaic sensor for high voltage

Info

Publication number
JP2000221214A
JP2000221214A JP11026203A JP2620399A JP2000221214A JP 2000221214 A JP2000221214 A JP 2000221214A JP 11026203 A JP11026203 A JP 11026203A JP 2620399 A JP2620399 A JP 2620399A JP 2000221214 A JP2000221214 A JP 2000221214A
Authority
JP
Japan
Prior art keywords
electro
light
optical element
optic element
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11026203A
Other languages
Japanese (ja)
Inventor
Isamu Sone
曽根  勇
Toshiji Shirokura
利治 白倉
Yoshimasa Kubota
善征 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11026203A priority Critical patent/JP2000221214A/en
Publication of JP2000221214A publication Critical patent/JP2000221214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a photovoltaic sensor for high voltages having a superior withstand voltage characteristic, a superior temperature characteristic and the like by arranging a transparent electrode of an electro-optic element having a natural rotary polarization to a nearly central part of a transmission face and eliminating process distortions generated to a peripheral edge part of the transmission face. SOLUTION: The photovoltaic sensor includes a polarizer for converting an incident light to a linearly polarization, a 1/4 wave plate for converting the linearly polarization to a circularly polarized light, an electro-optic element for passing the circularly polarized light and phase modulating the light in accordance with an impressed high voltage, and an analyzer for detecting the light passing the electro-optic element. The electro-optic element 5 is an electro-optic element having a natural rotary polarization. Layered electrodes 6a-6c are disposed to a nearly central part of each light transmission face of the electro-optic element. A predetermined creeping distance is obtained between the layered electrodes on the basis of a distance L between a peripheral edge part of the layered electrodes and a peripheral edge part of the light transmission face of the electro-optic element, and a thickness d of the electro-optic element. Moreover, influences of process distortions to the peripheral edge part of the light transmission face are eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高電圧用光電圧セ
ンサに係り、特に自然旋光性を有する電気光学素子の透
過面の周縁部にできる加工歪みの影響を除去した高電圧
用光センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-voltage optical voltage sensor, and more particularly, to a high-voltage optical sensor which eliminates the influence of processing distortion formed on the periphery of a transmission surface of an electro-optical element having natural optical rotation. .

【0002】[0002]

【従来の技術】図6は従来の光電圧センサを示す図であ
る。図において1は入射光を導入する光ファイバ、2は
送光コリメータ部、3は入射光を直線偏光に変換する偏
光子、4は前記直線偏光を円偏光に変換する1/4波長
板である。5はBGO(Bi12GeO20)等の単結晶を
用いた電気光学素子(ポッケルス効果素子)、6は前記
電気光学素子の各光透過面に配置した導電性透明電極、
7は前記導電性透明電極に被検出電圧を印加する電圧印
加端子、8は前記電気光学素子を透過した透過光の偏光
を検出する検光子、9は前記検光子で検出した偏光を受
光する受光コリメータ部、10は図示しない電圧検出部
に送出する光ファイバ部である。
2. Description of the Related Art FIG. 6 shows a conventional optical voltage sensor. In the figure, 1 is an optical fiber for introducing incident light, 2 is a light transmitting collimator, 3 is a polarizer for converting incident light into linearly polarized light, and 4 is a quarter wavelength plate for converting the linearly polarized light into circularly polarized light. . 5 is an electro-optical element (Pockels effect element) using a single crystal such as BGO (Bi 12 GeO 20 ), 6 is a conductive transparent electrode disposed on each light transmitting surface of the electro-optical element,
7 is a voltage application terminal for applying a voltage to be detected to the conductive transparent electrode, 8 is an analyzer for detecting the polarization of the transmitted light transmitted through the electro-optical element, and 9 is a light receiving device for receiving the polarization detected by the analyzer. The collimator unit 10 is an optical fiber unit that sends out to a voltage detection unit (not shown).

【0003】発光ダイオード等からの放射光は光ファイ
バ1を介して送光コリメータ部2に入射し、送光コリメ
ータ部2ではこの入射光を平行光束に変換して偏光子3
に供給する。偏光子3は入射した平行光を直線偏光に変
換し、1/4波長板は前記直線偏光を円偏光に変換す
る。
Light emitted from a light emitting diode or the like is incident on a light transmitting collimator unit 2 via an optical fiber 1, and the light transmitting collimator unit 2 converts the incident light into a parallel light beam and converts the incident light into a polarizer 3.
To supply. The polarizer 3 converts the incident parallel light into linearly polarized light, and the quarter-wave plate converts the linearly polarized light into circularly polarized light.

【0004】電気光学素子5は前記1/4波長板4を介
して入射した円偏光を電気光学素子に印加した電界強度
に応じた楕円偏光に変換する。受光コリメータ部9は前
記楕円偏光のP偏光およびS偏光を受光し、光ファイバ
10を介して図示しない電圧検出部に送出する。
The electro-optical element 5 converts the circularly polarized light incident through the quarter-wave plate 4 into elliptically polarized light according to the electric field intensity applied to the electro-optical element. The light-receiving collimator 9 receives the elliptically polarized P-polarized light and S-polarized light, and sends the elliptically polarized light to the voltage detector (not shown) via the optical fiber 10.

【0005】前記電気光学素子の透明電極には電力系統
の送電電圧を分圧した高電圧が印加されるので、所定の
耐電圧特性が要求される。耐電圧特性を向上させる方法
には、特開平10−132863号公報、特開平5−3
4379号公報、特開平5−188091号公報に示す
ように、導電性透明電極を光透過面の周縁部を避けて中
央部のみに配置し、これによって十分な沿面距離を確保
して、電力系統の事故などの高電圧サージなどによる絶
縁破壊を防止する方法。あるいは前記特開平10−13
2863号公報に示すように、導電性透明電極を光透過
面の中央部のみに配置し、さらに前記導電性透明電極を
絶縁膜で被覆して導電性透明電極の電気的露出部分を限
定する方法が知られている。
Since a high voltage obtained by dividing the transmission voltage of the power system is applied to the transparent electrode of the electro-optical element, a predetermined withstand voltage characteristic is required. Methods for improving the withstand voltage characteristics are described in Japanese Patent Application Laid-Open Nos.
As disclosed in Japanese Patent No. 4379 and Japanese Patent Application Laid-Open No. Hei 5-188091, the conductive transparent electrode is disposed only at the center part of the light transmission surface, avoiding the peripheral part, thereby securing a sufficient creepage distance, and A method to prevent dielectric breakdown due to high voltage surges and other accidents. Or, as described in JP-A-10-13
As disclosed in Japanese Patent No. 2863, a method of arranging a conductive transparent electrode only at a central portion of a light transmitting surface and further covering the conductive transparent electrode with an insulating film to limit an electrically exposed portion of the conductive transparent electrode. It has been known.

【0006】また、前記電気光学素子の周縁部は、電気
光学素子を製作する際の加工歪みによって電気光学結晶
の平面度が崩れる場合が多く、前記電極を光透過面の中
央部のみに形成することは均一で強固な電極を形成する
ためにも好都合である。
Further, in the peripheral portion of the electro-optical element, the flatness of the electro-optical crystal is often lost due to processing distortion in manufacturing the electro-optical element, and the electrode is formed only in the central portion of the light transmitting surface. This is also advantageous for forming a uniform and strong electrode.

【0007】[0007]

【発明が解決しようとする課題】高電圧用の光電圧セン
サに用いる前記電気光学素子は前述した耐電圧特性以外
に、温度依存特性の低減、製造コストの低減等を図るこ
とが必要である。また、前記BGO等の自然旋光性を有
する電気光学素子は、例えば、昭和60年発行、情報調
査会「光ファイバセンサ」P106記載のように、この
自然旋光性によって検出感度が低下することを防ぐため
に、光路長を短くすることが一般的である。したがっ
て、高電圧用途のセンサにおいても、耐電圧特性を向上
するために電気光学素子の厚みを厚くして前記沿面距離
を大きくとることはできない。
The electro-optical element used in the optical voltage sensor for high voltage needs to reduce the temperature dependence and the manufacturing cost in addition to the withstand voltage characteristic described above. Also, the electro-optical element having a natural optical rotation such as the BGO described above prevents the detection sensitivity from being lowered by the natural optical rotation as described in the information research committee "Optical Fiber Sensor" P106 issued in 1985. It is common to shorten the optical path length in order to reduce the length. Therefore, even in a sensor for high voltage use, the creepage distance cannot be increased by increasing the thickness of the electro-optical element in order to improve the withstand voltage characteristics.

【0008】本発明は前記問題点に鑑みて成されたもの
で、自然旋光性を有する電気光学素子の透過面の周縁部
にできる加工歪みの影響を除去し、耐電圧特性、温度特
性等に優れた高電圧用光センサを提供する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and eliminates the influence of processing distortion generated at the peripheral portion of the transmission surface of an electro-optical element having natural optical rotation, thereby improving withstand voltage characteristics, temperature characteristics, and the like. Provide an excellent optical sensor for high voltage.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
解決するために次のような手段を採用した。
The present invention employs the following means in order to solve the above-mentioned problems.

【0010】入射光を直線偏光に変換する偏光子と、前
記直線偏光を円偏光に変換する1/4波長板と、前記円
偏光を透過し、かつ印加される高電圧に応じた光位相変
調を行う電気光学素子と、前記電気光学素子を透過した
透過光を検出する検光子と、前記検光子を透過した透過
光を検出して前記印加電圧を検出する受光部を備え、前
記電気光学素子は、その各光透過面に導電性透明電極お
よび無反射コーティング膜を積層した積層電極を備えた
光電圧センサにおいて、前記電気光学素子は自然旋光性
を有する電気光学素子であり、前記積層電極は前記電気
光学素子の各光透過面の略中央部に配置し、前記積層電
極の周縁部と前記電気光学素子の光透過面周縁部間の距
離、および前記電気光学素子の厚みに基づき前記各積層
電極間に所定の沿面距離を得るとともに、前記光透過面
の周縁部にできる加工歪みの影響を除去したことを特徴
とする。
A polarizer for converting incident light into linearly polarized light, a quarter-wave plate for converting the linearly polarized light into circularly polarized light, and an optical phase modulation transmitting the circularly polarized light and corresponding to a high voltage applied An electro-optical element that performs the following, an analyzer that detects transmitted light transmitted through the electro-optical element, and a light receiving unit that detects the applied voltage by detecting transmitted light transmitted through the analyzer. Is a light voltage sensor comprising a laminated electrode in which a conductive transparent electrode and a non-reflective coating film are laminated on each light transmitting surface, wherein the electro-optical element is an electro-optical element having natural optical rotation, and the laminated electrode is It is arranged at a substantially central portion of each light transmitting surface of the electro-optical element, and the respective laminations are performed based on a distance between a peripheral portion of the laminated electrode and a light transmitting surface peripheral portion of the electro-optical element, and a thickness of the electro-optical element. The specified distance between the electrodes With distance obtaining, characterized in that the removal of the influence of working strain that can be on the periphery of the light transmitting surface.

【0011】[0011]

【発明の実施の形態】以下に本発明の第1の実施形態を
図1および図2を用いて説明する。図1は本実施形態に
係る光電圧センサを示す図、図2は図1に示す電気光学
素子の組立体を示す図であり、図2(a)は上面図、図
2(b)は平面図、図2(c)は側面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing an optical voltage sensor according to the present embodiment, FIG. 2 is a diagram showing an assembly of the electro-optical element shown in FIG. 1, FIG. 2 (a) is a top view, and FIG. FIG. 2C is a side view.

【0012】図1において1は入射光を導入する光ファ
イバ、2は送光コリメータ部、3は入射光を直線偏光に
変換する偏光子、4は前記直線偏光を円偏光に変換する
1/4波長板である。5はBGO(Bi12GeO20)等
の単結晶を用いた電気光学素子(ポッケルス効果素
子)、6は前記電気光学素子の各光透過面に配置した積
層電極、7は前記導電性透明電極に被検出電圧を印加す
る電圧印加端子、8は前記電気光学素子を透過した透過
光の偏光を検出する検光子、9は前記検光子で検出した
P偏光およびS偏光を受光する受光コリメータ部、10
はP偏光およびS偏光を図示しない電圧検出部に送出す
る光ファイバ、11は反射プリズムである。発光ダイオ
ード等からの放射光は光ファイバ1を介して送光コリメ
ータ部2に入射し、送光コリメータ部2ではこの入射光
を平行光束に変換して偏光子3に供給する。偏光子3は
入射した平行光を直線偏光に変換し、1/4波長板は前
記直線偏光を円偏光に変換する。
In FIG. 1, 1 is an optical fiber for introducing incident light, 2 is a collimator for transmitting light, 3 is a polarizer for converting incident light into linearly polarized light, and 4 is a quarter for converting the linearly polarized light into circularly polarized light. Wave plate. Reference numeral 5 denotes an electro-optical element (Pockels effect element) using a single crystal such as BGO (Bi 12 GeO 20 ), 6 denotes a laminated electrode disposed on each light transmitting surface of the electro-optical element, and 7 denotes a conductive transparent electrode. A voltage application terminal for applying a voltage to be detected, 8 is an analyzer for detecting the polarization of the transmitted light transmitted through the electro-optical element, 9 is a light receiving collimator for receiving P-polarized light and S-polarized light detected by the analyzer, 10
Is an optical fiber for transmitting P-polarized light and S-polarized light to a voltage detecting unit (not shown), and 11 is a reflecting prism. Light emitted from a light emitting diode or the like is incident on a light transmitting collimator unit 2 via an optical fiber 1, and the light transmitting collimator unit 2 converts the incident light into a parallel light beam and supplies the parallel light beam to a polarizer 3. The polarizer 3 converts the incident parallel light into linearly polarized light, and the quarter-wave plate converts the linearly polarized light into circularly polarized light.

【0013】電気光学素子5は前記1/4波長板4を介
して入射した円偏光を電気光学素子に印加した電界強度
に応じた楕円偏光に変換する。受光コリメータ部9は前
記楕円偏光のP偏光およびS偏光を受光し、光ファイバ
10を介して図示しない電圧検出部に送出する。
The electro-optical element 5 converts the circularly polarized light incident through the quarter-wave plate 4 into elliptically polarized light according to the electric field intensity applied to the electro-optical element. The light-receiving collimator 9 receives the elliptically polarized P-polarized light and S-polarized light, and sends the elliptically polarized light to the voltage detector (not shown) via the optical fiber 10.

【0014】図2において、5はBGO(Bi12GeO
20)等の単結晶を用いた自然旋光性を有する電気光学素
子(ポッケルス効果素子)、5aは電気光学素子の光透
過面、6aは電気光学素子1の両面に配置した導電性透
明電極、6bは前記各導電性透明電極上に配置した絶縁
性の無反射コーティング膜であり、前記導電性透明電極
6aおよび無反射コーティング膜6bにより積層電極6
を構成する。6cは前記無反射コーティング膜から露出
した前記導電性透明電極の一部であり、導電性透明電極
のこの露出部分に被測定電圧を供給するためのリード線
を取り付ける。なお、図においてdは電気光学素子の厚
み、Lは電極6aの周縁部と前記電気光学素子の光透過
面周縁部間の距離である。そして電気光学素子の両面に
配置した二つの透明電極6a間に被測定電圧を印加した
ときの沿面距離は(d+2L)で表すことができる。
In FIG. 2, 5 is BGO (Bi 12 GeO).
20 ) An electro-optical element (Pockels effect element) having a natural optical rotation using a single crystal, such as 20 ), 5a is a light transmitting surface of the electro-optical element, 6a is a conductive transparent electrode disposed on both sides of the electro-optical element 1, 6b Is an insulating non-reflective coating film disposed on each of the conductive transparent electrodes, and the laminated electrode 6 is formed by the conductive transparent electrode 6a and the anti-reflective coating film 6b.
Is configured. Reference numeral 6c denotes a part of the conductive transparent electrode exposed from the antireflection coating film, and a lead wire for supplying a voltage to be measured is attached to the exposed part of the conductive transparent electrode. In the drawing, d is the thickness of the electro-optical element, and L is the distance between the peripheral edge of the electrode 6a and the light transmitting surface peripheral edge of the electro-optical element. Then, the creeping distance when the voltage to be measured is applied between the two transparent electrodes 6a arranged on both surfaces of the electro-optical element can be expressed by (d + 2L).

【0015】ところで、前記自然旋光性を有する電気光
学素子は前述したように耐電圧特性を向上するために電
気光学素子の厚みdを厚くすることはできない。また、
前記導電性透明電極は電気光学素子の光透過面を広く形
成するため前記距離Lは小さくする必要がある。さらに
電気光学素子の低価格化のためには前記距離は小さい方
が有利である。
The thickness d of the electro-optical element having the natural optical rotation cannot be increased in order to improve the withstand voltage characteristic as described above. Also,
Since the conductive transparent electrode forms a light transmitting surface of the electro-optical element widely, the distance L needs to be small. Further, in order to reduce the cost of the electro-optical element, it is advantageous that the distance is small.

【0016】一方、電気光学素子の周縁部に存在する加
工歪みによる影響を除去するためには前記距離Lは所定
量確保する必要がある。
On the other hand, in order to eliminate the influence of the processing distortion existing at the peripheral portion of the electro-optical element, it is necessary to secure the distance L by a predetermined amount.

【0017】したがって、前記電気光学素子およびその
電極の寸法関係を最適に設定することによって、自然旋
光性を有する電気光学素子の透過面の周縁部にできる加
工歪みの影響を除去し、耐電圧特性、温度特性等に優れ
た高電圧用光センサを得ることができる。なお、本実施
形態における電気光学素子1の各辺の長さは10mm、
厚みdは5mm、透明電極の各辺の長さは5mm、前記
距離Lは2.5mmである。
Therefore, by setting the dimensional relationship between the electro-optical element and the electrode thereof optimally, the influence of processing distortion formed on the peripheral portion of the transmission surface of the electro-optical element having natural optical rotation can be eliminated, and the withstand voltage characteristic can be improved. A high-voltage optical sensor having excellent temperature characteristics and the like can be obtained. Note that the length of each side of the electro-optical element 1 in the present embodiment is 10 mm,
The thickness d is 5 mm, the length of each side of the transparent electrode is 5 mm, and the distance L is 2.5 mm.

【0018】次に、本発明の第2の実施形態を図3を用
いて説明する。図3は本実施形態に係る電気光学素子の
組立体を示す平面図である。図において、21はBGO
(Bi12GeO20)等の単結晶を用いた自然旋光性を有
する電気光学素子(ポッケルス効果素子)、22は電気
光学素子21の表面に配置した導電性透明電極および導
電性透明電極上に配置した絶縁性の無反射コーティング
膜からなる積層電極、23は前記導電性透明電極のリー
ド線取り付け位置である。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a plan view showing an assembly of the electro-optical element according to the present embodiment. In the figure, 21 is BGO
An electro-optical element (Pockels effect element) having a natural optical rotation using a single crystal such as (Bi 12 GeO 20 ). Reference numeral 22 denotes a conductive transparent electrode disposed on the surface of the electro-optical element 21 and disposed on the conductive transparent electrode. The laminated electrode 23 made of the insulating non-reflective coating film is a position where the conductive transparent electrode is attached to the lead wire.

【0019】なお、本実施形態における電気光学素子の
各辺の長さは10mm、厚みdは5mm、前記積層電極
の直径は5mm、電気光学素子の周縁部と前記積層電極
との最短距離は2.5mm、電気光学素子を透過する光
ビームの直径は3mmである。
In this embodiment, the length of each side of the electro-optical element is 10 mm, the thickness d is 5 mm, the diameter of the laminated electrode is 5 mm, and the shortest distance between the periphery of the electro-optical element and the laminated electrode is 2 mm. 0.5 mm, and the diameter of the light beam transmitted through the electro-optical element is 3 mm.

【0020】表1は第1の実施形態における光電圧セン
サの耐電圧特性を示す表であり、交流耐圧試験、インパ
ルス耐圧試験およびインパルス限界試験のいずれの試験
においても満足する結果が得られた。
Table 1 is a table showing the withstand voltage characteristics of the optical voltage sensor according to the first embodiment. Satisfactory results were obtained in any of the AC withstand voltage test, the impulse withstand voltage test, and the impulse limit test.

【0021】[0021]

【表1】 [Table 1]

【0022】図4は第1の実施形態における光電圧セン
サの温度特性を示す図であり、P偏光の温度依存特性を
P波と示し、S偏光の温度依存特性をS波と示してい
る。本発明では、P偏光とS偏光の差動演算結果(差動
出力)を光電圧センサ出力とする。温度範囲−20ない
し60℃において比誤差の変動が±0.1%程度であ
り、判定基準である±1%に比してきわめて小さい温度
依存特性である。
FIG. 4 is a diagram showing the temperature characteristics of the optical voltage sensor according to the first embodiment. The temperature dependence of P-polarized light is shown as P-wave, and the temperature dependence of S-polarized light is shown as S-wave. In the present invention, the differential operation result (differential output) of the P-polarized light and the S-polarized light is set as the optical voltage sensor output. The variation of the ratio error is about ± 0.1% in a temperature range of −20 to 60 ° C., which is a very small temperature-dependent characteristic as compared with ± 1% which is a criterion.

【0023】図5は電気光学素子の消光比の面分布を測
定した結果を示す図である。図において白く見える部分
が加工歪みが存在する部分であり、電気光学素子の周縁
部に集中していることが分かる。加工歪みの集中する周
縁部から2mm程度に導電性透明電極を配置しないこと
により加工歪みの影響を除去することができ、温度依存
性を著しく低減することができる。
FIG. 5 is a view showing the result of measuring the surface distribution of the extinction ratio of the electro-optical element. In the figure, the portion that looks white is the portion where the processing distortion exists, and it can be seen that it is concentrated on the peripheral edge of the electro-optical element. By not disposing the conductive transparent electrode about 2 mm from the peripheral edge where the processing strain is concentrated, the influence of the processing strain can be removed, and the temperature dependency can be significantly reduced.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
自然旋光性を有する電気光学素子の透明電極を透過面の
略中央部に配置したので、透過面の周縁部にできる加工
歪みの影響を除去し、耐電圧特性、温度特性等に優れた
高電圧用光センサを得ることができる。
As described above, according to the present invention,
Since the transparent electrode of the electro-optical element having natural optical rotation is arranged at the approximate center of the transmission surface, the effects of processing distortion at the periphery of the transmission surface are eliminated, and high voltage with excellent withstand voltage characteristics, temperature characteristics, etc. The optical sensor for use can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る光電圧センサを
示す図である。
FIG. 1 is a diagram showing an optical voltage sensor according to a first embodiment of the present invention.

【図2】図1に示す電気光学素子の組立体を示す図であ
る。
FIG. 2 is a view showing an assembly of the electro-optical element shown in FIG.

【図3】本発明の第2の実施形態に係る電気光学素子の
組立体を示す図でる。
FIG. 3 is a view showing an assembly of an electro-optical element according to a second embodiment of the present invention.

【図4】本発明の第1の実施形態における高電圧センサ
の温度特性を示す図である。
FIG. 4 is a diagram illustrating temperature characteristics of the high-voltage sensor according to the first embodiment of the present invention.

【図5】電気光学素子の消光比の面分布を測定した結果
を示す図である。
FIG. 5 is a diagram showing a result of measuring a surface distribution of an extinction ratio of the electro-optical element.

【図6】従来の光電圧センサを示す図である。FIG. 6 is a diagram showing a conventional optical voltage sensor.

【符号の説明】[Explanation of symbols]

1 光ファイバ 2 送光コリメータ部 3 偏光子 4 1/4波長板 5,21 電気光学素子 6,22 積層電極 7 電圧印加端子 8 検光子 9 受光コリメータ部 10 光ファイバ DESCRIPTION OF SYMBOLS 1 Optical fiber 2 Transmitting collimator part 3 Polarizer 4 1/4 wavelength plate 5, 21 Electro-optical element 6, 22 Stacked electrode 7 Voltage application terminal 8 Analyzer 9 Light receiving collimator part 10 Optical fiber

フロントページの続き (72)発明者 久保田 善征 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内 Fターム(参考) 2G025 AA08 AA17 AB11 AC06 Continued on the front page (72) Inventor Yoshiyuki Kubota 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in the Electric Power & Electronics Development Division, Hitachi, Ltd. 2G025 AA08 AA17 AB11 AC06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入射光を直線偏光に変換する偏光子と、 前記直線偏光を円偏光に変換する1/4波長板と、 前記円偏光を透過し、かつ印加される高電圧に応じた光
位相変調を行う電気光学素子と、 前記電気光学素子を透過した透過光を検出する検光子
と、 前記検光子を透過した透過光を検出して前記印加電圧を
検出する受光部を備え、 前記電気光学素子は、その各光透過面に導電性透明電極
および無反射コーティング膜を積層した積層電極を備え
た光電圧センサにおいて、 前記電気光学素子は自然旋光性を有する電気光学素子で
あり、前記積層電極は前記電気光学素子の各光透過面の
略中央部に配置し、前記積層電極の周縁部と前記電気光
学素子の光透過面周縁部間の距離、および前記電気光学
素子の厚みに基づき前記各積層電極間に所定の沿面距離
を得るとともに、前記光透過面の周縁部にできる加工歪
みの影響を除去したことを特徴とする高電圧用光電圧セ
ンサ。
1. A polarizer that converts incident light into linearly polarized light, a quarter-wave plate that converts the linearly polarized light into circularly polarized light, and a light that transmits the circularly polarized light and corresponds to an applied high voltage. An electro-optical element that performs phase modulation; an analyzer that detects transmitted light transmitted through the electro-optical element; and a light receiving unit that detects the applied voltage by detecting transmitted light transmitted through the analyzer. The optical element is a light voltage sensor including a laminated electrode in which a conductive transparent electrode and an anti-reflection coating film are laminated on each light transmitting surface thereof, wherein the electro-optical element is an electro-optical element having natural optical rotation, The electrode is arranged at a substantially central portion of each light transmitting surface of the electro-optical element, the distance between the peripheral portion of the laminated electrode and the light transmitting surface peripheral portion of the electro-optical element, and the thickness of the electro-optical element. Predetermined between each laminated electrode Characterized in that the creeping distance of the light transmitting surface is obtained and the influence of processing distortion generated at the peripheral portion of the light transmitting surface is removed.
JP11026203A 1999-02-03 1999-02-03 Photovoltaic sensor for high voltage Pending JP2000221214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11026203A JP2000221214A (en) 1999-02-03 1999-02-03 Photovoltaic sensor for high voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11026203A JP2000221214A (en) 1999-02-03 1999-02-03 Photovoltaic sensor for high voltage

Publications (1)

Publication Number Publication Date
JP2000221214A true JP2000221214A (en) 2000-08-11

Family

ID=12186920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11026203A Pending JP2000221214A (en) 1999-02-03 1999-02-03 Photovoltaic sensor for high voltage

Country Status (1)

Country Link
JP (1) JP2000221214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518493B1 (en) * 1999-11-12 2003-02-11 Citizen Watch Co., Ltd. Display device for electronic apparatus comprising solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518493B1 (en) * 1999-11-12 2003-02-11 Citizen Watch Co., Ltd. Display device for electronic apparatus comprising solar cell

Similar Documents

Publication Publication Date Title
EP0083196B1 (en) Voltage and electric field measuring device using light
JP2008180733A (en) Electric field sensor
WO2014127654A1 (en) Quasi-reciprocal reflective optical voltage sensing unit and sensing system thereof
JPS5897669A (en) Magnetic field-light converter
JP2000221214A (en) Photovoltaic sensor for high voltage
JP3489701B2 (en) Electric signal measuring device
JPH10132864A (en) Photo voltage sensor
JPH09211035A (en) Electric field-measuring apparatus
JPH0260985B2 (en)
JP3131011B2 (en) Photocurrent transformer for DC
JP2001004671A (en) Optical fiber sensor
JP2000258465A (en) Photovoltage sensor
JP2673485B2 (en) Electric field detection method
JP3206614B2 (en) Optical voltage sensor
JPH0627153A (en) Vertical type modulation system photovoltaic sensor
JP3235301B2 (en) Light voltage sensor
JPH07280852A (en) Photoelectric sensor
JP2580443B2 (en) Optical voltage sensor
JP2000111584A (en) Photovoltaic sensor
JPH07159452A (en) Method and instrument for measuring dc voltage
JP2734553B2 (en) Semiconductor laser module
JP2719051B2 (en) Spatial light modulator
JP2023183122A (en) voltage measuring device
JP2003004776A (en) Optical voltage sensor
JPH02143173A (en) Optical dc transformer