JP2000220577A - Displacement control method and device for variable displacement compressor - Google Patents

Displacement control method and device for variable displacement compressor

Info

Publication number
JP2000220577A
JP2000220577A JP11023780A JP2378099A JP2000220577A JP 2000220577 A JP2000220577 A JP 2000220577A JP 11023780 A JP11023780 A JP 11023780A JP 2378099 A JP2378099 A JP 2378099A JP 2000220577 A JP2000220577 A JP 2000220577A
Authority
JP
Japan
Prior art keywords
supply
current value
supply current
control
swash plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11023780A
Other languages
Japanese (ja)
Other versions
JP4089063B2 (en
Inventor
Tetsuhiko Fukanuma
哲彦 深沼
Masahiro Kawaguchi
真広 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP02378099A priority Critical patent/JP4089063B2/en
Priority to EP00101853A priority patent/EP1026397A3/en
Priority to US09/494,692 priority patent/US6224348B1/en
Publication of JP2000220577A publication Critical patent/JP2000220577A/en
Application granted granted Critical
Publication of JP4089063B2 publication Critical patent/JP4089063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of clashing sound in the maximum or minimum inclining angle position of a swash plate. SOLUTION: When current supply to an electrical displacement control valve 39 is started by the ON operation of an air conditioner operation switch 44, a control computer C1 performs buffering current supply starting control for gradually increasing the value of a current supplied to the solenoid 43 of the displacement control valve 39 from a zero supply current value to a specified supply current value. When current supply to the electrical displacement control valve 39 is stopped by the OFF operation of the air conditioner operation switch 44, the control computer C1 performs buffering current supply stopping control for gradually reducing the value of a current supplied to the solenoid 43 of the displacement control valve 39 from the specified supply current value immediately before the turning-OFF of the air conditioner operation switch 44 to the zero supply current value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可変容量型圧縮機
における容量制御方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacity control method and apparatus for a variable displacement compressor.

【0002】[0002]

【従来の技術】特開平8−338364号公報に開示さ
れる可変容量型圧縮機では、クランク室の圧力と吸入圧
領域の吸入圧との差圧に基づいて吐出容量を変えるよう
になっている。クランク室の圧力は、吐出圧領域である
吐出室からクランク室へ冷媒を供給すると共に、クラン
ク室から吸入圧領域である吸入室へ冷媒を抜き出して調
整される。吐出室からクランク室へ冷媒を供給するため
の圧力供給通路上には容量制御用の電磁弁が介在されて
いる。電磁弁の弁体は、ソレノイドの励磁によって閉弁
位置側へ付勢される。電磁弁に対する供給電流値は、予
め設定された設定室温と検出された検出室温との比較に
基づいて決定されるようになっている。設定室温と検出
室温との差が大きいほど供給電流値が大きくされ、電磁
弁における弁開度が小さくなる。弁開度が小さくなるほ
ど斜板傾角が大きくなり、吐出容量が大きくなる。弁体
が閉弁位置に配置されると圧力供給通路が閉じられ、吐
出室からクランク室への冷媒供給が停止する。そのた
め、斜板の傾角が最大傾角となる。ソレノイドが消磁さ
れると弁体が弁開度最大位置の側へ移行し、吐出室から
クランク室への冷媒供給が増える。そのため、クランク
室内の圧力が増大し、斜板の傾角が最小になる。斜板の
最小傾角状態では斜板の傾動に連動する遮断体が吸入通
路を閉じ、外部冷媒回路における冷媒循環が停止する。
この冷媒循環停止状態は熱負荷低減作用のない状態であ
る。
2. Description of the Related Art In a variable displacement compressor disclosed in Japanese Patent Application Laid-Open No. 8-338364, a displacement is changed based on a differential pressure between a pressure in a crank chamber and a suction pressure in a suction pressure region. . The pressure in the crank chamber is adjusted by supplying the refrigerant from the discharge chamber, which is the discharge pressure area, to the crank chamber, and extracting the refrigerant from the crank chamber to the suction chamber, which is the suction pressure area. An electromagnetic valve for capacity control is interposed on the pressure supply passage for supplying the refrigerant from the discharge chamber to the crank chamber. The valve body of the solenoid valve is urged toward the valve closing position by the excitation of the solenoid. The supply current value to the solenoid valve is determined based on a comparison between a preset room temperature and a detected room temperature. As the difference between the set room temperature and the detected room temperature increases, the supply current value increases, and the valve opening of the solenoid valve decreases. As the valve opening decreases, the inclination angle of the swash plate increases, and the discharge capacity increases. When the valve element is located at the valve closing position, the pressure supply passage is closed, and the supply of the refrigerant from the discharge chamber to the crank chamber stops. Therefore, the inclination angle of the swash plate becomes the maximum inclination angle. When the solenoid is demagnetized, the valve body moves to the position of the maximum valve opening, and the supply of refrigerant from the discharge chamber to the crank chamber increases. Therefore, the pressure in the crank chamber increases, and the inclination angle of the swash plate is minimized. In the minimum inclination state of the swash plate, the shut-off body that is linked to the inclination of the swash plate closes the suction passage, and the circulation of the refrigerant in the external refrigerant circuit stops.
This refrigerant circulation stop state is a state in which there is no heat load reducing action.

【0003】[0003]

【発明が解決しようとする課題】通常、空調装置作動ス
イッチをONしたときには設定室温と検出室温との差が
大きく、電磁弁に対する供給電流値は空調装置作動スイ
ッチのON時から大きな値となる。そのため、斜板傾角
が最小傾角から急激に増大し、斜板が選択された供給電
流値に対応した斜板傾角位置を通り越して最大傾角位置
まで迅速に移行してしまう場合がある。このような通り
越しは、斜板の最大傾角を規定する部材と斜板との衝突
をもたらし、衝突音が発生する。又、設定室温と検出室
温との差が大きい状態のときに空調装置作動スイッチを
OFFすると、電磁弁に対する供給電流値が大きな値か
ら零へ瞬間的に切り換わる。そのため、斜板傾角が大き
な傾角から急激に減少し、斜板が最小傾角位置まで迅速
に移行する。このような迅速な移行は斜板の最小傾角を
規定する部材と斜板との衝突をもたらし、衝突音が発生
する。
Normally, when the air conditioner operation switch is turned on, the difference between the set room temperature and the detected room temperature is large, and the supply current value to the solenoid valve becomes large from the time the air conditioner operation switch is turned on. As a result, the swash plate inclination may increase sharply from the minimum inclination, and the swash plate may quickly move to the maximum inclination through the swash plate inclination corresponding to the selected supply current value. Such passing causes a collision between the swash plate and a member that defines the maximum inclination angle of the swash plate, and a collision sound is generated. When the air conditioner operation switch is turned off when the difference between the set room temperature and the detected room temperature is large, the current supplied to the solenoid valve is instantaneously switched from a large value to zero. Therefore, the swash plate inclination angle rapidly decreases from a large inclination angle, and the swash plate quickly moves to the minimum inclination position. Such a quick transition causes a collision between the swash plate and a member defining the minimum inclination of the swash plate, and a collision sound is generated.

【0004】本発明は、容量制御弁に対する電流供給開
始時あるいは電流供給停止時の前記ような衝突音の発生
を防止することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent the occurrence of the above-described collision noise when the current supply to the capacity control valve is started or stopped.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、回
転軸と一体的に回転するように、かつ前記回転軸に対し
て傾角可変に制御圧室に収容された斜板、及び前記斜板
の傾角に応じた往復動作を行なうピストンを備え、吐出
圧領域から前記制御圧室へ冷媒を供給すると共に、前記
制御圧室から吸入圧領域へ冷媒を抜き出し、前記吐出圧
領域から前記制御圧室に至る冷媒供給通路上又は前記制
御圧室から前記吸入圧領域に至る冷媒抜き出し通路上に
電気式容量制御弁を介在し、前記電気式容量制御弁に対
する供給電流値(単位時間当たり)を制御して前記吐出
圧領域から前記制御圧室への冷媒供給量又は前記制御圧
室から前記吸入圧領域への冷媒抜き出し量を制御し、前
記制御圧室内の圧力の制御に基づいて前記斜板の傾角を
制御する可変容量型圧縮機を対象とし、請求項1の発明
では、前記電気式容量制御弁に対する電流供給を開始す
るときには、指定された供給電流値を供給開始するまで
の過程として前記斜板の最大傾角位置での傾角増大速度
を抑制するための緩衝用電流供給開始制御を行なうよう
にした。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a swash plate housed in a control pressure chamber so as to rotate integrally with a rotating shaft and to be variably inclined with respect to the rotating shaft, and the swash plate. A piston that performs a reciprocating operation in accordance with the tilt angle of the refrigerant, supplies a refrigerant from the discharge pressure area to the control pressure chamber, extracts the refrigerant from the control pressure chamber to the suction pressure area, and controls the control pressure chamber from the discharge pressure area. An electric capacity control valve is interposed on the refrigerant supply passage leading to the refrigerant passage or on the refrigerant extraction passage leading from the control pressure chamber to the suction pressure region, and controls a supply current value (per unit time) to the electric capacity control valve. Controlling the amount of refrigerant supplied from the discharge pressure area to the control pressure chamber or the amount of refrigerant withdrawn from the control pressure chamber to the suction pressure area, and controlling the inclination of the swash plate based on control of the pressure in the control pressure chamber. Variable capacity to control The present invention is directed to a compressor, and in the invention according to claim 1, when starting current supply to the electric capacity control valve, as a process until starting supply of a specified supply current value, the swash plate at a maximum inclination position is started. A buffer current supply start control for suppressing the inclination increasing speed is performed.

【0006】請求項2の発明では、請求項1において、
前記緩衝用電流供給開始制御は、供給電流値零から指定
された指定供給電流値まで供給電流値を増大し、かつ前
記緩衝用電流供給開始制御は、供給電流値零から前記指
定供給電流値までの範囲の少なくとも一部で供給電流値
を徐々に増大する電流増大供給状態を含むようにした。
According to the second aspect of the present invention, in the first aspect,
The buffer current supply start control increases a supply current value from a supply current value of zero to a designated supply current value, and the buffer current supply start control includes a supply current value of zero to the designated supply current value. The current increasing supply state in which the supply current value gradually increases in at least a part of the range.

【0007】請求項3の発明では、請求項2において、
前記緩衝用電流供給開始制御は、供給電流値零から前記
指定供給電流値に達しない増大飛躍限界供給電流値へ供
給電流値を不連続的に切り換える供給電流値切り換え状
態と、前記増大飛躍限界供給電流値から前記指定供給電
流値まで供給電流値を徐々に増大する電流増大供給状態
とを含むようにした。
According to a third aspect of the present invention, in the second aspect,
The buffer current supply start control includes a supply current value switching state in which the supply current value is discontinuously switched from a supply current value of zero to an increase jump limit supply current value that does not reach the designated supply current value, and the increase jump limit supply. And a current increasing supply state in which the supply current value is gradually increased from the current value to the specified supply current value.

【0008】請求項4の発明では、前記電気式容量制御
弁に対する電流供給を停止するときには、供給電流値を
零とするまでの過程として前記斜板の最小傾角位置での
傾角減少速度を抑制するための緩衝用電流供給停止制御
を行なうようにした。
According to the present invention, when the current supply to the electric capacity control valve is stopped, the inclination decreasing speed at the minimum inclination position of the swash plate is suppressed until the supply current value becomes zero. Control for stopping the supply of current for buffering is performed.

【0009】請求項5の発明では、請求項4において、
前記緩衝用電流供給停止制御は、指定された指定供給電
流値から供給電流値零まで供給電流値を減少し、かつ前
記緩衝用電流供給停止制御は、前記指定供給電流値から
供給電流値零までの範囲の少なくとも一部で供給電流値
を徐々に減少する電流減少供給状態を含むようにした。
According to a fifth aspect of the present invention, in the fourth aspect,
The buffering current supply stop control reduces the supply current value from a specified designated supply current value to a supply current value of zero, and the buffering current supply stop control reduces the supply current value from the designated supply current value to a supply current value of zero. And a current decreasing supply state in which the supply current value is gradually decreased in at least a part of the range.

【0010】請求項6の発明では、請求項5において、
前記緩衝用電流供給停止制御は、前記指定供給電流値か
ら前記指定供給電流値に達しない減少飛躍限界供給電流
値へ供給電流値を不連続的に切り換える供給電流値切り
換え状態と、前記減少飛躍限界供給電流値から供給電流
値零まで供給電流値を徐々に減少する電流減少供給状態
とを含むようにした。
According to the invention of claim 6, in claim 5,
The buffering current supply stop control includes a supply current value switching state in which the supply current value is discontinuously switched from the specified supply current value to a decrease jump limit supply current value that does not reach the designated supply current value, and the decrease jump limit. And a current decreasing supply state in which the supply current value gradually decreases from the supply current value to the supply current value of zero.

【0011】請求項7の発明では、前記電気式容量制御
弁に対する電流供給の開始を指令する電流供給開始指令
手段と、前記斜板の最大傾角位置での傾角増大速度を抑
制するための緩衝用電流供給開始制御を行なう緩衝用電
流供給開始制御手段とを備えた容量制御装置を構成し、
前記緩衝用電流供給開始制御手段は、前記電流供給開始
指令手段の電流供給開始指令に基づいて前記緩衝用電流
供給開始制御を行なうようにした。
According to a seventh aspect of the present invention, the current supply start command means for commanding the start of the current supply to the electric capacity control valve, and a buffer for suppressing the inclination increasing speed at the maximum inclination position of the swash plate. Constituting a capacity control device comprising a buffer current supply start control means for performing a current supply start control,
The buffer current supply start control means performs the buffer current supply start control based on a current supply start command of the current supply start command means.

【0012】請求項8の発明では、請求項7において、
供給電流値を指定する供給電流値指定手段を備えた容量
制御装置を構成し、前記緩衝用電流供給開始制御手段
は、前記供給電流値指定手段によって指定された指定供
給電流値まで供給電流値零から供給電流値を増大し、か
つ供給電流値零から前記指定供給電流値までの範囲の少
なくとも一部で供給電流値を徐々に増大する電流供給開
始制御を行なうようにした。
According to the invention of claim 8, in claim 7,
A capacity control device comprising a supply current value designating means for designating a supply current value is constituted, and the buffer current supply start control means comprises a supply current value zero up to a designated supply current value designated by the supply current value designation means. And the supply current value is increased and the supply current value is gradually increased in at least a part of the range from the supply current value of zero to the specified supply current value.

【0013】請求項9の発明では、請求項8において、
前記緩衝用電流供給開始制御手段は、供給電流値零から
前記指定供給電流値に達しない増大飛躍限界供給電流値
へ供給電流値を不連続的に切り換え、前記増大飛躍限界
供給電流値から前記指定供給電流値まで供給電流値を徐
々に増大する電流供給開始制御を行なうようにした。請
求項10の発明では、前記電気式容量制御弁に対する電
流供給の停止を指令する電流供給停止指令手段と、前記
斜板の最小傾角位置での傾角減少速度を抑制するための
緩衝用電流供給停止制御を行なう緩衝用電流供給停止制
御手段とを備えた容量制御装置を構成し、前記緩衝用電
流供給停止制御手段は、前記電流供給停止指令手段の電
流供給停止指令に基づいて前記緩衝用電流供給停止制御
を行なうようにした。
According to a ninth aspect of the present invention, in the eighth aspect,
The buffer current supply start control means discontinuously switches the supply current value from a supply current value of zero to an increase jump limit supply current value that does not reach the designated supply current value, and changes the supply current value from the increase jump limit supply current value to the designated supply current value. Current supply start control for gradually increasing the supply current value up to the supply current value is performed. According to a tenth aspect of the present invention, a current supply stop command means for commanding a stop of the current supply to the electric capacity control valve, and a buffer current supply stop for suppressing the inclination decreasing speed at the minimum inclination position of the swash plate. And a buffer current supply stop control means for performing a control. The buffer current supply stop control means is configured to control the buffer current supply based on a current supply stop command of the current supply stop command means. Stop control is performed.

【0014】請求項11の発明では、請求項10におい
て、供給電流値を指定する供給電流値指定手段を備えた
容量制御装置を構成し、前記緩衝用電流供給停止制御手
段は、前記供給電流値指定手段によって指定された指定
供給電流値から供給電流値零まで供給電流値を減少し、
かつ前記指定供給電流値から供給電流値零までの範囲の
少なくとも一部で供給電流値を徐々に減少する電流供給
停止制御を行なうようにした。
According to an eleventh aspect of the present invention, in accordance with the tenth aspect, the capacity control device comprises a supply current value designating means for designating a supply current value, wherein the buffering current supply stop control means comprises: Reducing the supply current value from the designated supply current value designated by the designation means to the supply current value of zero,
In addition, current supply stop control for gradually decreasing the supply current value in at least a part of the range from the designated supply current value to the supply current value of zero is performed.

【0015】請求項12の発明では、請求項11におい
て、前記緩衝用電流供給停止制御手段は、前記指定供給
電流値から前記指定供給電流値に達しない減少飛躍限界
供給電流値へ供給電流値を不連続的に切り換え、前記減
少飛躍限界供給電流値から供給電流値零まで供給電流値
を徐々に減少する電流供給停止制御を行なうようにし
た。
According to a twelfth aspect of the present invention, in the eleventh aspect, the buffer current supply stop control means changes the supply current value from the designated supply current value to a reduced jump limit supply current value that does not reach the designated supply current value. The current supply is stopped discontinuously, and the current supply stop control is performed so that the supply current value is gradually reduced from the decrease jump limit supply current value to the supply current value of zero.

【0016】請求項1及び請求項7の発明では、電気式
容量制御弁に対する電流供給が開始されるときには緩衝
用電流供給開始制御が行なわれ、斜板傾角の急激な増大
が抑制される。緩衝用電流供給開始制御による斜板傾角
の急激な増大の抑制は、斜板の最大傾角位置への不要な
到達の回避、あるいは斜板が最大傾角位置へ到達したと
きの傾角増大速度の抑制をもたらす。
According to the first and seventh aspects of the present invention, when the current supply to the electric capacity control valve is started, the buffer current supply start control is performed to suppress a sharp increase in the swash plate inclination angle. The suppression of the rapid increase of the swash plate inclination by the buffer current supply start control is to avoid unnecessary arrival of the swash plate at the maximum inclination position or to suppress the inclination increasing speed when the swash plate reaches the maximum inclination position. Bring.

【0017】請求項2及び請求項8の発明では、供給電
流値零から指定された供給電流値までの範囲の少なくと
も一部で供給電流値を徐々に増大する電流増大供給が行
われる。供給電流値を徐々に増大する電流増大供給状態
を含む電流供給状態は、斜板傾角の急激な増大を抑制す
る。
According to the second and eighth aspects of the present invention, the current supply is performed by gradually increasing the supply current value in at least a part of the range from the supply current value of zero to the specified supply current value. The current supply state including the current increase supply state in which the supply current value is gradually increased suppresses a sharp increase in the swash plate inclination angle.

【0018】請求項3及び請求項9の発明では、供給電
流値が零から前記指定供給電流値に達しない増大飛躍限
界供給電流値へ不連続的に切り換えられた後、増大飛躍
限界供給電流値から前記指定供給電流値まで供給電流値
を徐々に増大する電流増大供給が行われる。供給電流値
を徐々に増大する電流増大供給状態を含む電流供給状態
は、斜板傾角の急激な増大を抑制する。供給電流値零か
ら増大飛躍限界供給電流値への供給電流値の不連続的な
切り換えは、吐出容量の速やかな増大に寄与する。
According to the third and ninth aspects of the present invention, after the supply current value is discontinuously switched from zero to the increase jump limit supply current value that does not reach the specified supply current value, the increase jump limit supply current value From the specified supply current value to the specified supply current value. The current supply state including the current increase supply state in which the supply current value is gradually increased suppresses a sharp increase in the swash plate inclination angle. The discontinuous switching of the supply current value from the supply current value zero to the increase jump limit supply current value contributes to the rapid increase of the discharge capacity.

【0019】請求項4及び請求項10の発明では、電気
式容量制御弁に対する電流供給が停止されるときには緩
衝用電流供給停止制御が行なわれ、斜板傾角の急激な減
少が抑制される。緩衝用電流供給停止制御による斜板傾
角の急激な減少の抑制は、斜板が最小傾角位置へ到達し
たときの傾角減少速度の抑制をもたらす。
According to the fourth and tenth aspects of the present invention, when the current supply to the electric capacity control valve is stopped, the buffer current supply stop control is performed to suppress a sharp decrease in the inclination angle of the swash plate. The suppression of the rapid decrease of the swash plate inclination by the buffer current supply stop control leads to the suppression of the inclination decreasing speed when the swash plate reaches the minimum inclination position.

【0020】請求項5及び請求項11の発明では、指定
された供給電流値から供給電流値零までの範囲の少なく
とも一部で供給電流値を徐々に減少する電流減少供給が
行われる。供給電流値を徐々に減少する電流減少供給状
態を含む電流供給状態は、斜板傾角の急激な減少を抑制
する。
According to the fifth and eleventh aspects of the present invention, the current decreasing supply is performed in which the supply current value is gradually reduced in at least a part of the range from the designated supply current value to the supply current value of zero. The current supply state including the current decrease supply state in which the supply current value is gradually reduced suppresses a sharp decrease in the swash plate inclination angle.

【0021】請求項6及び請求項12の発明では、供給
電流値が指定供給電流値から減少飛躍限界供給電流値へ
不連続的に切り換えられた後、減少飛躍限界供給電流値
から供給電流値零まで供給電流値を徐々に減少する電流
減少供給が行われる。供給電流値を徐々に減少する電流
減少供給状態を含む電流供給状態は、斜板傾角の急激な
減少を抑制する。指定供給電流値から増大飛躍限界供給
電流値への不連続的な切り換えは、吐出容量の速やかな
減少に寄与する。
According to the sixth and twelfth aspects of the present invention, after the supply current value is discontinuously switched from the specified supply current value to the decrease jump limit supply current value, the supply current value becomes zero from the decrease jump limit supply current value. A current decreasing supply is performed in which the supply current value is gradually reduced until the current decreases. The current supply state including the current decrease supply state in which the supply current value is gradually reduced suppresses a sharp decrease in the swash plate inclination angle. The discontinuous switching from the designated supply current value to the increase jump limit supply current value contributes to a rapid decrease in the discharge capacity.

【0022】[0022]

【発明の実施の形態】以下、車両に搭載したクラッチレ
ス可変容量型圧縮機に本発明を具体化した第1の実施の
形態を図1〜図6に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment in which the present invention is embodied in a clutchless variable displacement compressor mounted on a vehicle will be described below with reference to FIGS.

【0023】図1に示すように、シリンダブロック11
の前端にはフロントハウジング12が接合されている。
シリンダブロック11の後端にはリヤハウジング13が
バルブプレート14、弁形成プレート15,16及びリ
テーナ形成プレート17を介して接合固定されている。
制御圧室121を形成するフロントハウジング12とシ
リンダブロック11との間に架設支持された回転軸18
は、車両エンジン(図示略)から回転駆動力を得る。
As shown in FIG. 1, the cylinder block 11
A front housing 12 is joined to a front end of the front housing 12.
A rear housing 13 is joined and fixed to the rear end of the cylinder block 11 via a valve plate 14, valve forming plates 15, 16 and a retainer forming plate 17.
The rotary shaft 18 erected and supported between the front housing 12 forming the control pressure chamber 121 and the cylinder block 11
Obtains a rotational driving force from a vehicle engine (not shown).

【0024】回転軸18には斜板20が回転軸18の軸
線方向へスライド可能かつ傾動可能に支持されている。
図4に示すように、斜板20に止着されたガイドピン2
3,24の頭部は、回転軸18に止着された回転支持体
19のガイド孔191,192にスライド可能に嵌入さ
れている。斜板20は、ガイド孔191,192とガイ
ドピン23,24との連係により回転軸18の軸線方向
へ傾動可能かつ回転軸18と一体的に回転可能である。
斜板20の半径中心部がシリンダブロック11側へ移動
すると、斜板20の傾角が減少する。回転支持体19と
斜板20との間に介在された傾角減少ばね25は斜板2
0の傾角を減少する方向へ斜板20を付勢する。
A swash plate 20 is supported on the rotating shaft 18 so as to be slidable and tiltable in the axial direction of the rotating shaft 18.
As shown in FIG. 4, the guide pin 2 fixed to the swash plate 20
The heads 3 and 24 are slidably fitted into guide holes 191 and 192 of a rotation support 19 fixed to the rotation shaft 18. The swash plate 20 can be tilted in the axial direction of the rotating shaft 18 and can rotate integrally with the rotating shaft 18 by linking the guide holes 191 and 192 and the guide pins 23 and 24.
When the center of the radius of the swash plate 20 moves toward the cylinder block 11, the inclination angle of the swash plate 20 decreases. The inclination reducing spring 25 interposed between the rotating support 19 and the swash plate 20
The swash plate 20 is biased in a direction to decrease the inclination angle of zero.

【0025】図1及び図3に示すように、シリンダブロ
ック11の中心部に貫設された収容孔21内には筒状の
遮断体22がスライド可能に収容されている。遮断体2
2と収容孔21の端面との間に介在された吸入通路開放
ばね26は、遮断体22を斜板20側へ付勢している。
回転軸18の後端部はラジアルベアリング27及び遮断
体22を介して収容孔21の周面で支持される。リヤハ
ウジング13の中心部に形成された吸入通路31は収容
孔21に接続している。遮断体22の先端面が弁形成プ
レート15に当接することにより遮断体22が斜板20
から離間する方向への移動を規制される。斜板20が遮
断体22側へ移動するに伴い、斜板20の傾動がスラス
トベアリング37を介して遮断体22に伝達する。斜板
20の回転はスラストベアリング37の存在によって遮
断体22への伝達を阻止される。この傾動伝達により遮
断体22が吸入通路開放ばね26のばね力に抗して弁形
成プレート15側へ移動し、図3に示すように、遮断体
22が弁形成プレート15に当接する。斜板20の最小
傾角は遮断体22と弁形成プレート15との当接によっ
て規定される。図3は斜板20の最小傾角状態を示す。
図1は斜板20の最大傾角状態を示す。斜板20の最大
傾角は斜板20と回転支持体19との当接により規定さ
れる。
As shown in FIGS. 1 and 3, a cylindrical blocking body 22 is slidably accommodated in an accommodation hole 21 formed through the center of the cylinder block 11. Blocker 2
The suction passage opening spring 26 interposed between the end face 2 and the end face of the housing hole 21 urges the blocking body 22 toward the swash plate 20.
The rear end of the rotating shaft 18 is supported on the peripheral surface of the housing hole 21 via the radial bearing 27 and the blocking body 22. A suction passage 31 formed at the center of the rear housing 13 is connected to the housing hole 21. When the distal end surface of the blocking body 22 contacts the valve forming plate 15, the blocking body 22 is
Movement in the direction away from is restricted. As the swash plate 20 moves toward the blocking body 22, the tilt of the swash plate 20 is transmitted to the blocking body 22 via the thrust bearing 37. The rotation of the swash plate 20 is prevented from being transmitted to the interrupter 22 by the presence of the thrust bearing 37. By this tilting transmission, the blocking body 22 moves toward the valve forming plate 15 against the spring force of the suction passage opening spring 26, and the blocking body 22 contacts the valve forming plate 15, as shown in FIG. The minimum inclination angle of the swash plate 20 is defined by the contact between the blocking body 22 and the valve forming plate 15. FIG. 3 shows the swash plate 20 in the minimum inclination state.
FIG. 1 shows the swash plate 20 in the maximum inclination state. The maximum inclination angle of the swash plate 20 is defined by the contact between the swash plate 20 and the rotary support 19.

【0026】シリンダブロック11に貫設されたシリン
ダボア111内にはピストン28が収容されている。斜
板20の回転運動はシュー29を介してピストン28の
前後往復運動に変換され、ピストン28がシリンダボア
111内を前後動する。
The piston 28 is accommodated in a cylinder bore 111 penetrating through the cylinder block 11. The rotational motion of the swash plate 20 is converted into a reciprocating motion of the piston 28 via the shoe 29, and the piston 28 moves back and forth in the cylinder bore 111.

【0027】図5に示すように、リヤハウジング13内
には吸入圧領域となる吸入室131の及びその周囲に吐
出圧領域となる吐出室132が区画形成されている。バ
ルブプレート14には吸入ポート141及び吐出ポート
142が形成されている。弁形成プレート15上には吸
入弁151が形成されており、弁形成プレート16上に
は吐出弁161が形成されている。吸入室131内の冷
媒はピストン28の復動動作により吸入ポート141か
ら吸入弁151を押し退けてシリンダボア111内へ流
入する。シリンダボア111内へ流入した冷媒はピスト
ン28の往動動作により吐出ポート142から吐出弁1
61を押し退けて吐出室132へ吐出される。吐出弁1
61はリテーナ形成プレート17上のリテーナ171に
当接して開度規制される。
As shown in FIG. 5, a suction chamber 131 serving as a suction pressure area and a discharge chamber 132 serving as a discharge pressure area are formed around the suction chamber 131 in the rear housing 13. A suction port 141 and a discharge port 142 are formed in the valve plate 14. A suction valve 151 is formed on the valve forming plate 15, and a discharge valve 161 is formed on the valve forming plate 16. The refrigerant in the suction chamber 131 pushes back the suction valve 151 from the suction port 141 by the reciprocating operation of the piston 28 and flows into the cylinder bore 111. The refrigerant flowing into the cylinder bore 111 is discharged from the discharge port 142 by the forward movement of the piston 28 to the discharge valve 1.
61 is displaced and discharged to the discharge chamber 132. Discharge valve 1
The opening 61 is restricted in contact with the retainer 171 on the retainer forming plate 17.

【0028】回転支持体19とフロントハウジング12
との間に介在されたスラストベアリング32は、シリン
ダボア111からピストン28、シュー29、斜板20
及びガイドピン23,24を介して回転支持体19に作
用する圧縮反力を受け止める。
Rotary support 19 and front housing 12
The thrust bearing 32 interposed between the piston bore 28, the shoe 29, and the swash plate 20 extends from the cylinder bore 111.
And receives the compression reaction force acting on the rotary support 19 via the guide pins 23 and 24.

【0029】回転軸18内の通路50は制御圧室121
と遮断体22の筒内とを連通している。図3に示すよう
に、遮断体22の周面に貫設された放圧通口221は遮
断体22の筒内と収容孔21とを連通している。
The passage 50 in the rotary shaft 18 has a control pressure chamber 121.
And the inside of the cylinder of the blocking body 22. As shown in FIG. 3, a pressure release port 221 penetrating through the peripheral surface of the blocking body 22 communicates the inside of the cylinder of the blocking body 22 with the housing hole 21.

【0030】吸入室131は通口143を介して収容孔
21に連通している。遮断体22が弁形成プレート15
に当接すると、通口143は吸入通路31から遮断され
る。吸入室131へ冷媒を導入する吸入通路31と吐出
室132とは外部冷媒回路33で接続されている。外部
冷媒回路33上には凝縮器34、膨張弁35及び蒸発器
36が介在されている。膨張弁35は蒸発器36の出口
側のガス温度の変動に応じて冷媒流量を制御する。
The suction chamber 131 communicates with the receiving hole 21 through the opening 143. The blocking body 22 is the valve forming plate 15
, The communication port 143 is shut off from the suction passage 31. The suction passage 31 for introducing the refrigerant into the suction chamber 131 and the discharge chamber 132 are connected by an external refrigerant circuit 33. On the external refrigerant circuit 33, a condenser 34, an expansion valve 35, and an evaporator 36 are interposed. The expansion valve 35 controls the flow rate of the refrigerant according to the change in the gas temperature at the outlet side of the evaporator 36.

【0031】吐出室132と制御圧室121とを接続す
る冷媒供給通路38上には図2に示す電気式容量制御弁
39が介在されている。冷媒供給通路38は吐出圧領域
である吐出室132の冷媒を制御圧室121へ供給する
通路である。容量制御弁39内の感圧手段47を構成す
るベローズ40には吸入室131内の圧力(吸入圧)が
作用している。吸入室131内の吸入圧は熱負荷を反映
している。ベローズ40には弁体41が接続されてお
り、弁体41は弁孔42を開閉する。ベローズ40内の
大気圧及び感圧手段47を構成する感圧ばね401のば
ね力は、弁孔42を開く方向へ弁体41に作用する。容
量制御弁39のソレノイド43を構成する固定鉄芯43
1は、コイル432への電流供給による励磁に基づいて
可動鉄芯433を引き付ける。即ち、ソレノイド43の
電磁駆動力は、開放付勢ばね48のばね力に抗して弁孔
42を閉じる方向へ弁体41を付勢する。追従ばね49
は可動鉄芯433を固定鉄芯431側へ付勢する。ソレ
ノイド43は制御コンピュータC1の電流供給制御を受
ける。
An electric capacity control valve 39 shown in FIG. 2 is interposed on the refrigerant supply passage 38 connecting the discharge chamber 132 and the control pressure chamber 121. The refrigerant supply passage 38 is a passage that supplies the refrigerant in the discharge chamber 132 that is a discharge pressure region to the control pressure chamber 121. The pressure (suction pressure) in the suction chamber 131 acts on the bellows 40 constituting the pressure sensing means 47 in the capacity control valve 39. The suction pressure in the suction chamber 131 reflects the heat load. A valve element 41 is connected to the bellows 40, and the valve element 41 opens and closes a valve hole 42. The atmospheric pressure in the bellows 40 and the spring force of the pressure-sensitive spring 401 constituting the pressure-sensitive means 47 act on the valve body 41 in a direction to open the valve hole 42. Fixed iron core 43 constituting solenoid 43 of displacement control valve 39
1 attracts the movable iron core 433 based on excitation by current supply to the coil 432. That is, the electromagnetic driving force of the solenoid 43 urges the valve body 41 in a direction to close the valve hole 42 against the spring force of the opening urging spring 48. Follower spring 49
Urges the movable iron core 433 toward the fixed iron core 431. The solenoid 43 is controlled by the control computer C1 to supply current.

【0032】制御コンピュータC1は、空調装置作動ス
イッチ44のONによってソレノイド43に電流を供給
し、空調装置作動スイッチ44のOFFによって電流供
給を停止する。制御コンピュータC1には室温設定器4
5及び室温検出器46が信号接続されている。制御コン
ピュータC1は、室温設定器45によって設定された目
標室温情報及び室温検出器46によって検出された検出
室温情報に基づいてソレノイド43に対する供給電流値
を制御する。弁孔42における開閉具合、即ち弁開度
は、ソレノイド43で生じる電磁駆動力、追従ばね49
のばね力、開放付勢ばね48のばね力、感圧手段47の
付勢力のバランスによって決まり、容量制御弁39は、
ソレノイド43に供給される電流値に応じた吸入圧をも
たらす制御を行なう。
The control computer C1 supplies current to the solenoid 43 when the air conditioner operation switch 44 is turned on, and stops supplying current when the air conditioner operation switch 44 is turned off. The control computer C1 has a room temperature setting device 4
5 and a room temperature detector 46 are connected in signal. The control computer C1 controls the supply current value to the solenoid 43 based on the target room temperature information set by the room temperature setting unit 45 and the detected room temperature information detected by the room temperature detector 46. The opening / closing state of the valve hole 42, that is, the valve opening is determined by the electromagnetic driving force generated by the solenoid 43,
, The spring force of the opening urging spring 48, and the balance of the urging force of the pressure sensing means 47.
Control is performed to generate a suction pressure corresponding to the current value supplied to the solenoid 43.

【0033】供給電流値が高められると弁開度が減少
し、吐出室132から制御圧室121への冷媒供給量が
減る。制御圧室121内の冷媒は、通路50、放圧通口
221及び通口143という冷媒抜き出し通路を介して
吸入室131へ流出しているため、制御圧室121内の
圧力が下がる。従って、斜板20の傾角が増大して吐出
容量が増える。吐出容量の増大は吸入圧の低下をもたら
す。供給電流値が下げられると弁開度が増大し、吐出室
132から制御圧室121への冷媒供給量が増える。従
って、制御圧室121内の圧力が上がり、斜板20の傾
角が減少して吐出容量が減る。吐出容量の減少は吸入圧
の増大をもたらす。
When the supply current value is increased, the valve opening decreases, and the amount of refrigerant supplied from the discharge chamber 132 to the control pressure chamber 121 decreases. Since the refrigerant in the control pressure chamber 121 flows out to the suction chamber 131 through the refrigerant extraction passage including the passage 50, the discharge port 221, and the communication port 143, the pressure in the control pressure chamber 121 decreases. Accordingly, the inclination angle of the swash plate 20 increases, and the discharge capacity increases. An increase in the discharge capacity causes a decrease in the suction pressure. When the supply current value is reduced, the valve opening increases, and the amount of refrigerant supplied from the discharge chamber 132 to the control pressure chamber 121 increases. Therefore, the pressure in the control pressure chamber 121 increases, the inclination angle of the swash plate 20 decreases, and the discharge capacity decreases. A decrease in the discharge capacity results in an increase in the suction pressure.

【0034】ソレノイド43に対する供給電流値が零に
なると弁開度が最大となり、図3に示すように斜板20
の傾角が最小となる。斜板20の傾角が最小になったと
きには遮断体22が吸入通路31を閉じ、外部冷媒回路
33における冷媒循環が停止する。この冷媒循環停止状
態は熱負荷低減作用の停止状態である。
When the value of the current supplied to the solenoid 43 becomes zero, the valve opening is maximized, and as shown in FIG.
Becomes the minimum. When the inclination angle of the swash plate 20 is minimized, the blocking body 22 closes the suction passage 31 and the refrigerant circulation in the external refrigerant circuit 33 stops. This refrigerant circulation stop state is a state in which the heat load reduction operation is stopped.

【0035】斜板20の最小傾角は0°よりも僅かに大
きくしてある。斜板20の最小傾角は0°ではないた
め、斜板傾角が最小の状態においてもシリンダボア11
1から吐出室132への吐出は行われている。シリンダ
ボア111から吐出室132へ吐出された冷媒は冷媒供
給通路38を通って制御圧室121へ流入する。制御圧
室121内の冷媒は、通路50、放圧通口221及び通
口143という冷媒抜き出し通路を通って吸入室131
へ流出し、吸入室131内の冷媒はシリンダボア111
内へ吸入されて吐出室132へ吐出される。即ち、斜板
傾角が最小状態では、吐出圧領域である吐出室132、
冷媒供給通路38、制御圧室121、前記冷媒抜き出し
通路、吸入圧領域である吸入室131、シリンダボア1
11を経由する循環通路が圧縮機内にできている。そし
て、吐出室132、制御圧室121及び吸入室131の
間では圧力差が生じている。従って、冷媒が前記循環通
路を循環し、冷媒と共に流動する潤滑油が圧縮機内を潤
滑する。
The minimum inclination angle of the swash plate 20 is slightly larger than 0 °. Since the minimum inclination angle of the swash plate 20 is not 0 °, even when the inclination angle of the swash plate is at a minimum, the cylinder bore 11 can be used.
Discharge from No. 1 to the discharge chamber 132 is performed. The refrigerant discharged from the cylinder bore 111 into the discharge chamber 132 flows into the control pressure chamber 121 through the refrigerant supply passage 38. The refrigerant in the control pressure chamber 121 passes through the passage 50, the pressure release port 221, and the refrigerant extraction path of the port 143, and passes through the suction chamber 131.
To the cylinder bore 111
It is sucked into the inside and discharged to the discharge chamber 132. That is, when the inclination angle of the swash plate is in the minimum state, the discharge chamber 132 which is the discharge pressure region,
Refrigerant supply passage 38, control pressure chamber 121, the refrigerant discharge passage, suction chamber 131 which is a suction pressure region, cylinder bore 1
A circulation passage via 11 is formed in the compressor. A pressure difference occurs between the discharge chamber 132, the control pressure chamber 121, and the suction chamber 131. Therefore, the refrigerant circulates through the circulation passage, and the lubricating oil flowing with the refrigerant lubricates the inside of the compressor.

【0036】ソレノイド43に対する電流供給を再開す
ると弁開度が小さくなり、制御圧室121内の圧力が下
がる。従って、斜板20の傾角が最小傾角から増大して
ゆく。斜板20の傾角が最小傾角から増大すると遮断体
22が弁形成プレート15から離間し、冷媒が吸入通路
31から吸入室131へ流入する。即ち、外部冷媒回路
33における冷媒循環が再開される。
When the current supply to the solenoid 43 is restarted, the valve opening becomes small, and the pressure in the control pressure chamber 121 decreases. Therefore, the inclination angle of the swash plate 20 increases from the minimum inclination angle. When the inclination angle of the swash plate 20 increases from the minimum inclination angle, the blocking body 22 separates from the valve forming plate 15, and the refrigerant flows from the suction passage 31 into the suction chamber 131. That is, the circulation of the refrigerant in the external refrigerant circuit 33 is restarted.

【0037】制御コンピュータC1は、空調装置作動ス
イッチ44のONに伴う容量制御弁39に対する電流供
給の開始の際には緩衝用電流供給開始制御を行なう。
又、制御コンピュータC1は、空調装置作動スイッチ4
4のOFFに伴う容量制御弁39に対する電流供給の停
止の際には緩衝用電流供給停止制御を行なう。
The control computer C1 performs a buffer current supply start control when the current supply to the capacity control valve 39 is started when the air conditioner operation switch 44 is turned on.
The control computer C1 is provided with an air conditioner operation switch 4
When the supply of current to the capacity control valve 39 is stopped when the switch 4 is turned off, a current supply stop control for buffering is performed.

【0038】電流供給開始指令手段となる空調装置作動
スイッチ44をON操作すると、図6に示すように、電
流供給開始指令信号S1が制御コンピュータC1に出力
される。緩衝用電流供給開始制御手段となる制御コンピ
ュータC1は、電流供給開始指令信号S1の入力に応答
して室温設定器45によって設定された目標室温と、室
温検出器46によって検出された検出温度との比較に基
づいて容量制御弁39に対する指定供給電流値Ixを割
り出す。供給電流値指定手段となる制御コンピュータC
1は、図6の曲線Eのうちの上り傾斜部E1で示すよう
に供給電流値を零から指定供給電流値Ixまで徐々に増
大させる緩衝用電流供給開始制御を行なう。緩衝用電流
供給開始制御が行われると、容量制御弁39の弁開度が
徐々に減少してゆき、制御圧室121内の圧力が徐々に
低下してゆく。制御圧室121内の緩慢な圧力低下に伴
い、斜板20の傾角が図6の曲線Kのうちの上り傾斜部
K1で示すように最小傾角から徐々に増大してゆき、吐
出容量が徐々に増大してゆく。斜板20の傾角が最小傾
角から増大すると、外部冷媒回路33における冷媒循環
が行われ、吸入圧が低下してゆく。図6の曲線Pのうち
の平坦部P1は空調装置作動スイッチ44のON前の吸
入圧を表し、曲線Pのうちの下り傾斜部P2は斜板20
の最小傾角からの緩慢な傾角増大に伴う吸入圧変動を表
す。
When the air conditioner operation switch 44 serving as current supply start command means is turned on, a current supply start command signal S1 is output to the control computer C1, as shown in FIG. The control computer C1 serving as the buffer current supply start control means calculates the target room temperature set by the room temperature setter 45 in response to the input of the current supply start command signal S1 and the detected temperature detected by the room temperature detector 46. The designated supply current value Ix for the capacity control valve 39 is determined based on the comparison. Control computer C as supply current value designating means
1 performs buffering current supply start control for gradually increasing the supply current value from zero to the specified supply current value Ix as indicated by the upward slope portion E1 of the curve E in FIG. When the buffer current supply start control is performed, the valve opening of the capacity control valve 39 gradually decreases, and the pressure in the control pressure chamber 121 gradually decreases. With the slow pressure decrease in the control pressure chamber 121, the inclination angle of the swash plate 20 gradually increases from the minimum inclination angle as shown by the upward inclination portion K1 of the curve K in FIG. It increases. When the inclination angle of the swash plate 20 increases from the minimum inclination angle, the refrigerant circulates in the external refrigerant circuit 33, and the suction pressure decreases. The flat part P1 of the curve P in FIG. 6 represents the suction pressure before the air conditioner operation switch 44 is turned on, and the downward slope P2 of the curve P is the swash plate 20.
Represents the fluctuation of the suction pressure due to the gradual increase in the inclination from the minimum inclination.

【0039】供給電流値が指定供給電流値Ixになる
と、斜板20が指定供給電流値Ixに対応する傾角位置
へ移行すると共に、吸入圧が指定供給電流値Ixに対応
する吸入圧へ収束する。図6の曲線Pのうちの平坦部P
3は指定供給電流値Ixに対応する吸入圧を表す。
When the supply current value reaches the designated supply current value Ix, the swash plate 20 moves to the tilt position corresponding to the designated supply current value Ix, and the suction pressure converges to the suction pressure corresponding to the designated supply current value Ix. . Flat portion P of curve P in FIG.
Reference numeral 3 denotes a suction pressure corresponding to the specified supply current value Ix.

【0040】電流供給停止指令手段となる空調装置作動
スイッチ44をOFF操作すると、図6に示すように、
電流供給停止指令信号S2が制御コンピュータC1に出
力される。緩衝用電流供給停止制御手段となる制御コン
ピュータC1は、電流供給停止指令信号S2の入力に応
答して図6の曲線Eのうちの下り傾斜部E2で示すよう
に供給電流値を電流供給停止指令信号S2の入力時の供
給電流値Iyから供給電流値零まで徐々に減少させる緩
衝用電流供給停止制御を行なう。緩衝用電流供給停止制
御が行われると、容量制御弁39の弁開度が徐々に増大
してゆき、制御圧室121内の圧力が徐々に高くなって
ゆく。制御圧室121内の緩慢な圧力上昇に伴い、斜板
20の傾角が図6の曲線Kのうちの下り傾斜部K2で示
すように電流供給停止指令信号S2の入力時の傾角から
徐々に減少してゆき、吐出容量が徐々に減少してゆく。
斜板20の傾角が電流供給停止指令信号S2の入力時の
傾角から減少すると吐出容量が減ってゆき、吸入圧が上
昇してゆく。図6の曲線Pのうちの平坦部P4は空調装
置作動スイッチ44のOFF前の吸入圧を表し、曲線P
のうちの上り傾斜部P5は斜板20の電流供給停止指令
信号S2の入力時の傾角からの緩慢な傾角減少に伴う吸
入圧変動を表す。
When the air conditioner operation switch 44 serving as the current supply stop command means is turned off, as shown in FIG.
The current supply stop command signal S2 is output to the control computer C1. In response to the input of the current supply stop command signal S2, the control computer C1 serving as the buffer current supply stop control means changes the supply current value to the current supply stop command as shown by the downward slope portion E2 of the curve E in FIG. Buffer current supply stop control is performed to gradually reduce the supply current value Iy when the signal S2 is input to the supply current value of zero. When the buffer current supply stop control is performed, the valve opening of the capacity control valve 39 gradually increases, and the pressure in the control pressure chamber 121 gradually increases. As the pressure in the control pressure chamber 121 slowly rises, the inclination angle of the swash plate 20 gradually decreases from the inclination angle at the time of input of the current supply stop command signal S2 as shown by the downward slope K2 of the curve K in FIG. The discharge capacity gradually decreases.
When the inclination angle of the swash plate 20 decreases from the inclination angle at the time of input of the current supply stop command signal S2, the discharge capacity decreases, and the suction pressure increases. A flat portion P4 of the curve P in FIG. 6 represents the suction pressure before the air conditioner operation switch 44 is turned off.
The upward slope portion P5 represents the suction pressure fluctuation due to a gradual decrease in the tilt angle from the tilt angle at the time of input of the current supply stop command signal S2 of the swash plate 20.

【0041】供給電流値が零になると、斜板20が最小
傾角位置へ移行すると共に、外部冷媒回路33における
冷媒循環が停止する。図6の曲線Pのうちの平坦部P6
は外部冷媒回路33における冷媒循環停止後の吸入圧を
表す。
When the supply current value becomes zero, the swash plate 20 moves to the minimum inclination position, and the circulation of the refrigerant in the external refrigerant circuit 33 is stopped. Flat portion P6 of curve P in FIG.
Represents the suction pressure after the refrigerant circulation in the external refrigerant circuit 33 is stopped.

【0042】以上のような容量可変動作を行なう第1の
実施の形態では以下の効果が得られる。 (1-1)空調装置作動スイッチ44のON操作によって
電気式容量制御弁39に対する電流供給が開始されると
きには、供給電流値零から指定された指定供給電流値ま
で供給電流値を徐々に増大する緩衝用電流供給開始制御
が行なわれる。緩慢な供給電流値の増大は斜板20の傾
角の急激な増大を抑制する。斜板20の傾角の急激な増
大は、斜板20の最大傾角を規定する回転支持体19と
斜板20との衝突をもたらし、衝突音が発生する。供給
電流値の緩慢な増大具合は、斜板20の傾角の増大が供
給電流値の増大に対応して追随するように設定されてい
る。このような斜板20の傾角の急激な増大の抑制は、
指定供給電流値に対応した傾角位置からの斜板20のオ
ーバーランを抑制する。指定供給電流値が最大傾角に対
応する場合には、斜板20の最大傾角位置での傾角増大
速度が抑制される。その結果、衝突音をもたらすような
回転支持体19と斜板20との衝突が回避される。
The first embodiment in which the above-described variable capacitance operation is performed has the following effects. (1-1) When current supply to the electric capacity control valve 39 is started by turning on the air conditioner operation switch 44, the supply current value is gradually increased from a supply current value of zero to a designated designated supply current value. The buffer current supply start control is performed. The slow increase in the supply current value suppresses a sharp increase in the inclination angle of the swash plate 20. The sharp increase in the inclination angle of the swash plate 20 causes a collision between the rotary support 19 that defines the maximum inclination angle of the swash plate 20 and the swash plate 20, and a collision sound is generated. The gradual increase in the supply current value is set so that the increase in the inclination angle of the swash plate 20 follows the increase in the supply current value. The suppression of such a rapid increase in the inclination angle of the swash plate 20 is as follows.
The overrun of the swash plate 20 from the tilt position corresponding to the specified supply current value is suppressed. When the specified supply current value corresponds to the maximum inclination, the inclination increasing speed at the maximum inclination position of the swash plate 20 is suppressed. As a result, a collision between the rotary support 19 and the swash plate 20 that causes a collision sound is avoided.

【0043】(1-2)空調装置作動スイッチ44のOF
F操作によって電気式容量制御弁39に対する電流供給
が停止されるときには、空調装置作動スイッチ44のO
FF直前の指定供給電流値から供給電流値零まで供給電
流値を徐々に減少する緩衝用電流供給停止制御が行なわ
れる。緩慢な供給電流値の減少は斜板20の傾角の急激
な減少を抑制する。斜板20の傾角の急激な減少は、斜
板20の最小傾角を規定する弁形成プレート15と斜板
20に連動する遮断体22との衝突をもたらし、衝突音
が発生する。供給電流値の緩慢な減少具合は、斜板20
の傾角の減少が供給電流値の減少に対応して追随するよ
うに設定されている。このような斜板20の傾角の急激
な減少の抑制は、斜板20の最小傾角位置での傾角減少
速度を抑制する。斜板20の最小傾角位置での傾角減少
速度の抑制は、衝突音をもたらすような弁形成プレート
15と遮断体22との衝突の回避をもたらす。
(1-2) OF of air conditioner operation switch 44
When the current supply to the electric capacity control valve 39 is stopped by the F operation, the O
Buffer current supply stop control is performed to gradually reduce the supply current value from the specified supply current value immediately before the FF to the supply current value of zero. The slow decrease in the supply current value suppresses a sharp decrease in the inclination angle of the swash plate 20. The sharp decrease in the inclination angle of the swash plate 20 causes a collision between the valve forming plate 15 that defines the minimum inclination angle of the swash plate 20 and the blocking body 22 interlocked with the swash plate 20, and a collision sound is generated. The gradual decrease of the supply current value is determined by the swash plate 20.
Is set so that the decrease in the inclination angle follows the decrease in the supply current value. Such suppression of the rapid decrease in the inclination angle of the swash plate 20 suppresses the inclination decreasing speed at the minimum inclination position of the swash plate 20. Suppression of the inclination decreasing speed at the minimum inclination position of the swash plate 20 avoids collision between the valve forming plate 15 and the blocking body 22 that causes collision sound.

【0044】次に、図7及び図8の第2の実施の形態を
説明する。第1の実施の形態と同じ構成部には同じ符号
が付してある。この実施の形態では、吸入室131内の
吸入圧が圧力検出器51によって検出されるようになっ
ており、制御圧室121内の制御圧が圧力検出器52に
よって検出されるようになっている。両圧力検出器5
1,52は検出情報を制御コンピュータC2へ送る。制
御コンピュータC2には(吸入圧−供給電流値)マップ
及び(制御圧−供給電流値)マップが記憶されている。
制御コンピュータC2は、空調装置作動スイッチ44の
ONに伴う容量制御弁39に対する電流供給の開始の際
には(吸入圧−供給電流値)マップ及び圧力検出器51
から得られる圧力検出情報を利用した緩衝用電流供給開
始制御を行なう。又、制御コンピュータC2は、空調装
置作動スイッチ44のOFFに伴う容量制御弁39に対
する電流供給の停止の際には(制御圧−供給電流値)マ
ップ及び圧力検出器52から得られる圧力検出情報を利
用した緩衝用電流供給停止制御を行なう。
Next, a second embodiment shown in FIGS. 7 and 8 will be described. The same components as those in the first embodiment are denoted by the same reference numerals. In this embodiment, the suction pressure in the suction chamber 131 is detected by the pressure detector 51, and the control pressure in the control pressure chamber 121 is detected by the pressure detector 52. . Double pressure detector 5
1, 52 send the detection information to the control computer C2. The control computer C2 stores a (suction pressure-supply current value) map and a (control pressure-supply current value) map.
The control computer C2 uses the (suction pressure-supply current value) map and the pressure detector 51 when starting the current supply to the capacity control valve 39 when the air conditioner operation switch 44 is turned on.
Control for starting the supply of current for buffering using the pressure detection information obtained from. When the current supply to the capacity control valve 39 is stopped when the air conditioner operation switch 44 is turned off, the control computer C2 reads the (control pressure-supply current value) map and the pressure detection information obtained from the pressure detector 52. The used buffer current supply stop control is performed.

【0045】電流供給開始指令手段となる空調装置作動
スイッチ44をON操作すると、図8に示すように、電
流供給開始指令信号S1が制御コンピュータC2に出力
される。緩衝用電流供給開始制御手段となる制御コンピ
ュータC2は、電流供給開始指令信号S1の入力に応答
して室温設定器45によって設定された目標室温と、室
温検出器46によって検出された検出温度との比較に基
づいて容量制御弁39に対する指定供給電流値Ixを割
り出す。又、供給電流値指定手段となる制御コンピュー
タC2は、指定供給電流値Ix、圧力検出器51から得
られる検出圧力、及び(吸入圧−供給電流値)マップに
基づいて増大飛躍限界供給電流値Izを割り出す。(吸
入圧−供給電流値)マップは、吸入圧及び供給電流値を
変数として増大飛躍限界供給電流値Izを求めるマップ
である。
When the air conditioner operation switch 44 serving as the current supply start command means is turned on, a current supply start command signal S1 is output to the control computer C2 as shown in FIG. The control computer C2, which serves as a buffer current supply start control unit, calculates the target room temperature set by the room temperature setter 45 in response to the input of the current supply start command signal S1 and the detected temperature detected by the room temperature detector 46. The designated supply current value Ix for the capacity control valve 39 is determined based on the comparison. The control computer C2 serving as the supply current value designating means uses the designated supply current value Ix, the detected pressure obtained from the pressure detector 51, and the increased jump limit supply current value Iz based on the (suction pressure-supply current value) map. Find out. The (suction pressure-supply current value) map is a map for obtaining the increase jump limit supply current value Iz using the suction pressure and the supply current value as variables.

【0046】制御コンピュータC2は、図8の曲線Dの
うちの垂直線D1で示すように供給電流値を零から増大
飛躍限界供給電流値Izへ不連続的に切り換え、次いで
上り傾斜部D2で示すように供給電流値を増大飛躍限界
供給電流値Izから指定供給電流値Ixまで徐々に増大
させる緩衝用電流供給開始制御を行なう。緩衝用電流供
給開始制御が行われると、容量制御弁39の弁開度が増
大飛躍限界供給電流値Izに対応した弁開度まで瞬間的
に変化してから徐々に減少してゆき、制御圧室121内
の圧力が増大飛躍限界供給電流値Izからの供給電流値
の緩慢な増大に追随するような状態で徐々に低下してゆ
く。制御圧室121内の緩慢な圧力低下に伴い、斜板2
0の傾角が図8の曲線Hのうちの上り傾斜部H1で示す
ように最小傾角から徐々に増大してゆき、吐出容量が徐
々に増大してゆく。斜板20の緩慢な傾角増大は、増大
飛躍限界供給電流値Izからの供給電流値の緩慢な減少
に追随するような状態で行われる。斜板20の傾角が最
小傾角から増大すると、外部冷媒回路33における冷媒
循環が行われ、吸入圧が低下してゆく。図8の曲線Qの
うちの平坦部Q1は空調装置作動スイッチ44のON前
の吸入圧を表し、曲線Qのうちの下り傾斜部Q2は斜板
20の最小傾角からの緩慢な傾角増大に伴う吸入圧変動
を表す。
The control computer C2 discontinuously switches the supply current value from zero to the increasing jump limit supply current value Iz as indicated by the vertical line D1 of the curve D in FIG. 8, and then indicates the rising slope D2. As described above, the buffer current supply start control for gradually increasing the supply current value from the increase jump limit supply current value Iz to the designated supply current value Ix is performed. When the buffer current supply start control is performed, the valve opening degree of the capacity control valve 39 instantaneously changes to the valve opening degree corresponding to the increase leaping limit supply current value Iz, and then gradually decreases. The pressure in the chamber 121 gradually decreases in a state where it follows the slow increase of the supply current value from the increase jump limit supply current value Iz. With the slow pressure drop in the control pressure chamber 121, the swash plate 2
The inclination angle of 0 gradually increases from the minimum inclination angle as indicated by the upward inclination portion H1 of the curve H in FIG. 8, and the discharge capacity gradually increases. The slow inclination of the swash plate 20 is performed in such a manner as to follow a slow decrease in the supply current value from the increase jump limit supply current value Iz. When the inclination angle of the swash plate 20 increases from the minimum inclination angle, the refrigerant circulates in the external refrigerant circuit 33, and the suction pressure decreases. The flat portion Q1 of the curve Q in FIG. 8 represents the suction pressure before the air conditioner operation switch 44 is turned on, and the downward slope Q2 of the curve Q is accompanied by a gradual increase in the inclination of the swash plate 20 from the minimum inclination. Indicates suction pressure fluctuation.

【0047】供給電流値が指定供給電流値Ixになる
と、斜板20が指定供給電流値Ixに対応する傾角位置
へ移行すると共に、吸入圧が指定供給電流値Ixに対応
する吸入圧へ収束する。図8の曲線Qのうちの平坦部Q
3は指定供給電流値Ixに対応する吸入圧を表す。
When the supply current value reaches the designated supply current value Ix, the swash plate 20 moves to the tilt position corresponding to the designated supply current value Ix, and the suction pressure converges to the suction pressure corresponding to the designated supply current value Ix. . Flat portion Q of curve Q in FIG.
Reference numeral 3 denotes a suction pressure corresponding to the specified supply current value Ix.

【0048】空調装置作動スイッチ44をOFF操作す
ると、図8に示すように、電流供給停止指令信号S2が
制御コンピュータC2に出力される。緩衝用電流供給停
止制御手段となる制御コンピュータC2は、電流供給停
止指令信号S2の入力に応答して、空調装置作動スイッ
チ44のOFF時の指定供給電流値、圧力検出器52か
ら得られる検出制御圧、及び(制御圧−供給電流値)マ
ップに基づいて減少飛躍限界供給電流値Iwを割り出
す。(制御圧−供給電流値)マップは、制御圧及び供給
電流値を変数として減少飛躍限界供給電流値Iwを求め
るマップである。制御コンピュータC2は、図8の曲線
Dのうちの垂直線D3で示すように供給電流値を空調装
置作動スイッチ44のOFF直前の指定供給電流値Iy
から減少飛躍限界供給電流値Iwへ不連続的に切り換
え、次いで下り傾斜部D4で示すように供給電流値を減
少飛躍限界供給電流値Iwから零まで徐々に減少させる
緩衝用電流供給停止制御を行なう。緩衝用電流供給停止
制御が行われると、容量制御弁39の弁開度が減少飛躍
限界供給電流値Iwに対応した弁開度まで瞬間的に変化
してから徐々に増大してゆき、制御圧室121内の圧力
が減少飛躍限界供給電流値Iwからの供給電流値の緩慢
な減少に追随するような状態で徐々に上昇してゆく。制
御圧室121内の緩慢な圧力上昇に伴い、斜板20の傾
角が図8の曲線Hのうちの下り傾斜部H2で示すように
電流供給停止指令信号S2の入力時の傾角から徐々に減
少してゆく。斜板20の傾角が電流供給停止指令信号S
2の入力時の傾角から減少すると吐出容量が減ってゆ
き、吸入圧が上昇してゆく。図8の曲線Qのうちの平坦
部Q4は空調装置作動スイッチ44のOFF前の吸入圧
を表し、曲線Qのうちの上り傾斜部Q5は斜板20の電
流供給停止指令信号S2の入力時の傾角からの緩慢な傾
角減少に伴う吸入圧変動を表す。
When the air conditioner operation switch 44 is turned off, a current supply stop command signal S2 is output to the control computer C2 as shown in FIG. In response to the input of the current supply stop command signal S2, the control computer C2 serving as the buffering current supply stop control means responds to the input of the current supply stop command signal S2, the designated supply current value when the air conditioner operation switch 44 is turned off, and the detection control obtained from the pressure detector 52 Based on the pressure and the (control pressure-supply current value) map, a decrease leap limit supply current value Iw is determined. The (control pressure-supply current value) map is a map for obtaining the decrease jump limit supply current value Iw using the control pressure and the supply current value as variables. The control computer C2 changes the supply current value to the designated supply current value Iy immediately before the air conditioner operation switch 44 is turned off, as indicated by the vertical line D3 of the curve D in FIG.
, The control is discontinuously switched to the reduced jump limit supply current value Iw, and then the buffer current supply stop control is performed to gradually reduce the supply current value from the reduced jump limit supply current value Iw to zero as indicated by the downward slope D4. . When the buffer current supply stop control is performed, the valve opening of the capacity control valve 39 instantaneously changes to the valve opening corresponding to the decrease jump limit supply current value Iw, and then gradually increases. The pressure in the chamber 121 gradually increases in such a state as to follow a gradual decrease in the supply current value from the decrease jump limit supply current value Iw. As the pressure in the control pressure chamber 121 slowly rises, the inclination angle of the swash plate 20 gradually decreases from the inclination angle at the time of input of the current supply stop command signal S2 as shown by the downward slope H2 of the curve H in FIG. I will do it. The inclination angle of the swash plate 20 is determined by the current supply stop command signal S.
When the inclination angle is decreased from the input angle of 2, the discharge capacity decreases, and the suction pressure increases. A flat portion Q4 of the curve Q in FIG. 8 represents the suction pressure before the air conditioner operation switch 44 is turned off, and an upwardly sloping portion Q5 of the curve Q when the current supply stop command signal S2 of the swash plate 20 is input. It shows the suction pressure fluctuation accompanying the gradual decrease of the inclination from the inclination.

【0049】供給電流値が零になると、斜板20が最小
傾角位置へ移行すると共に、外部冷媒回路33における
冷媒循環が停止する。図8の曲線Qのうちの平坦部Q6
は外部冷媒回路33における冷媒循環停止後の吸入圧を
表す。
When the supply current value becomes zero, the swash plate 20 moves to the minimum inclination position, and the circulation of the refrigerant in the external refrigerant circuit 33 is stopped. Flat portion Q6 of curve Q in FIG.
Represents the suction pressure after the refrigerant circulation in the external refrigerant circuit 33 is stopped.

【0050】第2の実施の形態では以下の効果が得られ
る。 (2-1)空調装置作動スイッチ44のON操作によって
電気式容量制御弁39に対する電流供給が開始されると
きには、圧力検出器51と共に増大飛躍限界供給電流値
指定手段を構成する制御コンピュータC2が検出吸入圧
に応じた増大飛躍限界供給電流値を指定する。そして、
制御コンピュータC2は、供給電流値を零から増大飛躍
限界供給電流値Izまで不連続的に増大し、次いで増大
飛躍限界供給電流値Izから指定された指定供給電流値
まで供給電流値を徐々に増大する緩衝用電流供給開始制
御を行なう。増大飛躍限界供給電流値Izは、斜板20
と回転支持体19との衝突をもたらさないような供給電
流値の零からの不連続的な増大量の限界値であって吸入
圧に左右される。即ち、供給電流値を零から検出吸入圧
に対応した増大飛躍限界供給電流値Izよりも高い値に
不連続的に増大させた場合には斜板20が回転支持体1
9に衝突して衝突音が発生する。供給電流値を零から増
大飛躍限界供給電流値Izへ不連続的に増大させた場合
には、斜板20の最小傾角からの傾角増大が衝突音をも
たらすことなく速やかに行われ、容量復帰が速やかに行
われる。
The following effects can be obtained in the second embodiment. (2-1) When the current supply to the electric capacity control valve 39 is started by turning on the air conditioner operation switch 44, the control computer C2 constituting the increase jump limit supply current value specifying means together with the pressure detector 51 detects the current. Specify the increase jump limit supply current value according to the suction pressure. And
The control computer C2 increases the supply current value discontinuously from zero to the increase jump limit supply current value Iz, and then gradually increases the supply current value from the increase jump limit supply current value Iz to the designated supply current value. Control for starting the supply of the buffer current. The increased jump limit supply current value Iz is determined by the swash plate 20.
Limit value of the amount of discontinuous increase of the supply current value from zero so as not to cause collision with the rotating support 19 and depends on the suction pressure. That is, when the supply current value is discontinuously increased from zero to a value higher than the increase jump limit supply current value Iz corresponding to the detected suction pressure, the swash plate 20 is rotated by the rotating support 1.
Collision 9 generates a collision sound. When the supply current value is discontinuously increased from zero to the increase jump limit supply current value Iz, the inclination of the swash plate 20 from the minimum inclination is quickly increased without causing a collision sound, and the capacity is restored. It is done promptly.

【0051】(2-2)空調装置作動スイッチ44のOF
F操作によって電気式容量制御弁39に対する電流供給
が停止されるときには、圧力検出器52と共に減少飛躍
限界供給電流値指定手段を構成する制御コンピュータC
2が検出制御圧に応じた減少飛躍限界供給電流値を指定
する。そして、制御コンピュータC2は、空調装置作動
スイッチ44のOFF直前の指定供給電流値から減少飛
躍限界供給電流値Iwまで供給電流値を不連続的に減少
し、次いで減少飛躍限界供給電流値Iwから供給電流値
零まで供給電流値を徐々に減少する緩衝用電流供給停止
制御を行なう。減少飛躍限界供給電流値Iwは、遮断体
22と弁形成プレート15との衝突をもたらさないよう
な指定供給電流値Iyからの不連続的な減少量の限界値
であって検出制御圧に左右される。即ち、供給電流値を
指定供給電流値Iyから検出制御圧に対応した減少飛躍
限界供給電流値Iwよりも低い値に不連続的に減少させ
た場合には遮断体22が弁形成プレート15に衝突して
衝突音が発生する。供給電流値を指定供給電流値Iyか
ら減少飛躍限界供給電流値Iwへ不連続的に減少させた
場合には、斜板20の最小傾角位置への移行が衝突音を
もたらすことなく速やかに行われる。
(2-2) OF of air conditioner operation switch 44
When the current supply to the electric capacity control valve 39 is stopped by the F operation, the control computer C which constitutes the decrease jump limit supply current value designating means together with the pressure detector 52.
Numeral 2 designates a decrease jump limit supply current value corresponding to the detection control pressure. Then, the control computer C2 discontinuously reduces the supply current value from the specified supply current value immediately before the air conditioner operation switch 44 is turned off to the decrease jump limit supply current value Iw, and then supplies the supply current value from the decrease jump limit supply current value Iw. Buffer current supply stop control is performed to gradually reduce the supply current value to a current value of zero. The decrease jump limit supply current value Iw is a limit value of a discontinuous decrease amount from the designated supply current value Iy so as not to cause a collision between the interrupter 22 and the valve forming plate 15, and depends on the detection control pressure. You. That is, when the supply current value is discontinuously reduced from the designated supply current value Iy to a value lower than the decrease jump limit supply current value Iw corresponding to the detected control pressure, the shutoff 22 collides with the valve forming plate 15. A collision sound is generated. When the supply current value is discontinuously decreased from the specified supply current value Iy to the leaping limit supply current value Iw, the transition of the swash plate 20 to the minimum inclination position is performed promptly without causing a collision sound. .

【0052】次に、図9及び図10の第3の実施の形態
を説明する。第1の実施の形態と同じ構成部には同じ符
号が付してある。この実施の形態では、電気式容量制御
弁53のソレノイド531が励磁されると弁体532が
弁孔533を閉じ、斜板20が最大傾角位置に移行す
る。ソレノイド531が消磁されると弁体532が弁開
度最大位置へ移行し、斜板20が最小傾角位置へ移行す
る。電流供給開始指令手段及び電流供給停止指令手段と
なる空調装置作動スイッチ44がONされると、制御コ
ンピュータC3はソレノイド531を励磁する。ソレノ
イド531が励磁しているときに空調装置作動スイッチ
44がOFFされると、制御コンピュータC3はソレノ
イド531を消磁する。空調装置作動スイッチ44がO
N状態において、制御コンピュータC3は、室温検出器
46によって得られた検出温度が室温設定器45によっ
て設定された目標室温以下になるとソレノイド531の
消磁を指令する。制御コンピュータC3は、検出温度が
目標室温を越えるとソレノイド531の励磁を指令す
る。室温検出器46及び制御コンピュータC3は、電流
供給開始指令手段及び電流供給停止指令手段を構成す
る。
Next, a third embodiment shown in FIGS. 9 and 10 will be described. The same components as those in the first embodiment are denoted by the same reference numerals. In this embodiment, when the solenoid 531 of the electric capacity control valve 53 is excited, the valve body 532 closes the valve hole 533, and the swash plate 20 shifts to the maximum tilt position. When the solenoid 531 is demagnetized, the valve body 532 moves to the maximum valve opening position, and the swash plate 20 moves to the minimum inclination position. When the air conditioner operation switch 44 serving as the current supply start command means and the current supply stop command means is turned on, the control computer C3 excites the solenoid 531. When the air conditioner operation switch 44 is turned off while the solenoid 531 is energized, the control computer C3 demagnetizes the solenoid 531. Air conditioner operation switch 44 is O
In the N state, when the detected temperature obtained by the room temperature detector 46 falls below the target room temperature set by the room temperature setting unit 45, the control computer C3 commands the solenoid 531 to demagnetize. When the detected temperature exceeds the target room temperature, the control computer C3 commands the solenoid 531 to be excited. The room temperature detector 46 and the control computer C3 constitute current supply start command means and current supply stop command means.

【0053】ソレノイド531を励磁するときには、制
御コンピュータC3は図10の曲線Fの上り傾斜部F1
で示す緩衝用電流供給開始制御を行なう。供給電流値の
最大値は指定供給電流値となる。信号S3は、空調装置
作動スイッチ44のON操作時あるいは検出温度が目標
室温を越えたときの電流供給開始指令を表す。曲線Gの
上り傾斜部G1は供給電流値の増大に伴う斜板20の傾
角増大を表し、曲線Rの下り傾斜部R1は斜板20の傾
角増大に伴う吸入圧の低下を表す。
When the solenoid 531 is to be excited, the control computer C3 sets the upward slope F1 of the curve F in FIG.
The buffer current supply start control shown in FIG. The maximum value of the supply current value is the specified supply current value. The signal S3 indicates a current supply start command when the air conditioner operation switch 44 is turned on or when the detected temperature exceeds the target room temperature. The upward slope G1 of the curve G represents an increase in the inclination angle of the swash plate 20 with an increase in the supply current value, and the downward slope R1 of the curve R represents a decrease in the suction pressure with an increase in the inclination angle of the swash plate 20.

【0054】ソレノイド531を消磁するときには、制
御コンピュータC3は図10の曲線Fの下り傾斜部F2
で示す緩衝用電流供給停止制御を行なう。信号S4は、
空調装置作動スイッチ44のOFF操作時あるいは検出
温度が目標室温以下になったときの電流供給停止指令を
表す。曲線Gの下り傾斜部G2は供給電流値の減少に伴
う斜板20の傾角減少を表し、曲線Rの上り傾斜部R2
は斜板20の傾角減少に伴う吸入圧の上昇を表す。
When the solenoid 531 is to be demagnetized, the control computer C3 executes the downward slope F2 of the curve F in FIG.
The control for stopping the supply of current for buffering is performed. The signal S4 is
This indicates a current supply stop command when the air conditioner operation switch 44 is turned off or when the detected temperature falls below the target room temperature. A downward slope G2 of the curve G represents a decrease in the inclination of the swash plate 20 with a decrease in the supply current value, and an upward slope R2 of the curve R.
Represents an increase in suction pressure as the inclination angle of the swash plate 20 decreases.

【0055】この実施の形態においても、斜板20の最
大傾角位置における斜板20の傾角増大速度が抑制さ
れ、斜板20と回転支持体19との衝突が抑制される。
又、斜板20の最小傾角位置における斜板20の傾角減
少速度が抑制され、遮断体22と弁形成プレート15と
の衝突が抑制される。
Also in this embodiment, the inclination increasing speed of the swash plate 20 at the maximum inclination position of the swash plate 20 is suppressed, and the collision between the swash plate 20 and the rotary support 19 is suppressed.
Further, the inclination decreasing speed of the swash plate 20 at the minimum inclination position of the swash plate 20 is suppressed, and the collision between the blocking body 22 and the valve forming plate 15 is suppressed.

【0056】本発明では以下のような実施の形態も可能
である。 (1)第1の実施の形態において、電流供給開始時に
は、斜板20の最大傾角位置における傾角増大速度を抑
制するように供給電流値を零から最大値あるいは最大値
付近まで連続的に増大した後に指定供給電流値まで連続
的に減少させること。このようにすれば容量復帰が早く
なる。 (2)制御圧室から吸入圧領域へ冷媒を抜き出す通路上
に容量制御弁を介在した可変容量型圧縮機に本発明を適
用すること。 (3)供給電流値をデューティ比制御すること。この場
合、単位時間当たりの平均供給電流値を供給電流値と見
なす。 (4)外部駆動源からクラッチを介して回転軸に駆動力
を伝えるクラッチ付き可変容量型圧縮機に本発明を適用
すること。
In the present invention, the following embodiments are also possible. (1) In the first embodiment, at the start of the current supply, the supply current value is continuously increased from zero to the maximum value or near the maximum value so as to suppress the inclination increasing speed at the maximum inclination position of the swash plate 20. Afterwards, it should be continuously reduced to the specified supply current value. By doing so, the capacity recovery is quickened. (2) The present invention is applied to a variable displacement compressor in which a displacement control valve is interposed on a passage for extracting refrigerant from a control pressure chamber to a suction pressure region. (3) Duty ratio control of the supply current value. In this case, the average supply current value per unit time is regarded as the supply current value. (4) The present invention is applied to a variable displacement compressor with a clutch that transmits a driving force from an external drive source to a rotating shaft via a clutch.

【0057】[0057]

【発明の効果】以上詳述したように、電気式容量制御弁
に対する電流供給を開始するときには、指定された供給
電流値を供給開始するまでの過程として前記斜板の最大
傾角位置での傾角増大速度を抑制するための緩衝用電流
供給開始制御を行なうようにした発明では、斜板の最大
傾角位置への不要な到達を回避して衝突音の発生を回避
し、さらに斜板が最大傾角位置にきたときの衝突音を抑
制し得るという優れた効果を奏する。
As described in detail above, when the current supply to the electric capacity control valve is started, the inclination of the swash plate at the maximum inclination position is increased until the supply of the specified supply current value is started. In the invention in which the buffer current supply start control for suppressing the speed is performed, unnecessary arrival of the swash plate at the maximum tilt position is avoided to avoid collision noise, and furthermore, the swash plate is moved to the maximum tilt position. An excellent effect of being able to suppress the collision sound when the vehicle comes to the vehicle.

【0058】電気式容量制御弁に対する電流供給を停止
するときには、供給電流値を零とするまでの過程として
前記斜板の最小傾角位置での傾角減少速度を抑制するた
めの緩衝用電流供給停止制御を行なうようにした発明で
は、斜板が最小傾角位置にきたときの衝突音を抑制し得
るという優れた効果を奏する。
When the current supply to the electric displacement control valve is stopped, a buffer current supply stop control for suppressing the inclination decreasing speed at the minimum inclination position of the swash plate as a process until the supply current value becomes zero. The present invention has an excellent effect that the collision sound when the swash plate comes to the minimum tilt position can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態を示す圧縮機全体の側断面
図。
FIG. 1 is a side sectional view of an entire compressor according to a first embodiment.

【図2】電気式容量制御弁39の縦断面図。FIG. 2 is a longitudinal sectional view of the electric capacity control valve 39.

【図3】斜板傾角が最小状態にある要部側断面図。FIG. 3 is a sectional side view of a main part in which a swash plate tilt angle is in a minimum state.

【図4】図1のA−A線断面図。FIG. 4 is a sectional view taken along line AA of FIG. 1;

【図5】図1のB−B線断面図。FIG. 5 is a sectional view taken along line BB of FIG. 1;

【図6】供給電流値、斜板傾角、吸入圧の関係を示すグ
ラフ。
FIG. 6 is a graph showing a relationship between a supply current value, a swash plate inclination angle, and a suction pressure.

【図7】第2の実施の形態を示す圧縮機全体の側断面
図。
FIG. 7 is a side sectional view of the entire compressor showing a second embodiment.

【図8】供給電流値、斜板傾角、吸入圧の関係を示すグ
ラフ。
FIG. 8 is a graph showing a relationship between a supply current value, a swash plate inclination angle, and a suction pressure.

【図9】第3の実施の形態を示す圧縮機全体の側断面
図。
FIG. 9 is a side sectional view of the entire compressor showing a third embodiment.

【図10】供給電流値、斜板傾角、吸入圧の関係を示す
グラフ。
FIG. 10 is a graph showing a relationship between a supply current value, a swash plate inclination angle, and a suction pressure.

【符号の説明】[Explanation of symbols]

121…制御圧室、131…吸入圧領域となる吸入室、
132…吐出圧領域となる吐出室、18…回転軸、20
…斜板、38…冷媒供給通路、39…電気式容量制御
弁、44…電流供給開始指令手段及び電流供給停止指令
手段となる空調装置作動スイッチ、C1…緩衝用電流供
給開始制御手段、緩衝用電流供給停止制御手段及び供給
電流値指定手段となる制御コンピュータ、C2…緩衝用
電流供給開始制御手段、緩衝用電流供給停止制御手段、
供給電流値指定手段、増大飛躍限界供給電流値指定手
段、及び減少飛躍限界供給電流値指定手段となる制御コ
ンピュータ、C3…緩衝用電流供給開始制御手段及び緩
衝用電流供給停止制御手段となる制御コンピュータ。
121: a control pressure chamber; 131: a suction chamber serving as a suction pressure area;
132: discharge chamber serving as a discharge pressure region, 18: rotating shaft, 20
... swash plate, 38 ... refrigerant supply passage, 39 ... electric capacity control valve, 44 ... air conditioner operation switch serving as current supply start command means and current supply stop command means, C1 buffer current supply start control means, buffer A control computer serving as current supply stop control means and supply current value designating means; C2... Buffer current supply start control means; buffer current supply stop control means;
Control computer serving as supply current value designating means, increase jump limit supply current value designating means, and decrease jump limit supply current value designating means; C3 ... control computer serving as buffer current supply start control means and buffer current supply stop control means .

フロントページの続き Fターム(参考) 3H045 AA04 AA10 AA12 AA27 BA38 CA02 CA21 CA24 DA25 DA42 DA50 EA13 EA16 EA26 EA33 3H076 AA06 BB01 CC12 CC39 CC84Continued on the front page F term (reference) 3H045 AA04 AA10 AA12 AA27 BA38 CA02 CA21 CA24 DA25 DA42 DA50 EA13 EA16 EA26 EA33 3H076 AA06 BB01 CC12 CC39 CC84

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】回転軸と一体的に回転するように、かつ前
記回転軸に対して傾角可変に制御圧室に収容された斜
板、及び前記斜板の傾角に応じた往復動作を行なうピス
トンを備え、吐出圧領域から前記制御圧室へ冷媒を供給
すると共に、前記制御圧室から吸入圧領域へ冷媒を抜き
出し、前記吐出圧領域から前記制御圧室に至る冷媒供給
通路上又は前記制御圧室から前記吸入圧領域に至る冷媒
抜き出し通路上に電気式容量制御弁を介在し、前記電気
式容量制御弁に対する供給電流値を制御して前記吐出圧
領域から前記制御圧室への冷媒供給量又は前記制御圧室
から前記吸入圧領域への冷媒抜き出し量を制御し、前記
制御圧室内の圧力の制御に基づいて前記斜板の傾角を制
御する可変容量型圧縮機において、 前記電気式容量制御弁に対する電流供給を開始するとき
には、指定された供給電流値を供給開始するまでの過程
として前記斜板の最大傾角位置での傾角増大速度を抑制
するための緩衝用電流供給開始制御を行なう可変容量型
圧縮機における容量制御方法。
1. A swash plate accommodated in a control pressure chamber so as to rotate integrally with a rotation shaft and variably inclined with respect to the rotation shaft, and a piston performing reciprocating operation according to the inclination of the swash plate. And supplying the refrigerant from the discharge pressure area to the control pressure chamber, extracting the refrigerant from the control pressure chamber to the suction pressure area, and on the refrigerant supply passage from the discharge pressure area to the control pressure chamber or the control pressure. An electric capacity control valve is interposed on a refrigerant discharge passage from the chamber to the suction pressure area, and a supply current value to the electric capacity control valve is controlled to supply the refrigerant from the discharge pressure area to the control pressure chamber. Alternatively, in the variable displacement compressor, which controls a refrigerant withdrawal amount from the control pressure chamber to the suction pressure region and controls a tilt angle of the swash plate based on control of a pressure in the control pressure chamber, Current supply to valve When starting the supply of the specified supply current value, in the variable displacement compressor that performs a buffer current supply start control for suppressing the inclination increasing speed at the maximum inclination position of the swash plate as a process until the supply of the specified supply current value is started. Capacity control method.
【請求項2】前記緩衝用電流供給開始制御は、供給電流
値零から指定された指定供給電流値まで供給電流値を増
大し、かつ前記緩衝用電流供給開始制御は、供給電流値
零から前記指定供給電流値までの範囲の少なくとも一部
で徐々に供給電流値を増大する電流増大供給状態を含む
請求項1に記載の可変容量型圧縮機における容量制御方
法。
2. The buffer current supply start control increases a supply current value from a supply current value of zero to a designated supply current value, and the buffer current supply start control includes a step of changing the supply current value from zero to the specified supply current value. 2. The capacity control method according to claim 1, further comprising a current increase supply state in which the supply current value is gradually increased in at least a part of the range up to the specified supply current value.
【請求項3】前記緩衝用電流供給開始制御は、供給電流
値零から前記指定供給電流値に達しない増大飛躍限界供
給電流値へ供給電流値を不連続的に切り換える供給電流
値切り換え状態と、前記増大飛躍限界供給電流値から前
記指定供給電流値まで供給電流値を徐々に増大する電流
増大供給状態とを含む請求項2に記載の可変容量型圧縮
機における容量制御方法。
3. The buffer current supply start control includes: a supply current value switching state in which the supply current value is discontinuously switched from a supply current value of zero to an increase jump limit supply current value that does not reach the designated supply current value; 3. The capacity control method according to claim 2, further comprising a current increase supply state in which the supply current value is gradually increased from the increase jump limit supply current value to the designated supply current value.
【請求項4】回転軸と一体的に回転するように、かつ前
記回転軸に対して傾角可変に制御圧室に収容された斜
板、及び前記斜板の傾角に応じた往復動作を行なうピス
トンを備え、吐出圧領域から前記制御圧室へ冷媒を供給
すると共に、前記制御圧室から吸入圧領域へ冷媒を抜き
出し、前記吐出圧領域から前記制御圧室に至る冷媒供給
通路上又は前記制御圧室から前記吸入圧領域に至る冷媒
抜き出し通路上に電気式容量制御弁を介在し、前記電気
式容量制御弁に対する供給電流値を制御して前記吐出圧
領域から前記制御圧室への冷媒供給量又は前記制御圧室
から前記吸入圧領域への冷媒抜き出し量を制御し、前記
制御圧室内の圧力の制御に基づいて前記斜板の傾角を制
御する可変容量型圧縮機において、 前記電気式容量制御弁に対する電流供給を停止するとき
には、供給電流値を零とするまでの過程として前記斜板
の最小傾角位置での傾角減少速度を抑制するための緩衝
用電流供給停止制御を行なう可変容量型圧縮機における
容量制御方法。
4. A swash plate accommodated in a control pressure chamber so as to rotate integrally with a rotation shaft and variably inclined with respect to the rotation shaft, and a piston performing reciprocating operation according to the inclination angle of the swash plate. And supplying the refrigerant from the discharge pressure area to the control pressure chamber, extracting the refrigerant from the control pressure chamber to the suction pressure area, and on the refrigerant supply passage from the discharge pressure area to the control pressure chamber or the control pressure. An electric capacity control valve is interposed on a refrigerant discharge passage from the chamber to the suction pressure area, and a supply current value to the electric capacity control valve is controlled to supply the refrigerant from the discharge pressure area to the control pressure chamber. Alternatively, in the variable displacement compressor, which controls a refrigerant withdrawal amount from the control pressure chamber to the suction pressure region and controls a tilt angle of the swash plate based on control of a pressure in the control pressure chamber, Current supply to valve When stopping the supply, the capacity control method in the variable displacement compressor that performs the buffer current supply stop control for suppressing the inclination decreasing speed at the minimum inclination position of the swash plate as a process until the supply current value becomes zero. .
【請求項5】前記緩衝用電流供給停止制御は、指定され
た指定供給電流値から供給電流値零まで供給電流値を減
少し、かつ前記緩衝用電流供給停止制御は、前記指定供
給電流値から供給電流値零までの範囲の少なくとも一部
で徐々に供給電流値を減少する電流減少供給状態を含む
請求項4に記載の可変容量型圧縮機における容量制御方
法。
5. The buffer current supply stop control decreases a supply current value from a designated supply current value to a supply current value of zero, and the buffer current supply stop control includes a step of reducing the supply current value from the designated supply current value. 5. The capacity control method for a variable displacement compressor according to claim 4, including a current decreasing supply state in which the supply current value is gradually reduced in at least a part of the range up to the supply current value of zero.
【請求項6】前記緩衝用電流供給停止制御は、前記指定
供給電流値から前記指定供給電流値に達しない減少飛躍
限界供給電流値へ供給電流値を不連続的に切り換える供
給電流値切り換え状態と、前記減少飛躍限界供給電流値
から供給電流値零まで供給電流値を徐々に減少する電流
減少供給状態とを含む請求項5に記載の可変容量型圧縮
機における容量制御方法。
6. The buffer current supply stop control includes a supply current value switching state in which the supply current value is discontinuously switched from the specified supply current value to a reduced jump limit supply current value that does not reach the specified supply current value. 6. The capacity control method for a variable displacement compressor according to claim 5, further comprising: a current decreasing supply state in which a supply current value is gradually reduced from the decrease jump limit supply current value to a supply current value of zero.
【請求項7】回転軸と一体的に回転するように、かつ前
記回転軸に対して傾角可変に制御圧室に収容された斜
板、及び前記斜板の傾角に応じた往復動作を行なうピス
トンを備え、吐出圧領域から前記制御圧室へ冷媒を供給
すると共に、前記制御圧室から吸入圧領域へ冷媒を抜き
出し、前記吐出圧領域から前記制御圧室に至る冷媒供給
通路上又は前記制御圧室から前記吸入圧領域に至る冷媒
抜き出し通路上に電気式容量制御弁を介在し、前記電気
式容量制御弁に対する供給電流値を制御して前記吐出圧
領域から前記制御圧室への冷媒供給量又は前記制御圧室
から前記吸入圧領域への冷媒抜き出し量を制御し、前記
制御圧室内の圧力の制御に基づいて前記斜板の傾角を制
御する可変容量型圧縮機において、 前記電気式容量制御弁に対する電流供給の開始を指令す
る電流供給開始指令手段と、 前記斜板の最大傾角位置での傾角増大速度を抑制するた
めの緩衝用電流供給開始制御を行なう緩衝用電流供給開
始制御手段とを備え、 前記緩衝用電流供給開始制御手段は、前記電流供給開始
指令手段の電流供給開始指令に基づいて前記緩衝用電流
供給開始制御を行なう可変容量型圧縮機における容量制
御装置。
7. A swash plate accommodated in a control pressure chamber so as to rotate integrally with a rotation shaft and variably inclined with respect to the rotation shaft, and a piston performing reciprocating operation according to the inclination angle of the swash plate. And supplying the refrigerant from the discharge pressure area to the control pressure chamber, extracting the refrigerant from the control pressure chamber to the suction pressure area, and on the refrigerant supply passage from the discharge pressure area to the control pressure chamber or the control pressure. An electric capacity control valve is interposed on a refrigerant discharge passage from the chamber to the suction pressure area, and a supply current value to the electric capacity control valve is controlled to supply the refrigerant from the discharge pressure area to the control pressure chamber. Alternatively, in the variable displacement compressor, which controls a refrigerant withdrawal amount from the control pressure chamber to the suction pressure region and controls a tilt angle of the swash plate based on control of a pressure in the control pressure chamber, Current supply to valve Current supply start command means for instructing the start of the swash plate, and buffer current supply start control means for performing a buffer current supply start control for suppressing a tilt increasing speed at a maximum tilt position of the swash plate; The capacity current supply start control means is a capacity control device for a variable displacement compressor that performs the buffer current supply start control based on a current supply start command of the current supply start command means.
【請求項8】供給電流値を指定する供給電流値指定手段
を備え、前記緩衝用電流供給開始制御手段は、前記供給
電流値指定手段によって指定された指定供給電流値まで
供給電流値零から供給電流値を増大し、かつ供給電流値
零から前記指定供給電流値までの範囲の少なくとも一部
で徐々に供給電流値を増大する電流供給開始制御を行な
う請求項7に記載の可変容量型圧縮機における容量制御
装置。
8. A supply current value designating means for designating a supply current value, wherein said buffering current supply start control means supplies from a supply current value of zero to a designated supply current value designated by said supply current value designation means. 8. The variable displacement compressor according to claim 7, wherein a current supply start control for increasing a current value and gradually increasing a supply current value in at least a part of a range from a supply current value of zero to the designated supply current value is performed. In the capacity control device.
【請求項9】前記指定供給電流値に達しない増大飛躍限
界供給電流値を指定する増大飛躍限界供給電流値指定手
段を備え、前記緩衝用電流供給開始制御手段は、供給電
流値零から前記増大飛躍限界供給電流値指定手段によっ
て指定された増大飛躍限界供給電流値へ供給電流値を不
連続的に切り換え、前記増大飛躍限界供給電流値から前
記指定供給電流値まで供給電流値を徐々に増大する電流
供給開始制御を行なう請求項8に記載の可変容量型圧縮
機における容量制御装置。
9. An increase jump limit supply current value designating means for designating an increase jump limit supply current value that does not reach the designated supply current value, wherein the buffer current supply start control means includes a step of increasing the supply current value from zero. The supply current value is discontinuously switched to the increase jump limit supply current value designated by the jump limit supply current value designation means, and the supply current value is gradually increased from the increase jump limit supply current value to the designated supply current value. 9. The displacement control device for a variable displacement compressor according to claim 8, wherein the current supply start control is performed.
【請求項10】回転軸と一体的に回転するように、かつ
前記回転軸に対して傾角可変に制御圧室に収容された斜
板、及び前記斜板の傾角に応じた往復動作を行なうピス
トンを備え、吐出圧領域から前記制御圧室へ冷媒を供給
すると共に、前記制御圧室から吸入圧領域へ冷媒を抜き
出し、前記吐出圧領域から前記制御圧室に至る冷媒供給
通路上又は前記制御圧室から前記吸入圧領域に至る冷媒
抜き出し通路上に電気式容量制御弁を介在し、前記電気
式容量制御弁に対する供給電流値を制御して前記吐出圧
領域から前記制御圧室への冷媒供給量又は前記制御圧室
から前記吸入圧領域への冷媒抜き出し量を制御し、前記
制御圧室内の圧力の制御に基づいて前記斜板の傾角を制
御する可変容量型圧縮機において、 前記電気式容量制御弁に対する電流供給の停止を指令す
る電流供給停止指令手段と、 前記斜板の最小傾角位置での傾角減少速度を抑制するた
めの緩衝用電流供給停止制御を行なう緩衝用電流供給停
止制御手段とを備え、 前記緩衝用電流供給停止制御手段は、前記電流供給停止
指令手段の電流供給停止指令に基づいて前記緩衝用電流
供給停止制御を行なう可変容量型圧縮機における容量制
御装置。
10. A swash plate housed in a control pressure chamber so as to rotate integrally with a rotation shaft and variably inclined with respect to the rotation shaft, and a piston performing reciprocating operation according to the inclination angle of the swash plate. And supplying the refrigerant from the discharge pressure area to the control pressure chamber, extracting the refrigerant from the control pressure chamber to the suction pressure area, and on the refrigerant supply passage from the discharge pressure area to the control pressure chamber or the control pressure. An electric capacity control valve is interposed on a refrigerant discharge passage from the chamber to the suction pressure area, and a supply current value to the electric capacity control valve is controlled to supply the refrigerant from the discharge pressure area to the control pressure chamber. Alternatively, in the variable displacement compressor, which controls a refrigerant withdrawal amount from the control pressure chamber to the suction pressure region and controls a tilt angle of the swash plate based on control of a pressure in the control pressure chamber, Current supply to valve Current supply stop command means for instructing the stop of the supply, and buffer current supply stop control means for performing buffer current supply stop control for suppressing the inclination decreasing speed at the minimum inclination position of the swash plate, The buffer current supply stop control means is a displacement control device for a variable displacement compressor that performs the buffer current supply stop control based on a current supply stop command of the current supply stop command means.
【請求項11】供給電流値を指定する供給電流値指定手
段を備え、前記緩衝用電流供給停止制御手段は、前記供
給電流値指定手段によって指定された指定供給電流値か
ら供給電流値零まで供給電流値を減少し、かつ前記指定
供給電流値から供給電流値零までの範囲の少なくとも一
部で供給電流値を徐々に減少する電流供給停止制御を行
なう請求項10に記載の可変容量型圧縮機における容量
制御装置。
11. A supply current value designating means for designating a supply current value, wherein said buffering current supply stop control means supplies from a designated supply current value designated by said supply current value designation means to a supply current value of zero. 11. The variable displacement compressor according to claim 10, wherein current supply stop control is performed to reduce a current value and gradually decrease a supply current value in at least a part of a range from the designated supply current value to a supply current value of zero. In the capacity control device.
【請求項12】減少飛躍限界供給電流値を指定する減少
飛躍限界供給電流値指定手段を備え、前記緩衝用電流供
給停止制御手段は、前記指定供給電流値から前記減少飛
躍限界供給電流値指定手段によって指定された減少飛躍
限界供給電流値へ供給電流値を不連続的に切り換え、前
記減少飛躍限界供給電流値から供給電流値零まで供給電
流値を徐々に減少する電流供給停止制御を行なう請求項
11に記載の可変容量型圧縮機における容量制御装置。
12. A system according to claim 11, further comprising a decreasing jump limit supply current value designating means for designating a decreasing jump limit supply current value, wherein said buffer current supply stop control means determines said decreasing jump limit supply current value from said designated supply current value. A current supply stop control for discontinuously switching a supply current value to a decrease jump limit supply current value specified by the above, and gradually decreasing the supply current value from the decrease jump limit supply current value to a supply current value of zero. 12. A displacement control device for a variable displacement compressor according to claim 11.
JP02378099A 1999-02-01 1999-02-01 Capacity control method and apparatus for variable capacity compressor Expired - Fee Related JP4089063B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP02378099A JP4089063B2 (en) 1999-02-01 1999-02-01 Capacity control method and apparatus for variable capacity compressor
EP00101853A EP1026397A3 (en) 1999-02-01 2000-01-31 Control valve in variable displacement compressor
US09/494,692 US6224348B1 (en) 1999-02-01 2000-01-31 Device and method for controlling displacement of variable displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02378099A JP4089063B2 (en) 1999-02-01 1999-02-01 Capacity control method and apparatus for variable capacity compressor

Publications (2)

Publication Number Publication Date
JP2000220577A true JP2000220577A (en) 2000-08-08
JP4089063B2 JP4089063B2 (en) 2008-05-21

Family

ID=12119854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02378099A Expired - Fee Related JP4089063B2 (en) 1999-02-01 1999-02-01 Capacity control method and apparatus for variable capacity compressor

Country Status (1)

Country Link
JP (1) JP4089063B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751971B2 (en) 2001-10-22 2004-06-22 Kabushiki Kaisha Toyota Jidoshokki Variable displacement type compressor, air conditioner with the variable displacement type compressor, and method for controlling displacement in the variable displacement type compressor
US6945061B2 (en) 2002-05-14 2005-09-20 Denso Corporation Control unit for variable displacement compressors
CN111005851A (en) * 2019-12-25 2020-04-14 潍柴动力股份有限公司 Displacement feedback variable mechanism of hydraulic plunger pump and hydraulic plunger pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751971B2 (en) 2001-10-22 2004-06-22 Kabushiki Kaisha Toyota Jidoshokki Variable displacement type compressor, air conditioner with the variable displacement type compressor, and method for controlling displacement in the variable displacement type compressor
US6945061B2 (en) 2002-05-14 2005-09-20 Denso Corporation Control unit for variable displacement compressors
CN111005851A (en) * 2019-12-25 2020-04-14 潍柴动力股份有限公司 Displacement feedback variable mechanism of hydraulic plunger pump and hydraulic plunger pump
CN111005851B (en) * 2019-12-25 2021-07-20 潍柴动力股份有限公司 Displacement feedback variable mechanism of hydraulic plunger pump and hydraulic plunger pump

Also Published As

Publication number Publication date
JP4089063B2 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
JP3728387B2 (en) Control valve
JP3585150B2 (en) Control valve for variable displacement compressor
EP1101639B1 (en) Air conditioning apparatus
JP3731434B2 (en) Control valve for variable capacity compressor
JP2007247512A (en) Capacity control valve in variable capacity type compressor
US6257836B1 (en) Displacement control valve for variable displacement compressor
JP2000265949A (en) Variable capacity compressor
JP2005307817A (en) Capacity controller for variable displacement compressor
JPH09280171A (en) Variable displacement compressor, and controlling method for it
JP2002147350A (en) Control device of variable displacement type compressor
US6425254B1 (en) Control device for variable displacement compressor
JP3741022B2 (en) Air conditioner for vehicles
EP1078792B1 (en) Displacement control method and apparatus for variable displacement compressor
JP2001140756A (en) Control device for variable displacement type compressor
JP2000220577A (en) Displacement control method and device for variable displacement compressor
JP4000767B2 (en) Control device for variable capacity compressor
WO2000047896A1 (en) Crank pressure control mechanism of variable displacement compressor
US6358016B1 (en) Displacement control device and displacement control method for variable displacement compressor
JP2000199478A (en) Variable capacity compressor
JP2006017087A (en) Electromagnetic control valve and variable displacement compressor equipped with the same
JP4647471B2 (en) Variable capacity swash plate compressor and air conditioning cooling circuit
JP3582229B2 (en) Variable displacement compressor and control method thereof
JP2004353451A (en) Capacity control device for variable capacity compressor
JP2011027115A (en) Variable displacement swash plate type compressor and cooling circuit for air conditioning
JP2000265948A (en) Variable capacity compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees