JP2000220480A - Miller cycle engine - Google Patents

Miller cycle engine

Info

Publication number
JP2000220480A
JP2000220480A JP11019999A JP1999999A JP2000220480A JP 2000220480 A JP2000220480 A JP 2000220480A JP 11019999 A JP11019999 A JP 11019999A JP 1999999 A JP1999999 A JP 1999999A JP 2000220480 A JP2000220480 A JP 2000220480A
Authority
JP
Japan
Prior art keywords
air supply
flow path
supercharger
air
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11019999A
Other languages
Japanese (ja)
Other versions
JP2996971B1 (en
Inventor
Hiroshi Fujimoto
洋 藤本
Takao Fujiwaka
貴生 藤若
Shojiro Matsumura
章二朗 松村
Masahiro Tsurusaki
将弘 鶴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP11019999A priority Critical patent/JP2996971B1/en
Application granted granted Critical
Publication of JP2996971B1 publication Critical patent/JP2996971B1/en
Publication of JP2000220480A publication Critical patent/JP2000220480A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/07Mixed pressure loops, i.e. wherein recirculated exhaust gas is either taken out upstream of the turbine and reintroduced upstream of the compressor, or is taken out downstream of the turbine and reintroduced downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/32Miller cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To improve the combustion efficiency, and improve the fuel consumption, in a Miller cycle engine which reduces the compression ratio smaller than the expansion ratio, by closing a air feeding valve earler than the bottom dead center, or latter than the bottom dead center, as well as feeds a fuel and a combustion oxide including gas into a cylinder. SOLUTION: This engine is provided with an air feed system passage and an exhaust system passage, and with an air feed supercharging cooling means A to compress and cool the feeding air. The air feed supercharging cooling means A is composed by furnishing a inlet supercharger 6 and a post supercharger 5 by connecting them in series by making the inlet supercharger 6 at the upstream side of the post supercharger 5 in the air feed system passage, and at the same time, by furnishing coolers 7 and 8 to cool the compressed air, at an air feed system intermediate passage between the inlet supercharger 6 and the post supercharger 5 of the air feed system passage, and at an air feed system downstream side passage between the post supercharger 5 and a cylinder, respectively. In this case, an EGR means B to recirculate a part of the exhaust gas of the passage at the upstream side of the post supercharger 5 of the exhaust system passage to the air feed system intermediate passage is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料と燃焼用酸素
含有ガスとをシリンダ内に給気するとともに、給気弁を
下死点よりも早く若しくは遅く閉じて圧縮比を膨張比よ
りも小さくするミラーサイクルエンジンの給気冷却技術
に関する。
The present invention relates to a method of supplying fuel and oxygen-containing gas for combustion into a cylinder and closing a supply valve earlier or later than a bottom dead center so that a compression ratio is smaller than an expansion ratio. The present invention relates to a technology for cooling air supply to a Miller cycle engine.

【0002】[0002]

【従来の技術】火花点火式エンジンの理論熱効率ηは、
圧縮比をε、比熱比をκとしたとき、
2. Description of the Related Art The theoretical thermal efficiency η of a spark ignition type engine is
When the compression ratio is ε and the specific heat ratio is κ,

【数1】 であるので、効率を上げるためには、圧縮比εを高く設
定する必要があるが、圧縮比を高く設定すると、給気の
過早発火によるノッキングを生じる恐れがあり、単純に
圧縮比を高くすることはできない。この問題を解決する
ための手段として、排気再循環(EGR)ミラーサイク
ル方式が公知となっている。ミラーサイクルは、エンジ
ンの圧縮比を膨張比よりも小さく維持することにより、
ノッキングの発生を回避しつつ、高い燃焼効率を実現す
るために有効である大きな膨張比を実現しており、燃焼
ガスを十分に膨張させて、燃焼エネルギーをより効果的
にトルクとして活用できる。また、排気再循環(EG
R)方式は、エンジンから排出された排気の一部を給気
系へ還流し、給気の酸素濃度を下げることによって、給
気の着火性を下げ、ノッキングを回避しつつ圧縮比を高
く設定することが可能であり、この結果、燃費向上を実
現できる。従って、ミラーサイクルに排気再循環(EG
R)方式を組み合わせて採用することにより、ノッキン
グを抑えつつ高水準の燃費を実現することができる。
(Equation 1) Therefore, in order to increase the efficiency, it is necessary to set the compression ratio ε high.However, if the compression ratio is set high, knocking due to pre-ignition of the air supply may occur, and the compression ratio is simply increased. I can't. As a means for solving this problem, an exhaust gas recirculation (EGR) Miller cycle system has been known. The Miller cycle keeps the compression ratio of the engine lower than the expansion ratio,
A large expansion ratio that is effective for realizing high combustion efficiency is realized while avoiding the occurrence of knocking, and the combustion gas can be sufficiently expanded so that combustion energy can be more effectively utilized as torque. Also, exhaust gas recirculation (EG
In the R) system, a part of the exhaust gas discharged from the engine is recirculated to the air supply system and the oxygen concentration of the air supply is reduced, thereby lowering the ignitability of the air supply and setting a high compression ratio while avoiding knocking. It is possible to improve fuel efficiency. Therefore, the exhaust gas recirculation (EG
By adopting a combination of the R) methods, a high level of fuel efficiency can be realized while suppressing knocking.

【0003】[0003]

【発明が解決しようとする課題】このEGRミラーサイ
クルエンジンにおいて、燃焼効率を一層高めるために
は、上記の理論熱効率の式からも明らかなように、エン
ジンの膨張比をさらに大きくする必要がある。このため
には、ピストンのストローク量を大きくして膨張終了時
のシリンダ内容積を大きくする方法と、ストローク量を
変えずに圧縮終了時のシリンダ内容積を小さくする方法
がある。しかし、前者の方法においては、シリンダ容積
を大きくする必要があるので、単位出力あたりのエンジ
ンの大きさが大きくなりコストが高くなるので、後者の
方法を採用することが多い。しかし、この場合は、比較
的小さなシリンダ内容積に高密度の給気を供給する必要
があるので、過給機によって給気を高い圧縮比で加圧す
る必要があり、高い圧縮比で過給機を用いると、過給機
の効率が低下し、逆にエンジンの燃費が低下するという
問題があった。特に、排気圧力が小さいガスエンジンに
おいて、EGRを行うにあたり、効率よく給気系に排気
を還流するためには、図3に示すように、エンジンから
排出されて加圧状態の排気の一部を過給機50のタービ
ン50bを通さずに、タービン50bの上流側の流路1
40からEGR流路115を介して、給気系において低
圧状態である過給機上流側の流路120へ還流するか、
又は、タービン50bの下流側に絞りを設けて、その手
前から流路120へ還流するかの方法を取らざるを得な
い。しかし、これらの方法では、一旦圧縮したガスを燃
焼後に再び過給機の上流側の流路120に返すこととな
り、無駄な過給機仕事を行わすこととなり、間接的に効
率を低下させる要因となっていた。さらには、給気系に
還流される排気に含まれる水蒸気による燃焼効率の低下
や、給気の昇温による過給機の体積効率の低下を防ぐた
めに、EGR流路115に冷却器116を設け、給気系
へ還流する排気を冷却して水蒸気を取り除く構造となっ
ており、複雑な構造となっていた。よって、本発明は、
このような事情を鑑みて、さらに燃焼効率を向上させ、
燃費の改善を実現できるEGRミラーサイクルエンジン
を提供することにある。
In this EGR mirror cycle engine, in order to further increase the combustion efficiency, it is necessary to further increase the expansion ratio of the engine, as is apparent from the above-mentioned equation of theoretical thermal efficiency. For this purpose, there are a method of increasing the stroke amount of the piston to increase the cylinder internal volume at the end of expansion, and a method of reducing the cylinder internal volume at the end of compression without changing the stroke amount. However, in the former method, since the cylinder volume needs to be increased, the size of the engine per unit output increases and the cost increases, so the latter method is often adopted. However, in this case, it is necessary to supply a high-density air supply to a relatively small cylinder volume. However, there is a problem that the efficiency of the turbocharger is reduced and the fuel efficiency of the engine is reduced. In particular, in a gas engine having a small exhaust pressure, in order to efficiently recirculate exhaust gas to the air supply system when performing EGR, as shown in FIG. The flow path 1 on the upstream side of the turbine 50b without passing through the turbine 50b of the turbocharger 50
40, through the EGR flow path 115, to return to the flow path 120 on the upstream side of the supercharger which is in a low pressure state in the air supply system,
Alternatively, a method is required in which a throttle is provided on the downstream side of the turbine 50b, and the flow is returned to the flow path 120 from just before the throttle. However, in these methods, the gas once compressed is returned to the flow path 120 on the upstream side of the turbocharger again after combustion, and wasteful turbocharger work is performed, which indirectly reduces efficiency. Had become. Further, a cooler 116 is provided in the EGR flow passage 115 in order to prevent a decrease in combustion efficiency due to water vapor contained in exhaust gas recirculated to the air supply system and a decrease in volumetric efficiency of the supercharger due to an increase in temperature of the air supply. However, the structure is such that the exhaust gas flowing back to the air supply system is cooled to remove water vapor, and the structure is complicated. Therefore, the present invention
In view of such circumstances, further improving the combustion efficiency,
An object of the present invention is to provide an EGR mirror cycle engine capable of improving fuel efficiency.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の本発明における、燃料と燃焼用酸素含有ガスとをシリ
ンダ内に給気するとともに、給気弁を下死点よりも早く
若しくは遅く閉じて圧縮比を膨張比よりも小さくするミ
ラーサイクルエンジンの特徴は、請求項1に記載されて
いるように、給気をシリンダに供給する給気系流路と排
気を外部へ排出する排気系流路を備え、給気を圧縮して
冷却する給気過給冷却手段を備え、前記給気過給冷却手
段は、前記排気系流路内を流通する排気のエネルギーを
利用して前記給気系流路に流通する給気を圧縮する前段
過給機と後段過給機を、前記給気系流路において前記前
段過給機を前記後段過給機の上流側として直列に接続し
て備えるとともに、前記圧縮された給気を冷却する冷却
器を、給気系流路の前記前段過給機と前記後段過給機の
間の給気系中間流路と前記後段過給機と前記シリンダの
間の給気系下流側流路にそれぞれ備えて構成され、前記
排気系流路の前記後段過給機の上流側の流路の排気の一
部を前記給気系中間流路へ還流するEGR手段を備えた
ことにある。ミラーサイクルエンジンにおいて、さらに
燃費の改善を実現するために圧縮比を高く設定すると、
給気の過早発火によるノッキングを発生しやすくなる。
ノッキングの発生を抑制するためには、給気系流路へ排
気の一部を還流して給気の酸素濃度を低下させ、給気の
過早発火を抑制するEGR方式が考えられる。このEG
R方式を効率よく行うために、本発明に係るミラーサイ
クルエンジンは、前記給気過給冷却手段と前記EGR手
段を備えている。即ち、前記EGR手段によって、排気
の一部は前段過給機の下流側の給気系中間流路へ還流す
る。給気系中間流路内の給気は前段過給機によってある
程度圧縮されており、よって、排気のエネルギーが過給
機の上流側へ逃げてしまうことがなく、排気を給気系流
路へ還流しても、給気の圧縮効率を維持することができ
るのである。また、給気系中間流路へ還流した排気は必
ず冷却器を介してシリンダに給気される構成となってお
り、EGR流路に還流される排気のみを冷却する冷却器
を備える必要はない。更に、この構成によると、2つの
過給機を備え、それぞれの過給機の下流側に冷却器をそ
れぞれ備えているので、それぞれの過給機の圧縮比を小
さく設定して効率よく給気を圧縮できるので、過給機の
圧縮効率を高く維持することができ、シリンダに給気さ
れる給気を一層圧縮し、エンジンの燃費を向上すること
ができる。尚、給気系下流側流路の冷却器は、シリンダ
の圧縮効率を向上するものとして備えているが、後段過
給機から排出された給気がある程度低温である場合は、
冷却器を備えること無く、給気系下流側流路と給気の熱
交換で給気を空冷することができる。
According to the present invention for achieving the above object, fuel and oxygen-containing gas for combustion are supplied into a cylinder and a supply valve is closed earlier or later than a bottom dead center. A feature of the Miller cycle engine in which the compression ratio is made smaller than the expansion ratio is that, as described in claim 1, an air supply system flow path for supplying air to a cylinder and an exhaust system flow for discharging exhaust gas to the outside. And a charge-supercharging cooling means for compressing and cooling the supply air, wherein the supply-air supercooling means uses the energy of exhaust flowing through the exhaust system flow path to supply air. A front-stage supercharger and a rear-stage supercharger for compressing the supply air flowing through the flow passage, the front-end supercharger being connected in series as the upstream side of the post-stage supercharger in the air supply system flow passage, and A cooler for cooling the compressed air supply, The exhaust system flow is configured to be provided in an air supply system intermediate flow path between the first-stage supercharger and the second-stage supercharger and a supply-system downstream path between the second-stage supercharger and the cylinder. An EGR means is provided for recirculating a part of the exhaust gas in the flow path on the upstream side of the latter-stage supercharger of the road to the air supply system intermediate flow path. In the Miller cycle engine, if the compression ratio is set high to further improve fuel efficiency,
Knocking due to premature firing of the air supply is likely to occur.
In order to suppress the occurrence of knocking, an EGR system that suppresses premature firing of the supply air by reducing a concentration of oxygen in the supply air by recirculating a part of the exhaust gas to the air supply passage may be considered. This EG
In order to efficiently perform the R method, the Miller cycle engine according to the present invention includes the air charge / supercharge cooling unit and the EGR unit. That is, a part of the exhaust gas is recirculated to the air supply system intermediate flow path on the downstream side of the pre-stage supercharger by the EGR means. The air supply in the air supply system intermediate flow path is compressed to some extent by the pre-stage turbocharger, so that the energy of the exhaust gas does not escape to the upstream side of the supercharger, and the exhaust gas is transferred to the air supply system flow path. Even in the case of reflux, the compression efficiency of the supply air can be maintained. Further, the exhaust gas recirculated to the air supply system intermediate flow path is always supplied to the cylinder via the cooler, and there is no need to provide a cooler for cooling only the exhaust gas recirculated to the EGR flow path. . Furthermore, according to this configuration, since two superchargers are provided and the coolers are respectively provided downstream of the respective superchargers, the compression ratio of each supercharger is set to a small value to efficiently supply air. Therefore, the compression efficiency of the supercharger can be maintained at a high level, and the air supplied to the cylinder can be further compressed, thereby improving the fuel efficiency of the engine. The cooler in the air supply system downstream flow path is provided to improve the compression efficiency of the cylinder, but when the air discharged from the post-stage turbocharger is at a low temperature to some extent,
Without providing a cooler, the air supply can be air-cooled by heat exchange between the air supply system downstream flow path and the air supply.

【0005】これらのミラーサイクルエンジンにおい
て、エンジンに損傷を与えるノッキングを抑制し、エン
ジンの良好な動作状態を維持することが望まれる。ノッ
キングは、燃焼波がシリンダ内の端に到達する以前に、
未燃焼部が自然着火することによって起こる。よって、
ノッキングを抑制するためには未燃焼部の自然着火に到
る時間を遅らせ、過早発火状態を正常な燃焼状態にする
必要があり、請求項2に記載されているように構成する
ことが好ましい。即ち、エンジンのノッキングを検出す
るノッキングセンサを備えるとともに、前記EGR手段
は前記給気系中間流路へ還流する排気の量を設定可能な
構造とし、前記ノッキングセンサの検出結果に基づい
て、前記EGR手段を働かせ、前記給気系中間流路へ還
流する排気の流量を調整する制御手段を備える。即ち、
制御手段はノッキングの発生をノッキングセンサによっ
て検出すると、EGR手段を働かせて、給気系流路へ還
流する排気の量を増加させる。このことによって、給気
内の酸素濃度が低下し、給気の過早発火を抑制すること
ができ、結果、ノッキングを回避することができる。
[0005] In these Miller cycle engines, it is desired to suppress knocking that damages the engine and maintain a good operating state of the engine. Knocking occurs before the combustion wave reaches the end in the cylinder.
This is caused by spontaneous ignition of unburned parts. Therefore,
In order to suppress knocking, it is necessary to delay the time until spontaneous ignition of the unburned portion and to set the pre-ignition state to a normal combustion state, and it is preferable to configure as described in claim 2. . That is, the engine is provided with a knocking sensor for detecting knocking of the engine, and the EGR means has a structure capable of setting the amount of exhaust gas recirculating to the air supply system intermediate flow path, and based on the detection result of the knocking sensor, the EGR means. A control means for operating the means to adjust the flow rate of the exhaust gas recirculated to the air supply system intermediate flow path. That is,
When the knocking sensor detects the occurrence of knocking, the control means activates the EGR means to increase the amount of exhaust gas recirculated to the air supply passage. As a result, the oxygen concentration in the air supply is reduced, and premature firing of the air supply can be suppressed, and as a result, knocking can be avoided.

【0006】また、燃料として都市ガスを使用する場
合、都市ガスの供給圧力は1kg/m 2G程度で あるか
ら、ミラーサイクルのように比較的高い過給圧力を必要
とする場合、従来の一段過給では、過給機の吐出側で都
市ガスを混合することは不可能な場合が多く、したがっ
て、過給機吸込み側で混入せざるを得なくなる。この場
合、せっかくの都市ガスの圧力を利用できなくなるのみ
ならず、都市ガスの主成分のメタンの比熱が空気に比較
して大きいことから過給機の性能を低下させてしまうこ
とになる。しかし、本発明にあっては、請求項3に記載
されているように、前記給気系中間流路に、前記燃料を
供給する燃料供給手段を備え、前記前段過給機の吐出圧
力を前記燃料供給手段の燃料供給圧力よりも低く設定す
ることができる。この構成によって、前段過給機によっ
て加圧された後の給気系中間流路に燃料を供給すること
により、供給する燃料の圧力を利用することができ、前
段過給機は空気のみを圧縮することになり、過給機の圧
縮動力を少なくできるので、過給機器の効率を向上する
ことができる。
[0006] Further, when city gas is used as fuel,
If the supply pressure of city gas is 1kg / m TwoIs it about G
Requires a relatively high boost pressure like Miller cycle
In conventional single-stage supercharging, the discharge side of the turbocharger is
It is often not possible to mix city gas and therefore
Therefore, it must be mixed on the suction side of the supercharger. This place
If the city gas pressure is no longer available
The specific heat of methane, the main component of city gas, is lower than that of air
Can reduce the performance of the turbocharger
And However, in the present invention, it is described in claim 3
As described above, the fuel is supplied to the air supply system intermediate flow path.
Fuel supply means for supplying, the discharge pressure of the pre-stage supercharger
Force is set lower than the fuel supply pressure of the fuel supply means.
Can be With this configuration, the supercharger
To supply fuel to the air supply system intermediate flow path after pressurization
By using the pressure of the fuel to be supplied,
The stage turbocharger compresses only air, and the pressure of the turbocharger
Improves efficiency of turbocharged equipment because compression force can be reduced
be able to.

【0007】[0007]

【発明の実施の形態】本願のミラーサイクルエンジン1
00の構造を図1に基づいて説明する。エンジン100
は、給気弁1及び排気弁2を備えたシリンダ3と、この
シリンダ3内に収納されるピストン4を備えている。給
気を圧縮する後段過給機5及び前段過給機6は、それぞ
れ互いに連結されているブロア部5a、6aとタービン
部5b、6bを備えており、ブロア部5aの下流側の給
気系下流側流路11と、ブロア部6aとブロア部5aの
間の給気系中間流路12にそれぞれ冷却器7及び冷却器
8を備えている。更に、給気系中間流路12に燃料を供
給する燃料供給手段21を備えており、ブロア部6aに
よって圧縮された空気に燃料を供給し、その混合気を給
気とする構成となっている。また、シリンダ3から排出
した排気は排気系上流側流路14、タービン部5b、排
気系中間流路13及びタービン部6bを順に流通し、そ
れぞれのタービンを回転させた後、外部へ排出される。
この構成により、シリンダ3より排出される排気により
燃料と空気の給気の混合気である給気を2段階に圧縮す
ることが可能となっている。このように、排気のエネル
ギを利用して給気を圧縮し、圧縮した後の給気を冷却す
る手段を給気過給冷却手段Aと呼ぶ。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Miller cycle engine 1 of the present application
00 will be described with reference to FIG. Engine 100
Is provided with a cylinder 3 having an air supply valve 1 and an exhaust valve 2 and a piston 4 housed in the cylinder 3. The rear-stage supercharger 5 and the front-stage supercharger 6 for compressing the supply air include a blower unit 5a, 6a and a turbine unit 5b, 6b that are connected to each other, and an air supply system downstream of the blower unit 5a. A cooler 7 and a cooler 8 are provided in the downstream flow path 11 and the air supply system intermediate flow path 12 between the blower section 6a and the blower section 5a, respectively. Further, a fuel supply means 21 for supplying fuel to the air supply system intermediate flow path 12 is provided. The fuel is supplied to the air compressed by the blower section 6a, and the air-fuel mixture is supplied as air. . Further, the exhaust gas discharged from the cylinder 3 flows through the exhaust system upstream flow path 14, the turbine section 5b, the exhaust system intermediate flow path 13 and the turbine section 6b in order, and after rotating the respective turbines, is discharged to the outside. .
With this configuration, the exhaust gas discharged from the cylinder 3 can compress the supply air, which is a mixture of fuel and air, into two stages. The means for compressing the air supply using the energy of the exhaust gas and cooling the air supply after the compression is referred to as air supply supercooling means A.

【0008】この、給気過給冷却手段Aによる給気の圧
縮状態を図2に示す圧力−体積線図にて説明する。図2
からもわかるように、給気過給冷却手段Aは2つの後段
過給機5及び前段過給機6により2段式の過給を行って
おり、それぞれの後段過給機5及び前段過給機6の下流
側に冷却器7、8を設けている。即ち、前段過給機6に
よって、給気をaからb'に加圧し、冷却器 8の冷却に
よって給気の体積をb'からc'に減少させ、その後、後
段過給機5によってc' からd'に加圧し、冷却器7の
冷却によって給気の体積をd'からeに減少させる。よ
って、この給気過給冷却手段Aの仕事量はab'c'd'
e0に示す面積となり、図3に示す従来の 過給機及び
冷却器をそれぞれ1つづつ備えた構成の場合の仕事量を
示すabe0の面積に対して、b'bd'c'の面積分小
さくなり、本願の給気過給冷却手段Aの仕事量は従来と
比べ て小さく設定できる。更に、燃料をブロア部6a
の下流側の燃料供給手段21で空気と混合させるので、
ブロア部6aは空気を圧縮するだけでよく、これによっ
ても過給機の効率を向上することができる。
The compressed state of the air supply by the air supply supercooling means A will be described with reference to a pressure-volume diagram shown in FIG. FIG.
As can be understood from FIG. 2, the air-supercharging / cooling means A performs two-stage supercharging by two rear-stage superchargers 5 and a front-stage supercharger 6, and the rear-stage supercharger 5 and the front-stage supercharger, respectively. Coolers 7 and 8 are provided downstream of the machine 6. That is, the supply air is pressurized from a to b ′ by the pre-supercharger 6, and the volume of the supply air is reduced from b ′ to c ′ by the cooling of the cooler 8. To d ′, and the volume of the supply air is reduced from d ′ to e by cooling of the cooler 7. Therefore, the work amount of the air supply supercooling means A is ab'c'd '
The area indicated by e0 is smaller than the area of abe0 indicating the work amount in the case of the configuration having one conventional supercharger and one cooler shown in FIG. 3 by the area of b'bd'c '. That is, the work amount of the charging / supercharging cooling means A of the present invention can be set smaller than that of the conventional method. Further, the fuel is supplied to the blower section 6a.
Is mixed with air by the fuel supply means 21 on the downstream side of
The blower section 6a only needs to compress the air, which can also improve the efficiency of the supercharger.

【0009】これまでが、本願のミラーサイクルエンジ
ンの2段過給の構成であり、ミラーサイクルエンジンと
同様に、給気弁1を下死点より遅く又は早く閉じること
によりミラーサイクルを実現し、高圧縮された給気をシ
リンダ3に給気し高効率の動作状況を実現することがで
きる。更に、図1に示す本発明に係るミラーサイクルエ
ンジンは、排気系上流側流路14と給気系中間流路12
における冷却器8の上流側を流通可能とするEGR流路
15と、そのEGR流路15に流通する排気の量を調整
するEGR量設定弁16を備えており、この構成によっ
て、過給機の駆動源である排気圧のエネルギーが給気系
のブロア部6aの上流側へ逃げてしまうことがなく、排
気をEGR流路15によって給気系へ還流しても、給気
の圧縮効率を維持することができるのである。このよう
に、シリンダ3から排出される排気の一部を給気系へ還
流するとともに、その還流する排気の量を設定すること
ができ、このような手段をEGR手段Bと呼ぶ。この、
EGR手段Bによって、給気系へ排気の一部を還流する
ことができ、給気の酸素濃度を低下させ、給気の過早発
火によるノッキングを抑制することができ、燃費を向上
することができる。
Up to now, the two-stage supercharging configuration of the Miller cycle engine of the present application has been realized. As in the Miller cycle engine, the Miller cycle is realized by closing the air supply valve 1 later or earlier than the bottom dead center. The highly compressed air is supplied to the cylinder 3 to realize a highly efficient operation state. Further, the Miller cycle engine according to the present invention shown in FIG. 1 has an exhaust system upstream flow path 14 and an air supply system intermediate flow path 12.
And an EGR flow setting valve 16 that adjusts the amount of exhaust gas flowing through the EGR flow path 15. The energy of the exhaust pressure, which is the driving source, does not escape to the upstream side of the blower section 6a of the air supply system, and the compression efficiency of the air supply is maintained even if the exhaust gas is returned to the air supply system through the EGR flow path 15. You can do it. As described above, a part of the exhaust gas discharged from the cylinder 3 can be recirculated to the air supply system, and the amount of the recirculated exhaust gas can be set. Such a device is referred to as an EGR device B. this,
By the EGR means B, a part of the exhaust gas can be recirculated to the air supply system, the oxygen concentration of the air supply can be reduced, knocking due to premature ignition of the air supply can be suppressed, and the fuel efficiency can be improved. it can.

【0010】また、本願のミラーサイクルエンジンは、
ノッキングを検出するノッキングセンサ17をシリンダ
3に備えており、このノッキングセンサ17の検出結果
に基づいて、EGR量設定弁16の開度を制御する制御
装置20を備えている。即ち、制御装置20は、ノッキ
ングが発生すると、EGR量設定弁16を働かせ、給気
系へ還流する排気の量を増加させ、給気の酸素濃度を低
下させることで給気の過早発火を防ぎノッキングを回避
することができる。このように、ノッキングセンサ17
の検出結果に基づいて、EGR量設定弁16を働かせ、
ノッキングを回避する手段を制御手段Cと呼ぶ。
[0010] The Miller cycle engine of the present application includes:
The cylinder 3 is provided with a knocking sensor 17 for detecting knocking, and a control device 20 for controlling the opening of the EGR amount setting valve 16 based on the detection result of the knocking sensor 17. That is, when knocking occurs, the control device 20 activates the EGR amount setting valve 16 to increase the amount of exhaust gas returning to the air supply system and reduce the oxygen concentration of the air supply, thereby causing the premature ignition of the air supply to occur. Prevention knocking can be avoided. Thus, the knocking sensor 17
The EGR amount setting valve 16 is operated based on the detection result of
The means for avoiding knocking is referred to as control means C.

【0011】〔別実施の形態例〕 (イ) 本願のミラーサイクルエンジンに使用できる燃
料としては、都市ガス、ガソリン、プロパン、メタノー
ル、水素等、任意の燃料を使用することができる。 (ロ) 給気を生成するにあたっては、燃料とこの燃料
の燃焼のための酸素を含有するガスとを混合すればよい
が、例えば、燃焼用酸素含有ガスとして空気を使用する
ことが一般的である。しかしながら、このようなガスと
しては、例えば、酸素成分含有量が空気に対して高い酸
素富化ガス等を使用することが可能である。 (ハ)上記の実施の形態例において、ノッキングの検出
にあたっては、ノッキングセンサをシリンダに取り付け
て行ったが、シリンダ内圧を検出し、クランク軸角と比
較することで過早発火を検出し、その過早発火をノッキ
ングとして検出することもできる。更に、シリンダにフ
ォトセンサを備え、クランク軸角と比較することでも給
気の過早発火を検出することができる。 (ニ) 上記の実施の形態例においては、排気系上流側
流路14の排気の一部を給気系中間流路12へ還流する
EGR流路15について説明したが、EGR流路15の
代わりに、図1の2点鎖線に示すように、EGR流路1
5aを使用し、排気系中間流路13の排気の一部を給気
系中間流路12へ還流することができ、更に、過給動力
のロスを改善できる。この場合は、給気系中間流路12
内の圧力を排気系中間流路13の圧力より若干小さくな
るように、それぞれの過給機5、6の圧縮比を設定する
ことで可能となり、本発明に係るミラーサイクルエンジ
ンを構成することができる。
[Other Embodiments] (A) As the fuel that can be used in the Miller cycle engine of the present application, any fuel such as city gas, gasoline, propane, methanol, hydrogen and the like can be used. (B) In producing the supply air, the fuel and the gas containing oxygen for combustion of the fuel may be mixed. For example, air is generally used as the oxygen-containing gas for combustion. is there. However, as such a gas, it is possible to use, for example, an oxygen-enriched gas having an oxygen component content higher than that of air. (C) In the above embodiment, knocking was detected by attaching a knocking sensor to the cylinder. However, premature ignition was detected by detecting the cylinder internal pressure and comparing it with the crankshaft angle. Premature firing can also be detected as knocking. Further, the cylinder is provided with a photo sensor, and the pre-ignition of the air supply can be detected by comparing with the crankshaft angle. (D) In the above embodiment, the EGR flow path 15 that recirculates part of the exhaust gas from the exhaust system upstream flow path 14 to the air supply system intermediate flow path 12 has been described. In addition, as shown by a two-dot chain line in FIG.
By using 5a, a part of the exhaust gas of the exhaust system intermediate flow path 13 can be recirculated to the air supply system intermediate flow path 12, and the loss of the supercharging power can be improved. In this case, the air supply system intermediate flow path 12
It becomes possible by setting the compression ratio of each of the superchargers 5 and 6 so that the internal pressure is slightly lower than the pressure of the exhaust system intermediate flow path 13, and the Miller cycle engine according to the present invention can be configured. it can.

【0012】[0012]

【発明の効果】本発明に係るミラーサイクルエンジンに
おいては、過給機の効率を維持しつつ給気を高圧縮する
ことができ、エンジンの高効率化が実現できる。更に、
過給機の駆動源である排気圧のエネルギをロスすること
無く、簡単な構造で排気を給気系に還流することがで
き、給気に還流する排気の量を制御することによってエ
ンジンのノッキングを抑制することができ、エンジンの
性能を維持し、燃費を向上することができる。
In the Miller cycle engine according to the present invention, the supply air can be highly compressed while maintaining the efficiency of the supercharger, and the efficiency of the engine can be increased. Furthermore,
Exhaust gas can be recirculated to the air supply system with a simple structure without losing the energy of the exhaust pressure that is the driving source of the supercharger, and knocking of the engine by controlling the amount of exhaust gas recirculated to the air supply , The performance of the engine can be maintained, and the fuel efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るミラーサイクルエンジンのEGR
システムの構成を示す図
FIG. 1 shows an EGR of a Miller cycle engine according to the present invention.
Diagram showing system configuration

【図2】本発明に係るミラーサイクルエンジンの過給機
における給気の圧力と体積の関係を示す図
FIG. 2 is a diagram showing a relationship between supply pressure and volume in a supercharger of the Miller cycle engine according to the present invention;

【図3】従来のミラーサイクルエンジンのEGRシステ
ムの構成を示す図
FIG. 3 is a diagram showing the configuration of a conventional Miller cycle engine EGR system.

【符号の説明】[Explanation of symbols]

1 給気弁 2 排気弁 3 シリンダ 4 ピストン 5 前段過給機 6 後段過給機 7、8 冷却器 11 給気系下流側流路 12 給気系中間流路 13 排気系中間流路 14 排気系上流側流路 15 EGR流路 16 EGR量設定弁 17 ノッキングセンサ 20 制御装置 21 燃料供給手段 A 給気過給冷却手段 B EGR手段 C 制御手段 DESCRIPTION OF SYMBOLS 1 Supply valve 2 Exhaust valve 3 Cylinder 4 Piston 5 Front-stage supercharger 6 Rear-stage supercharger 7, 8 Cooler 11 Supply system downstream flow path 12 Supply system intermediate flow path 13 Exhaust system intermediate flow path 14 Exhaust system Upstream flow path 15 EGR flow path 16 EGR amount setting valve 17 Knocking sensor 20 Control device 21 Fuel supply means A Charge / supercharge cooling means B EGR means C Control means

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02M 25/07 550 F02M 25/07 570Z 570 F02B 37/00 301B (72)発明者 松村 章二朗 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 鶴崎 将弘 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 Fターム(参考) 3G005 DA00 EA04 EA16 EA23 EA25 FA22 FA37 3G062 AA00 AA05 DA01 DA02 EA10 ED01 ED03 FA08 GA14 GA18 3G084 AA00 BA08 BA20 BA22 DA01 DA02 DA38 FA12 FA21 FA25 FA37 FA38 3G092 AA05 AA17 AA18 AB02 AB05 AB07 AB08 AB09 AB18 DB03 DB05 DC09 DD03 FA16 FA24 HA16X HC01Z HC05Z HD07X HE03Z 3G301 HA00 HA11 HA13 JA02 JA22 MA01 ND01 NE01 NE06 PA16A PC01Z PC08Z PD15A PE03ZContinued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) F02M 25/07 550 F02M 25/07 570Z 570 F02B 37/00 301B (72) Inventor Shojiro Matsumura Osaka, Osaka Osaka Gas Co., Ltd., 4-1-2 Hirano-cho, Ward (72) Inventor Masahiro Tsurusaki 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture F-term (reference) 3G005 DA00 EA04 EA16 EA23 EA25 FA22 FA37 3G062 AA00 AA05 DA01 DA02 EA10 ED01 ED03 FA08 GA14 GA18 3G084 AA00 BA08 BA20 BA22 DA01 DA02 DA38 FA12 FA21 FA25 FA37 FA38 3G092 AA05 AA17 AA18 AB02 AB05 AB07 AB08 AB09 AB18 DB03 HC01 HD03 DD03 HC03 DD03 HA11 HA13 JA02 JA22 MA01 ND01 NE01 NE06 PA16A PC01Z PC08Z PD15A PE03Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料と燃焼用酸素含有ガスとをシリンダ
内に給気するとともに、給気弁を下死点よりも早く若し
くは遅く閉じて圧縮比を膨張比よりも小さくするミラー
サイクルエンジンであって、 給気をシリンダに供給する給気系流路と排気を外部へ排
出する排気系流路を備え、 給気を圧縮して冷却する給気過給冷却手段を備え、 前記給気過給冷却手段は、前記排気系流路内を流通する
排気のエネルギーを利用して前記給気系流路に流通する
給気を圧縮する前段過給機と後段過給機を、前記給気系
流路において前記前段過給機を前記後段過給機の上流側
として直列に接続して備えるとともに、前記圧縮された
給気を冷却する冷却器を、給気系流路の前記前段過給機
と前記後段過給機の間の給気系中間流路と前記後段過給
機と前記シリンダの間の給気系下流側流路にそれぞれ備
えて構成され、 前記排気系流路の前記後段過給機の上流側の流路の排気
の一部を前記給気系中間流路へ還流するEGR手段を備
えたミラーサイクルエンジン。
1. A Miller cycle engine that supplies fuel and oxygen-containing gas for combustion into a cylinder, and closes a supply valve earlier or later than a bottom dead center to make a compression ratio smaller than an expansion ratio. An air supply system flow path for supplying air supply to the cylinder, and an exhaust system flow path for discharging exhaust gas to the outside, and an air supply supercharger for compressing and cooling the air supply. The cooling means includes a first-stage supercharger and a second-stage supercharger that compress the supply air flowing through the air supply passage using the energy of exhaust gas flowing through the exhaust passage. In the road, the front-stage supercharger is connected in series as an upstream side of the rear-stage supercharger, and a cooler that cools the compressed air supply is provided with the front-stage supercharger in an air supply system flow path. Between the air supply system intermediate flow path between the rear-stage supercharger and the rear-stage supercharger and the cylinder; An EGR means for recirculating a part of the exhaust gas from the upstream flow path of the latter-stage supercharger of the exhaust system flow path to the air supply system intermediate flow path. Miller cycle engine with.
【請求項2】 エンジンのノッキングを検出するノッキ
ングセンサを備えるとともに、 前記EGR手段は前記給気系中間流路へ還流する排気の
量を設定可能な構造とし、 前記ノッキングセンサの検出結果に基づいて、前記EG
R手段を働かせ、前記給気系中間流路へ還流する排気の
流量を調整する制御手段を備えた請求項1に記載のミラ
ーサイクルエンジン。
2. A knocking sensor for detecting knocking of an engine, wherein the EGR means has a structure capable of setting an amount of exhaust gas returning to the air supply system intermediate flow path, and based on a detection result of the knocking sensor. , The EG
2. The Miller cycle engine according to claim 1, further comprising control means for operating the R means to adjust a flow rate of the exhaust gas recirculated to the air supply system intermediate flow path. 3.
【請求項3】 前記給気系中間流路に、前記燃料を供給
する燃料供給手段を備え、前記前段過給機の吐出圧力を
前記燃料供給手段の燃料供給圧力よりも低く設定する請
求項1又は2に記載のミラーサイクルエンジン。
3. A fuel supply means for supplying the fuel in the air supply system intermediate flow path, wherein a discharge pressure of the pre-stage supercharger is set lower than a fuel supply pressure of the fuel supply means. Or the Miller cycle engine according to 2.
JP11019999A 1999-01-28 1999-01-28 Mirror cycle engine Expired - Fee Related JP2996971B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11019999A JP2996971B1 (en) 1999-01-28 1999-01-28 Mirror cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11019999A JP2996971B1 (en) 1999-01-28 1999-01-28 Mirror cycle engine

Publications (2)

Publication Number Publication Date
JP2996971B1 JP2996971B1 (en) 2000-01-11
JP2000220480A true JP2000220480A (en) 2000-08-08

Family

ID=12014865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11019999A Expired - Fee Related JP2996971B1 (en) 1999-01-28 1999-01-28 Mirror cycle engine

Country Status (1)

Country Link
JP (1) JP2996971B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155751A (en) * 2000-09-21 2002-05-31 Caterpillar Inc Turbo-charger with exhaust gas recirculation
JP2003049674A (en) * 2001-08-08 2003-02-21 Kawasaki Heavy Ind Ltd Supercharging system for internal combustion engine
US6883314B2 (en) 2002-08-01 2005-04-26 Caterpillar Inc. Cooling of engine combustion air
JP2006029273A (en) * 2004-07-20 2006-02-02 Toyota Motor Corp Egr system of internal combustion engine for vehicle with supercharger
EP1674710A1 (en) * 2003-12-22 2006-06-28 Iveco S.p.A. Method for recirculating exhaust gases in a turbocharged engine and the relative turbocharged engine
WO2007040071A1 (en) * 2005-10-06 2007-04-12 Isuzu Motors Limited Egr system of two stage super-charging engine
WO2007040070A1 (en) * 2005-10-06 2007-04-12 Isuzu Motors Limited Egr system of internal combustion engine
KR100843808B1 (en) * 2001-01-19 2008-07-03 혼다 기켄 고교 가부시키가이샤 Spontaneous intake type internal combustion engine for vehicles
CN101858280A (en) * 2010-06-13 2010-10-13 奇瑞汽车股份有限公司 Exhaust gas recirculation system and method
WO2011046041A1 (en) 2009-10-16 2011-04-21 三菱重工業株式会社 Miller cycle engine
WO2011141631A1 (en) 2010-05-12 2011-11-17 Wärtsilä Finland Oy Arrangement and method for exhaust gas recirculation and turbocharging
US8215292B2 (en) 1996-07-17 2012-07-10 Bryant Clyde C Internal combustion engine and working cycle
JP2015232280A (en) * 2014-06-09 2015-12-24 マツダ株式会社 Multiple-fuel engine fuel injection control unit
JP2016003614A (en) * 2014-06-17 2016-01-12 いすゞ自動車株式会社 Engine exhaust gas recirculation method and engine exhaust gas recirculation device
RU2586950C2 (en) * 2011-12-24 2016-06-10 Фольксваген Акциенгезелльшафт Method of operating drive unit and drive unit
JP2017101678A (en) * 2010-05-18 2017-06-08 アカーテース パワー,インク. Method for operating ported uniflow scavenging facing type piston engine

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8215292B2 (en) 1996-07-17 2012-07-10 Bryant Clyde C Internal combustion engine and working cycle
JP2002155751A (en) * 2000-09-21 2002-05-31 Caterpillar Inc Turbo-charger with exhaust gas recirculation
KR100843808B1 (en) * 2001-01-19 2008-07-03 혼다 기켄 고교 가부시키가이샤 Spontaneous intake type internal combustion engine for vehicles
JP2003049674A (en) * 2001-08-08 2003-02-21 Kawasaki Heavy Ind Ltd Supercharging system for internal combustion engine
US6883314B2 (en) 2002-08-01 2005-04-26 Caterpillar Inc. Cooling of engine combustion air
EP1674710A1 (en) * 2003-12-22 2006-06-28 Iveco S.p.A. Method for recirculating exhaust gases in a turbocharged engine and the relative turbocharged engine
JP2006029273A (en) * 2004-07-20 2006-02-02 Toyota Motor Corp Egr system of internal combustion engine for vehicle with supercharger
JP4506324B2 (en) * 2004-07-20 2010-07-21 トヨタ自動車株式会社 EGR system for vehicle internal combustion engine with supercharger
WO2007040071A1 (en) * 2005-10-06 2007-04-12 Isuzu Motors Limited Egr system of two stage super-charging engine
JP2007100628A (en) * 2005-10-06 2007-04-19 Isuzu Motors Ltd Egr system for two stage supercharged engine
JP2007100627A (en) * 2005-10-06 2007-04-19 Isuzu Motors Ltd Egr system for internal combustion engine
JP4692202B2 (en) * 2005-10-06 2011-06-01 いすゞ自動車株式会社 EGR system for two-stage supercharged engine
JP4692201B2 (en) * 2005-10-06 2011-06-01 いすゞ自動車株式会社 EGR system for internal combustion engine
WO2007040070A1 (en) * 2005-10-06 2007-04-12 Isuzu Motors Limited Egr system of internal combustion engine
WO2011046041A1 (en) 2009-10-16 2011-04-21 三菱重工業株式会社 Miller cycle engine
WO2011141631A1 (en) 2010-05-12 2011-11-17 Wärtsilä Finland Oy Arrangement and method for exhaust gas recirculation and turbocharging
JP2017101678A (en) * 2010-05-18 2017-06-08 アカーテース パワー,インク. Method for operating ported uniflow scavenging facing type piston engine
CN101858280A (en) * 2010-06-13 2010-10-13 奇瑞汽车股份有限公司 Exhaust gas recirculation system and method
RU2586950C2 (en) * 2011-12-24 2016-06-10 Фольксваген Акциенгезелльшафт Method of operating drive unit and drive unit
JP2015232280A (en) * 2014-06-09 2015-12-24 マツダ株式会社 Multiple-fuel engine fuel injection control unit
JP2016003614A (en) * 2014-06-17 2016-01-12 いすゞ自動車株式会社 Engine exhaust gas recirculation method and engine exhaust gas recirculation device

Also Published As

Publication number Publication date
JP2996971B1 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP2996971B1 (en) Mirror cycle engine
US6470682B2 (en) Low emission, diesel-cycle engine
JP4168809B2 (en) Exhaust turbocharged engine with EGR
US10094324B2 (en) System and method of operating an internal combustion engine
JP4898912B2 (en) How to operate a spark ignition engine
US20080092860A2 (en) Internal Combustion Engine and Working Cycle
US20050098162A1 (en) Internal combustion engine and working cycle
US20070223352A1 (en) Optical disc assemblies for performing assays
KR102633863B1 (en) Engine system and method of controlling the same
WO2008013157A1 (en) Exhaust gas recirculation system for internal combustion engine
US20070220884A1 (en) Divided housing turbocharger for an engine
CN105840355A (en) All-working-condition EGR rate adjustable two-stage booster system of internal combustion engine and control method thereof
US9243548B2 (en) Turbocharged power unit and method of operating under high load conditions
JP2009209809A (en) Supercharging device for engine
US20220307408A1 (en) Structural arrangement in a low-temperature turbocompressor for an internal combustion engine
JPH1162715A (en) Egr device for super charge type engine
JP2000213384A (en) Compression self ignition engine
JP2007077900A (en) Two-stage supercharging system
KR100268707B1 (en) Super charger for internal combustion engines
JP2007077899A (en) Two-stage supercharging system
JP2000008963A (en) Exhaust gas recirculation device for supercharged engine
CN106481484A (en) A kind of waste gas recirculation pressure charging system and two-step supercharging internal combustion engine
US10767602B2 (en) Engine system
CN206234015U (en) A kind of waste gas recycles pressure charging system and two-step supercharging internal combustion engine
CN205618263U (en) Adjustable two stage supercharging system is rateed to full operating mode EGR of internal -combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees