JP2000219980A - Method for suppressing local corrosion of metals - Google Patents

Method for suppressing local corrosion of metals

Info

Publication number
JP2000219980A
JP2000219980A JP11024481A JP2448199A JP2000219980A JP 2000219980 A JP2000219980 A JP 2000219980A JP 11024481 A JP11024481 A JP 11024481A JP 2448199 A JP2448199 A JP 2448199A JP 2000219980 A JP2000219980 A JP 2000219980A
Authority
JP
Japan
Prior art keywords
oil
corrosion
local corrosion
inhibitor
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11024481A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Tomoe
保義 巴
Makoto Shimizu
誠 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Oil Co Ltd
Original Assignee
Teikoku Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Oil Co Ltd filed Critical Teikoku Oil Co Ltd
Priority to JP11024481A priority Critical patent/JP2000219980A/en
Publication of JP2000219980A publication Critical patent/JP2000219980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the local corrosion by adding an organic inhibitor and a hydrocarbon oil to suppress the cathodic reaction. SOLUTION: Objective metals include iron, low alloy steel, and stainless steel, and are particularly effective to an excavation pipe to be used in exploration and development of oil and natural gas. An organic solvent to be used is preferably amines for iron (steel), and fatty acids for iron (steel) passivated by oxides. More specifically, long-chain amines and long-chain fatty acids, and their salts and derivatives are preferable, and the carbon number of alkyl groups of the long-chain fatty acids is 11 to 18. The hydrocarbon oil to be used has the hydrophobic interaction with the organic inhibitor, and includes paraffin hydrocarbon, naphthene hydrocarbon, aromatic hydrocarbon, and mixed oil thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は金属類の局部腐食を
抑制するに当たり、腐食のカソ−ド反応を抑制すること
によって金属類の局部腐食を抑制する方法に関し、特
に、石油・天然ガス探鉱開発に使用される掘管外面の局
部腐食を抑制する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for suppressing local corrosion of metals by suppressing the cathodic reaction of corrosion in controlling local corrosion of metals. The present invention relates to a method for suppressing local corrosion on the outer surface of a digging pipe used for digging.

【0002】[0002]

【従来技術】通常、金属腐食における局部腐食は耐食材
料に生じる腐食であって、本来耐食性が期待されている
材料と環境の組合せのなかで、実際にも表面の大部分は
耐食性を示しているにかからわず、ある特定の場所に腐
食の進行が集中する現象であって、その原因としては、
使用中の環境の変化、構造物や機器の設計上の不備、製
造条件の不備によって生じた材質の欠陥、防食手段の局
部的な消失等が挙げられる。殊に、近年の石油・天然ガ
ス探鉱開発の対象坑井の高深度化にともない、高温度用
ポリマ−泥水が使用されるようになり、この泥水を使用
しての掘削において、掘管外面の局部腐食が重要な問題
となっている。
2. Description of the Related Art Generally, localized corrosion in metal corrosion is corrosion that occurs in a corrosion-resistant material, and most of the surfaces actually exhibit corrosion resistance among combinations of materials and environments that are originally expected to have corrosion resistance. Regardless of the phenomenon, the progress of corrosion is concentrated at a specific place,
Changes in the environment during use, defects in the design of structures and equipment, defects in materials caused by defective manufacturing conditions, local loss of anticorrosion means, and the like can be cited. In particular, with the deepening of wells targeted for oil and natural gas exploration and development in recent years, high-temperature polymer mud has come to be used. Local corrosion is an important problem.

【0003】腐食反応は、水素イオンや酸素が金属から
電子を奪うカソ−ド反応と、金属が溶解するアノ−ド反
応から成り立っている。カソ−ド反応の総量とアノ−ド
反応の総量とは等しいのであるから、腐食反応を抑制す
る手段としては金属が溶出するアノ−ド反応を直接抑制
するか、或いはカソ−ド反応を抑制すれば良い。しか
し、アノ−ド反応に基づくアノ−ド溶解の局部腐食孔は
内部の溶液組成や複雑な形態からアノ−ド溶解反応を抑
制することは困難であると認識されている。
[0003] The corrosion reaction consists of a cathodic reaction in which hydrogen ions or oxygen removes electrons from the metal, and an anodic reaction in which the metal is dissolved. Since the total amount of the cathodic reaction is equal to the total amount of the anodic reaction, the means for suppressing the corrosion reaction is to directly suppress the anodic reaction in which the metal is eluted or to suppress the cathodic reaction. Good. However, it is recognized that it is difficult to suppress the anodic dissolution reaction due to the internal solution composition and complicated form of the anodic dissolution pits due to the anodic reaction.

【0004】先に述べたように、石油・天然ガスの掘削
には高温度用ポリマ−泥水が使用され、掘管外面の局部
腐食の原因は、この泥水中の溶存酸素と、泥水の高温劣
化(掘削泥水が遭遇する地層温度は200℃を超える高
温となっている。)により発生した炭酸ガスの影響と考
えられている。従って、従来の腐食対策としては次のよ
うな方法が考えられている。 脱酸素剤の添加による酸素の除去 カルシウム添加による炭酸ガスの固化分離 アミン系腐食抑制剤の添加 有機リン酸系抑制剤の添加 これらの方法において、との方法はポリマ−泥水が
ゲル化しやすい場合には適応不可能であり、はアニオ
ン系ポリマ−泥水の場合には適切ではなかった。そし
て、については、200℃というような高温下におい
ては分解し有効ではなかった。なお、欧米では、掘削泥
水が遭遇する地層温度が200℃を超えるという過酷な
環境下での掘削では主として油系泥水が採用されている
が、この方法は公害問題、価格、及び輸送と貯蔵の点か
らポリマ−泥水が使用されはじめている。以上のよう
に、従来の腐食対策はいずれも有効な方法とは言えな
い。本発明者らのグル−プは、先に有機抑制剤の疎水基
に液状の炭化水素の疎水基が付着することによって腐食
が大きく抑制されることを報告した。
As mentioned above, high temperature polymer mud is used for drilling of oil and natural gas. Local corrosion on the outer surface of the pipe is caused by dissolved oxygen in the mud and high temperature deterioration of the mud. (The formation temperature at which the drilling mud encounters is a high temperature exceeding 200 ° C.). Therefore, the following method is considered as a conventional countermeasure against corrosion. Removal of oxygen by addition of oxygen scavenger Solidification and separation of carbon dioxide by addition of calcium Addition of amine-based corrosion inhibitor Addition of organic phosphoric acid-based inhibitor In these methods, the above methods are used when polymer muddy water tends to gel. Was not applicable and was not appropriate in the case of anionic polymer muds. And it was decomposed at a high temperature such as 200 ° C. and was not effective. In Europe and the United States, oil-based mud is mainly used for drilling in harsh environments where the formation temperature at which the drilled mud encounters exceeds 200 ° C. However, this method involves pollution problems, price, and transportation and storage. From this point, polymer mud has begun to be used. As described above, none of the conventional corrosion countermeasures is an effective method. The group of the present inventors previously reported that corrosion was greatly suppressed by the attachment of the hydrophobic group of the liquid hydrocarbon to the hydrophobic group of the organic inhibitor.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明者は局
部腐食、特に石油・天然ガスの坑井に使用される掘管外
面の局部腐食の抑制について、上記の知見を局部腐食の
カソ−ド反応に適用できるか否かについて種々検討した
ところ、有機抑制剤と炭化水素の疎水性相互作用が、局
部腐食のカソ−ド反応を徹底的に抑制し、その結果局部
腐食を抑制することを見出し、本発明を完成したもの
で、本発明の目的はカソ−ド反応を抑制して金属類の局
部腐食抑制方法を提供することである。
Accordingly, the present inventor has made the above-mentioned knowledge on the suppression of local corrosion, particularly the local corrosion of the outer surface of a drilling pipe used in oil and natural gas wells, based on the local corrosion cathod. After various investigations as to whether or not it can be applied to the reaction, it was found that the hydrophobic interaction between the organic inhibitor and the hydrocarbon drastically suppressed the cathodic reaction of local corrosion and consequently the local corrosion. It is an object of the present invention to provide a method for suppressing local corrosion of metals by suppressing a cathodic reaction.

【0006】[0006]

【課題を解決するための手段】本発明は、金属類の局部
腐食を抑制するに当たり、有機抑制剤と炭化水素油とを
添加することを特徴とする金属類の局部腐食抑制方法で
ある。即ち、本発明においては有機抑制剤の疎水基と炭
化水素油の疎水性との相互作用により局部腐食の部位に
作用してカソ−ド反応を徹底的に抑制し、その結果、局
部腐食を抑制するものと解される。なお、従来よりビッ
ト(掘削の刃先)の潤滑などの目的で掘削泥水に油を注
入することがあるが、この場合は掘削泥水を流動するも
ので防食効果はえられず、また、水に不溶な有機系イン
ヒビタ−の溶剤として油をインヒビタ−と共に注入する
ことがあるが、本願発明では抑制剤として、例えばラウ
リン酸の塩類のような水溶性の抑制剤を水に溶解して注
入することによっても掘管表面にラウリン酸イオンの防
食皮膜を形成することが可能であり、この防食皮膜に油
が疎水性親和力により結合することにより高い防食効果
が発揮されるのである。
SUMMARY OF THE INVENTION The present invention relates to a method for suppressing local corrosion of metals, which comprises adding an organic inhibitor and a hydrocarbon oil in suppressing local corrosion of metals. That is, in the present invention, the interaction between the hydrophobic group of the organic inhibitor and the hydrophobicity of the hydrocarbon oil acts on the site of local corrosion to thoroughly suppress the cathodic reaction, thereby suppressing local corrosion. It is understood that. Conventionally, oil may be injected into the drilling mud for the purpose of lubricating the bit (drilling edge), but in this case, the drilling mud flows and cannot have an anticorrosive effect, and is insoluble in water. In some cases, oil is injected together with the inhibitor as a solvent for the organic inhibitor, but in the present invention, a water-soluble inhibitor such as salts of lauric acid is dissolved in water and injected as an inhibitor. It is also possible to form an anticorrosion film of lauric acid ions on the surface of the excavated pipe, and a high anticorrosion effect is exhibited by the oil binding to the anticorrosion film with hydrophobic affinity.

【0007】[0007]

【発明の実施の形態】本発明について詳細に述べる。本
発明により局部腐食を抑制される金属類としては、鉄、
低合金鋼、ステンレス鋼、銅、銅合金等の何れの金属で
も良いが、特に石油・天然ガス探鉱開発に使用される掘
管に対して有効である。石油・天然ガス探鉱開発に使用
される掘管はポリマ−泥水と共に地層温度が200℃と
言う過酷な条件下で使用されるため掘管の外面には局部
腐食が生じやすく、この局部腐食を抑制するのに有効で
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail. The metals that can suppress local corrosion according to the present invention include iron,
Any metal such as low alloy steel, stainless steel, copper, and copper alloy may be used, but it is particularly effective for drilling pipes used in oil and gas exploration and development. Drilling pipes used for oil and natural gas exploration and development are used under severe conditions of 200 ° C with formation temperature of polymer and muddy water, so local corrosion easily occurs on the outer surface of the drilling pipes, and this local corrosion is suppressed. It is effective to do.

【0008】本発明で使用する有機抑制剤としては、金
属表面との適合性の良好な有機抑制剤が好ましい。ここ
で、金属表面との適合性の良好な有機抑制剤とはその金
属に対し、強い吸着力を示す有機抑制剤であることを意
味するものである。局部腐食が発生する環境では、腐食
部は活性溶解しているのに対し、金属表面は酸化物など
で覆われ強弱の差はあるが、不働態化しているものと考
えられる。従って、局部腐食を防止する抑制剤としては
不働態金属との適合性の良い有機抑制剤が有効なものと
考えらる。具体的には鉄(鋼)に対してはアミン類の抑
制剤が、酸化物によって不働態化された鉄(鋼)に対し
ては脂肪酸類の抑制剤が好ましい。アミン類の抑制剤と
しては、長鎖アミン類や長鎖イミダゾリン類であり、脂
肪酸類の抑制剤としては長鎖脂肪酸(R−COOH
R:アルキル基を表す。)やその塩類及び誘導体類であ
り、Rの炭素数11〜17の長鎖脂肪酸が好ましい。ま
た、不働態化が弱い場合には、長鎖含窒素化合物とその
誘導体が効果的である。銅及び銅合金に対してはベンゾ
トリアゾ−ル類抑制剤が好ましい。
As the organic inhibitor used in the present invention, an organic inhibitor having good compatibility with the metal surface is preferable. Here, an organic inhibitor having good compatibility with the metal surface means an organic inhibitor having a strong adsorption power to the metal. In an environment where local corrosion occurs, the corroded portion is actively dissolved, whereas the metal surface is covered with an oxide or the like, and although there is a difference in strength, it is considered to be passivated. Therefore, it is considered that an organic inhibitor having good compatibility with a passive metal is effective as an inhibitor for preventing local corrosion. Specifically, an inhibitor of amines is preferable for iron (steel), and an inhibitor of fatty acids is preferable for iron (steel) passivated by an oxide. As inhibitors for amines, there are long-chain amines and long-chain imidazolines, and as inhibitors for fatty acids, long-chain fatty acids (R-COOH
R: represents an alkyl group. ) And salts and derivatives thereof, and a long-chain fatty acid having 11 to 17 carbon atoms of R is preferable. When the passivation is weak, a long-chain nitrogen-containing compound and its derivative are effective. Benzotriazole inhibitors are preferred for copper and copper alloys.

【0009】本発明で使用する炭化水素油としては有機
抑制剤と疎水性相互作用を有する炭化水素油である。普
通、有機抑制剤は、吸着基(極性基)と疎水基(親油
基)とから構成されており、油/水(オイル・イン・ウ
オ−タ)系の液体中の金属表面に対しては、有機抑制剤
は吸着基(極性基)で金属表面に吸着し、疎水基を液中
に向けて配向している。この疎水基に油が付着する。こ
の付着は水に排除されたもの同士の弱い相互作用による
もので、この相互作用を疎水性相互作用と呼ばれてい
る。本発明においては有機抑制剤の疎水基と相互作用を
有する炭化水素油を使用するのである。ただ、炭化水素
が気体として存在すると、有機抑制剤の疎水基に疎水性
相互作用により付着することは不可能であるので、高沸
点の炭化水素を使用することが望まれる。本発明で使用
する炭化水素油としては、パラフィン系炭化水素、ナフ
テン系炭化水素、芳香族炭化水素系及びこれらの混合油
のいずれでもよい。しかし、実際の系への適用に際して
はその系の温度を考慮し、液体で存在するものを選択す
る必要がある。
The hydrocarbon oil used in the present invention is a hydrocarbon oil having a hydrophobic interaction with an organic inhibitor. Normally, organic inhibitors are composed of an adsorbing group (polar group) and a hydrophobic group (lipophilic group), and are used for the metal surface in an oil / water (oil-in-water) liquid. In, the organic inhibitor is adsorbed on the metal surface by an adsorbing group (polar group), and the hydrophobic group is oriented toward the liquid. Oil adheres to this hydrophobic group. This adhesion is due to a weak interaction between those excluded by water, and this interaction is called a hydrophobic interaction. In the present invention, a hydrocarbon oil having an interaction with the hydrophobic group of the organic inhibitor is used. However, if hydrocarbons are present as a gas, it is impossible to adhere to the hydrophobic groups of the organic inhibitor by hydrophobic interaction, so it is desirable to use hydrocarbons having a high boiling point. The hydrocarbon oil used in the present invention may be any of paraffinic hydrocarbons, naphthenic hydrocarbons, aromatic hydrocarbons, and mixed oils thereof. However, when applying to an actual system, it is necessary to select the one that exists as a liquid in consideration of the temperature of the system.

【0010】次ぎに、本発明の有機抑制剤と炭化水素油
を使用した場合のアノ−ド反応及びカソ−ド反応の抑制
された状態を実験例をもって示す。比較のため、有機抑
制剤のみの場合及び無添加の場合をも併記する。なお、
分極曲線の測定方法については後述する。 実験1 試験片としてSTPG38を使用し、温度70℃、圧力
CO2:2.0MPa(70℃)の条件下、有機抑制剤
としてアミン系有機抑制剤500ppm、炭化水素油と
してイソオクタン20ml(ミリリットル)を添加した
媒体中における分極曲線を測定した。その測定結果を図
1に示した。図1の分極曲線における縦軸はポテンシャ
ル、横軸は流れた電流である。貴な(電位:ポテンシャ
ルの高い)右上がりの曲線は、基本的には腐食による金
属の溶出反応速度(アノ−ド反応)に対応し、他方、卑
な(電位の低い)右下がりの曲線は、溶液内の物質が金
属から電子を奪う(カソ−ド反応)強さに対応してい
る。それらの強度、即ち、横軸は電流密度の対数であ
る。図1において、有機抑制剤無添加(曲線c)ではア
ノ−ド反応、カソ−ド反応とも電流密度が高く、アノ−
ド反応もカソ−ド反応も活発に進行している。これに対
し、アミン系抑制剤を添加した場合(曲線b)アノ−ド
反応もカソ−ド反応も低電流密度側に移行し、両反応と
も抑制されるが、その抑制の程度はアノ−ド側で顕著で
ある。更に、これに炭化水素油としてイソオクタンを添
加すると、アノ−ド反応もカソ−ド反応も飛躍的に抑制
され、その程度は電流密度で2桁であった。
[0010] Next, an experimental example shows a state in which the anodic reaction and the cathodic reaction are suppressed when the organic inhibitor of the present invention and a hydrocarbon oil are used. For comparison, a case where only the organic inhibitor is used and a case where no organic inhibitor is added are also described. In addition,
The method for measuring the polarization curve will be described later. Experiment 1 STPG38 was used as a test piece, and at a temperature of 70 ° C. and a pressure CO2 of 2.0 MPa (70 ° C.), 500 ppm of an amine organic inhibitor as an organic inhibitor and 20 ml (milliliter) of isooctane as a hydrocarbon oil were added. The polarization curve in the prepared medium was measured. The measurement results are shown in FIG. In the polarization curve of FIG. 1, the vertical axis represents the potential, and the horizontal axis represents the flowing current. The noble (potential: high potential) upward-sloping curve basically corresponds to the metal leaching reaction rate (anodic reaction) due to corrosion, while the noble (low potential) downward-sloping curve corresponds to This corresponds to the strength of the substance in the solution taking away electrons from the metal (cathodic reaction). Their intensity, the horizontal axis, is the logarithm of the current density. In FIG. 1, the current density was high in both the anodic reaction and the cathodic reaction when no organic inhibitor was added (curve c).
Both the cathodic reaction and the cathodic reaction are actively proceeding. On the other hand, when an amine-based inhibitor is added (curve b), both the anodic reaction and the cathodic reaction shift to the low current density side, and both reactions are suppressed. Notable on the side. Further, when isooctane was added as a hydrocarbon oil thereto, both the anodic reaction and the cathodic reaction were drastically suppressed, and the degree was two orders of magnitude in current density.

【0011】実験2 実験1のアミン系有機抑制剤に代えてラウリン酸を、炭
化水素油に代えてキシレンを使用し、試験例1と同様な
試験を行い、その結果を図2に示した。図2より脂肪酸
抑制剤の場合(曲線b)も実験1のアミン系抑制剤と同
様にキシレン(炭化水素油)の添加(曲線c)によりア
ノ−ド、カソ−ド両反応は大きく抑制された。殊にキシ
レンの添加によるカソ−ド反応は飛躍的に抑制された。
なお、曲線cは無添加の場合である。
Experiment 2 A test similar to that of Test Example 1 was carried out using lauric acid in place of the amine organic inhibitor of Experiment 1 and xylene in place of the hydrocarbon oil, and the results are shown in FIG. 2, in the case of the fatty acid inhibitor (curve b), both the anodic and cathodic reactions were greatly suppressed by the addition of xylene (hydrocarbon oil) (curve c), similarly to the amine-based inhibitor of Experiment 1. . In particular, the cathodic reaction caused by the addition of xylene was dramatically suppressed.
In addition, the curve c is a case without addition.

【0012】これらの実験により炭化水素(油)添加に
よるカソ−ド反応の飛躍的抑制は、有機抑制剤の疎水基
に炭化水素(油)が疎水性相互作用により付着したため
にもたらされたものと考えられる。本発明ではこのよう
な有機抑制剤の疎水基と炭化水素(油)とが疎水性相互
作用によりカソ−ド反応を徹底的に抑制することによっ
て局部腐食を抑制するのである。
According to these experiments, the remarkable suppression of the cathodic reaction by the addition of hydrocarbons (oils) was caused by the hydrocarbons (oils) attached to the hydrophobic groups of the organic inhibitor by hydrophobic interaction. it is conceivable that. In the present invention, the hydrophobic group of such an organic inhibitor and the hydrocarbon (oil) thoroughly suppress the cathodic reaction by hydrophobic interaction, thereby suppressing local corrosion.

【0013】[0013]

【実施例】次に実施例をもって本発明を具体的に説明す
る。実施例において、本発明の有機抑制剤の評価試験と
しては、次の3種類の実験室試験と実坑井における評価
試験を行った。 実泥水の1/2濃度の泥水を用いたオートクレーブ試
験 食塩水中の電気化学的測定(分極測定) 実泥水を用いた熱養生セル試験 オートクレーブ試験 掘管はその内側に低温泥水が流通し、その外側に高温泥
水が流れ、管壁は伝熱面と考えられる。そこで、内容量
1.8L、超合金ハステロイC−276内張りのオート
クレーブ内に伝熱面を作り腐食防食実験を行った。その
試験装置を図3に示す。すなわち、ステンレス鋼配管内
部に水道水(冷却水)を通じ、その配管の外面に接触す
るように炭素鋼の円筒形試験片を取り付けた。炭素鋼試
験片をステンレス鋼配管と接触させることにより、腐食
の促進試験とした。実際に使用されている高温度用ポリ
マー泥水をイオン交換水で1/2に希釈した溶液1.3
Lをオートクレーブ内に注入し、試験片が溶液中に浸る
ようにした。腐食性物質としては、溶存酸素と炭酸ガス
が考えられるため脱酸素は行わなかった。また、炭酸ガ
スとして重炭酸ナトリウムを重炭酸イオンとして20,
000ppm添加した。掘管が実坑井で最も激しい腐食
を受けた深度の泥水の推定温度である95℃に20時間
保持し、試験前後の試験片の重量減から腐食速度を求め
た。脂肪酸類および脂肪酸類+油添加有無の条件下で実
験を行った。なお、一部の脂肪酸については180℃で
3日間高温劣化させた試料についても実験を行った。ま
た、120℃においても同様な実験を行った。なお、試
験中溶液を350rpmの速度で攪拌した。
Next, the present invention will be described in detail with reference to examples. In Examples, the following three types of laboratory tests and evaluation tests in actual wells were performed as evaluation tests of the organic inhibitor of the present invention. Autoclave test using mud with 1/2 concentration of real mud Electrochemical measurement in saline solution (polarization measurement) Thermal curing cell test using real mud Autoclave test Low temperature mud flows inside the drilling pipe and outside The high temperature mud flows through the tube, and the tube wall is considered to be a heat transfer surface. Therefore, a corrosion prevention experiment was conducted by forming a heat transfer surface in an autoclave having a 1.8 L capacity and a superalloy Hastelloy C-276 lining. The test device is shown in FIG. That is, tap water (cooling water) was passed through the inside of the stainless steel pipe, and a cylindrical test piece of carbon steel was attached so as to contact the outer surface of the pipe. A corrosion acceleration test was performed by bringing a carbon steel test piece into contact with a stainless steel pipe. 1.3 solution obtained by diluting the polymer muddy water for high temperature actually used by half with ion-exchanged water
L was injected into the autoclave, so that the test piece was immersed in the solution. As the corrosive substances, dissolved oxygen and carbon dioxide gas were considered, so that deoxidation was not performed. Further, sodium bicarbonate is used as carbon dioxide gas,
000 ppm was added. The drill pipe was kept at 95 ° C., which is the estimated temperature of mud at the depth of the most severely corroded area in the actual well, for 20 hours, and the corrosion rate was determined from the weight loss of the test pieces before and after the test. The experiment was performed under the condition of adding fatty acids and fatty acids + oil. In addition, an experiment was also performed on a sample obtained by subjecting some fatty acids to high-temperature deterioration at 180 ° C. for 3 days. A similar experiment was performed at 120 ° C. During the test, the solution was stirred at a speed of 350 rpm.

【0014】分極測定 図4に示したように電解セルに0.1%食塩水を700
mL入れ、その中に炭素鋼試験電極と白金の対極を浸漬
する。Ag/AgCl電極を飽和KCl溶液に浸漬する
ことにより一定の電位を示す参照電極と、試験電極の電
位差をポテンシオスタットにより走査することにより、
その際に試験電極と対極の間に流れる電流をポテンシオ
スタットにて測定する。なお、参照電極と電解セルの間
を塩橋で結び、電流の流れの障害とならないようにし
た。電解セル内の食塩水に重炭酸ナトリウムを重炭酸イ
オンで10,000ppmになるように添加した。また
測定中溶液をスターラーで攪拌した。脱酸素は行わなか
った。分極曲線の測定はまず、腐食電位から卑な方向へ
20mV/minの走査速度でカソード曲線を、続いて
腐食電位から貴な方向へ同じ速度でアノード曲線を求め
た。測定はラウリン酸無添加、ラウリン酸0.1%添
加、さらにキシレン10mL添加の3条件下、室温で行
った。
Polarization Measurement As shown in FIG.
The carbon steel test electrode and the counter electrode of platinum are immersed therein. By scanning the potential difference between a reference electrode showing a constant potential by immersing the Ag / AgCl electrode in a saturated KCl solution and a test electrode with a potentiostat,
At this time, a current flowing between the test electrode and the counter electrode is measured with a potentiostat. The reference electrode and the electrolytic cell were connected by a salt bridge so as not to hinder the flow of current. Sodium bicarbonate was added to the saline solution in the electrolytic cell so as to have a bicarbonate ion concentration of 10,000 ppm. During the measurement, the solution was stirred with a stirrer. No deoxygenation was performed. For the measurement of the polarization curve, first, a cathode curve was obtained at a scan speed of 20 mV / min from the corrosion potential in a noisy direction, and then an anode curve was obtained at the same speed from the corrosion potential in a noble direction. The measurement was performed at room temperature under three conditions of no addition of lauric acid, addition of 0.1% lauric acid, and addition of 10 mL of xylene.

【0015】熱養生セル試験 内容量500mLの円筒形のステンレス鋼製熱養生セル
に実泥水400mLを注入し、重炭酸イオン濃度が1
0,000ppmになるように重炭酸ナトリウムを添加
した。ステンレス鋼の治具に直接炭素鋼試験片を取り付
けた蓋をし、試験片が泥水に浸るようにした。セルを恒
温槽に横置きにし、円周方向に35rpmの速度で回転
させた。恒温槽の温度を95℃に昇温し、その温度に6
8時間維持した。試験前後の重量減から腐食速度を求め
た。ラウリン酸0.1%+キシレン0.5%を添加した
実験を行い防食効果を調べた。
Thermal curing cell test 400 mL of actual muddy water was injected into a cylindrical stainless steel thermal curing cell having an internal volume of 500 mL, and the bicarbonate ion concentration was 1%.
Sodium bicarbonate was added to reach 000 ppm. The stainless steel jig was covered directly with a carbon steel test piece, and the test piece was immersed in muddy water. The cell was placed horizontally in a thermostat and rotated at a speed of 35 rpm in the circumferential direction. Raise the temperature of the thermostat to 95 ° C,
Maintained for 8 hours. The corrosion rate was determined from the weight loss before and after the test. An experiment was performed in which 0.1% lauric acid + 0.5% xylene was added, and the anticorrosion effect was examined.

【0016】実験結果 オートクレーブ試験 ラウリン酸とステアリン酸の防食効果を図5に示す。防
食率は次式により求めた。 図5からラウリン酸、ステアリン酸とも60%以上の良
好な防食効果を示すことが分かった。特に、120℃で
ステアリン酸は95%と高い防食効果を示した。ラウリ
ン酸の防食効果に及ぼす油(キシレン)の影響とラウリ
ン酸の高温劣化の影響を表1に示す。なお、酸とその塩
とが同程度の腐食抑制効果を有することを図6に示す。
Experimental Results Autoclave Test The anticorrosion effects of lauric acid and stearic acid are shown in FIG. The anticorrosion rate was determined by the following equation. From FIG. 5, it was found that both lauric acid and stearic acid exhibited a good anticorrosion effect of 60% or more. In particular, at 120 ° C., stearic acid showed a high anticorrosion effect of 95%. Table 1 shows the effect of oil (xylene) on the anticorrosive effect of lauric acid and the effect of high-temperature deterioration of lauric acid. FIG. 6 shows that the acid and its salt have the same level of corrosion inhibitory effect.

【0017】 [0017]

【0018】表1よりラウリン酸のみの防食率は63%
であったものの、油の添加により88%と高い防食率が
達成された。試験したラウリン酸濃度は0.1%の1点
のみであったが、より高濃度にすればより高い防食効果
が得られる可能性がある。また、ラウリン酸の高温劣化
により防食率が低下するものの、油の共存により54%
の防食効果が得られた。有機系インヒビターの場合、高
温劣化により逆に腐食を促進する化合物があるが、高温
劣化しても防食効果を示したのは評価できる結果であっ
た。
From Table 1, the anticorrosion rate of lauric acid alone is 63%.
However, a high anticorrosion rate of 88% was achieved by the addition of oil. The lauric acid concentration tested was only one point of 0.1%, but a higher concentration may provide a higher anticorrosion effect. In addition, although the anticorrosion rate decreases due to high temperature deterioration of lauric acid, 54%
The anticorrosion effect was obtained. In the case of an organic inhibitor, there is a compound that accelerates corrosion by high-temperature deterioration, but it was an evaluation result that the anti-corrosion effect was exhibited even at high temperature.

【0019】分極測定 この結果については図2に示した通りである。主として
溶存酸素の還元反応と考えられるカソード反応(−30
0mVより卑な部分)に対して、ラウリン酸添加による
電流密度の低下は小さなものであった。すなわち、ラウ
リン酸のみでは炭素鋼から電子を奪う酸素の還元反応は
あまり抑制されない。しかし、油の添加により大幅な
(腐食電位に近い部分では2桁ほど低い)カソード電流
密度の低下が見られた。ラウリン酸と油の共存により酸
素の還元反応が大きく抑制された。一方、炭素鋼の溶出
反応であるアノード反応(−300mVより貴な部分)
は、ラウリン酸の添加、さらに油の添加により段階的に
抑制された。
Polarization measurement The results are as shown in FIG. Cathode reaction (−30) considered to be mainly a reduction reaction of dissolved oxygen
(Lower than 0 mV), the decrease in current density due to the addition of lauric acid was small. That is, lauric acid alone does not significantly suppress the reduction reaction of oxygen, which takes away electrons from carbon steel. However, a significant decrease in the cathode current density (approximately two orders of magnitude lower at portions near the corrosion potential) was observed with the addition of oil. The coexistence of lauric acid and oil greatly suppressed the oxygen reduction reaction. On the other hand, the anodic reaction which is the elution reaction of carbon steel (part noble than -300 mV)
Was suppressed stepwise by the addition of lauric acid and further by the addition of oil.

【0020】熱養生セル試験 実験後に熱養生セルから取出し、イオン交換水で洗浄後
の鋼試験の外観を観察したところ、ラウリン酸と油の双
方無添加ではステンレス鋼治具との隙間部を中心に腐食
が発生していた。それに対し、ラウリン酸と油とを添加
した場合には腐食の発生はほとんど認められなかった。
ちなみに、防食率は75%であった。隙間部はアノード
反応(炭素鋼の溶出)が発生しやすいものの、ラウリン
酸(+油)は接近しにくい。本実験における防食効果
は、ラウリン酸+油によりカソード反応が高い割合で抑
制されたために達成されたものと考えられる。泥水を使
用した掘削には、泥水に対して次ぎのような機能の発揮
が求められている。 清掃と運搬(分散剤、増粘剤) 冷却と潤滑(潤滑剤)及び比重の調整(加重剤) 泥壁形成(増粘剤) このため泥水に各種水溶性ポリマーが添加されている。
水溶性ポリマーは有機系インヒビターの金属表面への吸
着の障害になるものと考えられる。したがって、ポリマ
−掘削泥水において、防食率は75%にとどまったが評
価できる値である。
Heat Curing Cell Test After the test, the steel was removed from the heat curing cell, and the appearance of the steel test after washing with ion-exchanged water was observed. Corrosion had occurred. On the other hand, when lauric acid and oil were added, almost no corrosion was observed.
Incidentally, the anticorrosion rate was 75%. Although anodic reaction (elution of carbon steel) is likely to occur in the gap, lauric acid (+ oil) is difficult to access. It is considered that the anticorrosion effect in this experiment was achieved because the cathodic reaction was suppressed at a high rate by lauric acid + oil. Excavation using muddy water is required to exhibit the following functions against muddy water. Cleaning and transportation (dispersant, thickener) Cooling and lubrication (lubricant) and adjustment of specific gravity (weighting agent) Mud wall formation (thickener) For this purpose, various water-soluble polymers are added to muddy water.
The water-soluble polymer is considered to hinder the adsorption of the organic inhibitor on the metal surface. Therefore, in the polymer-drilled mud, the anticorrosion rate was only 75%, but it could be evaluated.

【0021】実坑井における評価結果 実験室における防食試験でラウリン酸+油が良好な防食
効果を示したので、実坑井において、ラウリン酸+重油
の防食効果を調べた。実坑井では泥水は約70℃で地上
から掘管内に入り、約80℃で地上に戻ってくる。その
間の最高温度は140〜150℃に達する。掘削する地
層の温度は200℃を優に超える。ラウリン酸+重油添
加前(5,000m掘進時)には、掘管外面の約200
m〜4,600mにかけての広範囲で腐食の発生が認め
られた。しかし、ラウリン酸0.8%と重油3%の添加
により(6,000m掘進時)、腐食の発生深度は約
1,000〜1,800mの狭い範囲になるとともに、
腐食の程度も大幅に軽減された。特に1,000mまで
の浅部はラウリン酸と重油による強固な防食皮膜が生成
し、高い撥水性が認められた。本発明は実坑井において
も優秀な防食効果を示した。
Evaluation Results in Actual Wells In a corrosion prevention test in a laboratory, lauric acid + oil showed a good anticorrosion effect. Therefore, in an actual well, the anticorrosion effect of lauric acid + heavy oil was examined. In an actual well, mud enters the borehole at about 70 ° C from the ground and returns to the ground at about 80 ° C. During this time the maximum temperature reaches 140-150 ° C. The temperature of the excavated formation is well above 200 ° C. Before adding lauric acid and heavy oil (when drilling 5,000 m), about 200
The occurrence of corrosion was observed over a wide range from m to 4,600 m. However, with the addition of 0.8% lauric acid and 3% heavy oil (when drilling at 6,000 m), the depth of occurrence of corrosion is narrowed to about 1,000 to 1,800 m,
The degree of corrosion has also been greatly reduced. In particular, a strong anticorrosive film of lauric acid and heavy oil was formed in the shallow portion up to 1,000 m, and high water repellency was recognized. The present invention showed an excellent anticorrosion effect even in an actual well.

【0022】[0022]

【発明の効果】以上述べたように、本発明は有機抑制剤
と炭化水素油、特に長鎖脂肪酸と炭化水素油との組み合
わせで金属類の局部腐食を抑制することができ、これに
よって、石油・天然ガスの坑井に使用される掘管外面の
局部腐食を容易に抑制することができる。
As described above, the present invention can suppress the local corrosion of metals by a combination of an organic inhibitor and a hydrocarbon oil, especially a combination of a long-chain fatty acid and a hydrocarbon oil. -Local corrosion on the outer surface of the excavation pipe used in a natural gas well can be easily suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実験1の分極試験結果の測定図FIG. 1 is a measurement diagram of a polarization test result of Experiment 1.

【図2】実験2の分極試験結果の測定図FIG. 2 is a measurement diagram of a polarization test result of Experiment 2.

【図3】オ−トクレ−ブ試験装置の模式図FIG. 3 is a schematic diagram of an autoclave test apparatus.

【図4】分極測定装置の模式図FIG. 4 is a schematic diagram of a polarization measuring device.

【図5】オ−トクレ−ブを用いた腐食防食試験結果の図FIG. 5 is a diagram showing the results of a corrosion / corrosion test using an autoclave.

【図6】ラウリン酸とその塩との1/2泥水中の腐食抑
制効果の図
FIG. 6 is a diagram of the corrosion inhibiting effect of lauric acid and its salt in 1/2 muddy water.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年12月8日(1999.12.
8)
[Submission date] December 8, 1999 (1999.12.
8)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】[0007]

【発明の実施の形態】本発明について詳細に述べる。本
発明により局部腐食を抑制される金属類としては、鉄、
低合金鋼、ステンレス鋼等の何れの金属でも良いが、特
に石油・天然ガス探鉱開発に使用される掘管に対して有
効である。石油・天然ガス探鉱開発に使用される掘管は
ポリマ−泥水と共に地層温度が200℃と言う過酷な条
件下で使用されるため掘管の外面には局部腐食が生じや
すく、この局部腐食を抑制するのに有効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail. The metals that can suppress local corrosion according to the present invention include iron,
Although any metal such as low alloy steel and stainless steel may be used, it is particularly effective for drilling pipes used for oil and natural gas exploration and development. Drilling pipes used for oil and natural gas exploration and development are used under severe conditions of 200 ° C with formation temperature of polymer and muddy water, so local corrosion easily occurs on the outer surface of the drilling pipes, and this local corrosion is suppressed. It is effective to do.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】本発明で使用する有機抑制剤としては、金
属表面との適合性の良好な有機抑制剤が好ましい。ここ
で、金属表面との適合性の良好な有機抑制剤とはその金
属に対し、強い吸収力を示す有機抑制剤であることを意
味するものである。局部腐食が発生する環境では、腐食
部は活性溶解しているのに対し、それ以外の金属表面は
酸化物などで覆われ強弱の差はあるが、不動態化してい
るものと考えられる。従って、局部腐食を防止する抑制
剤としては不働態金属との適合性の良い有機抑制剤が有
効なものと考えられる。具体的には鉄(鋼)に対しては
アミン類の抑制剤が、酸化物によって不働態化された鉄
(鋼)に対しては脂肪酸類の抑制剤が好ましい。アミン
類の抑制剤としては、長鎖アミン類や長鎖イミダゾリン
類であり、脂肪酸類の抑制剤としては長鎖脂肪酸(R−
COOH R:アルキル基を表す。)やその塩類及び誘
導体であり、Rの炭素数11〜18の長鎖脂肪酸が好ま
しい。また、不働態化が弱い場合には、長鎖含窒素化合
物とその誘導体が効果的である。
As the organic inhibitor used in the present invention, an organic inhibitor having good compatibility with the metal surface is preferable. Here, an organic inhibitor having good compatibility with the metal surface means an organic inhibitor having a strong absorption power for the metal. In an environment where local corrosion occurs, the corroded portion is actively dissolved, whereas the other metal surfaces are covered with oxides and the like, and although there is a difference in strength, it is considered to be passivated. Therefore, it is considered that an organic inhibitor having good compatibility with a passive metal is effective as an inhibitor for preventing local corrosion. Specifically, an inhibitor of amines is preferable for iron (steel), and an inhibitor of fatty acids is preferable for iron (steel) passivated by an oxide. As inhibitors for amines, there are long-chain amines and long-chain imidazolines, and as inhibitors for fatty acids, long-chain fatty acids (R-
COOH R: represents an alkyl group. ) And salts and derivatives thereof, and a long-chain fatty acid having 11 to 18 carbon atoms of R is preferable. When the passivation is weak, a long-chain nitrogen-containing compound and its derivative are effective.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属類の局部腐食を抑制するに当たり、
有機抑制剤と炭化水素油とを添加することを特徴とする
金属類の局部腐食抑制方法。
1. In suppressing local corrosion of metals,
A method for inhibiting local corrosion of metals, comprising adding an organic inhibitor and a hydrocarbon oil.
【請求項2】 前記金属類が掘削用の掘管である請求項
1記載の金属類の局部腐食抑制方法。
2. The method according to claim 1, wherein the metal is a drilling pipe.
【請求項3】 前記有機抑制剤が長鎖脂肪酸類及び/又
はその誘導体であり、前記炭化水素油がパラフィン系、
ナフテン系、芳香族系及びこれらの混合油からなる群か
ら選ばれた少なくとも1種である請求項1〜2の何れか
の項記載の金属類の局部腐食抑制方法。
3. The organic inhibitor is a long-chain fatty acid and / or a derivative thereof, and the hydrocarbon oil is a paraffinic oil,
The method for suppressing local corrosion of metals according to any one of claims 1 to 2, wherein the method is at least one selected from the group consisting of a naphthene type, an aromatic type, and a mixed oil thereof.
JP11024481A 1999-02-02 1999-02-02 Method for suppressing local corrosion of metals Pending JP2000219980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11024481A JP2000219980A (en) 1999-02-02 1999-02-02 Method for suppressing local corrosion of metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11024481A JP2000219980A (en) 1999-02-02 1999-02-02 Method for suppressing local corrosion of metals

Publications (1)

Publication Number Publication Date
JP2000219980A true JP2000219980A (en) 2000-08-08

Family

ID=12139386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11024481A Pending JP2000219980A (en) 1999-02-02 1999-02-02 Method for suppressing local corrosion of metals

Country Status (1)

Country Link
JP (1) JP2000219980A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136012A1 (en) * 2013-03-04 2014-09-12 Schlumberger Technology B.V. Corrosion inhibition
US20170240796A1 (en) * 2014-09-03 2017-08-24 Schlumberger Technology Corporation Corrosion inhibition
WO2019139080A1 (en) * 2018-01-11 2019-07-18 国際石油開発帝石株式会社 Corrosion inhibitor composition, mixed transport fluid, corrosion inhibitor composition charging method, well, and pipeline
US11078576B2 (en) 2016-08-23 2021-08-03 Inpex Corporation Corrosion inhibitor, well, pipeline, and method for forming anticorrosion film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136012A1 (en) * 2013-03-04 2014-09-12 Schlumberger Technology B.V. Corrosion inhibition
US10087530B2 (en) 2013-03-04 2018-10-02 Schlumberger Technology Corporation Corrosion inhibition
US20170240796A1 (en) * 2014-09-03 2017-08-24 Schlumberger Technology Corporation Corrosion inhibition
US10808164B2 (en) * 2014-09-03 2020-10-20 Schlumberger Technology Corporation Corrosion inhibition
US11078576B2 (en) 2016-08-23 2021-08-03 Inpex Corporation Corrosion inhibitor, well, pipeline, and method for forming anticorrosion film
WO2019139080A1 (en) * 2018-01-11 2019-07-18 国際石油開発帝石株式会社 Corrosion inhibitor composition, mixed transport fluid, corrosion inhibitor composition charging method, well, and pipeline
JP2019123891A (en) * 2018-01-11 2019-07-25 国際石油開発帝石株式会社 Corrosion inhibitor composition, transportation fluid mixture, input method of corrosion inhibitor composition, winze and pipeline

Similar Documents

Publication Publication Date Title
Bokati et al. Adsorption behavior of 1H-benzotriazole corrosion inhibitor on aluminum alloy 1050, mild steel and copper in artificial seawater
Shamsa et al. Impact of corrosion products on performance of imidazoline corrosion inhibitor on X65 carbon steel in CO2 environments
US11124883B2 (en) Method for inhibiting metal corrosion using a benzimidazole-containing composition
EP0810302B1 (en) Use of a mixture of surfactants for corrosion inhibiting
US20080181813A1 (en) Novel Mercaptan-Based Corrosion Inhibitors
Mercer Test methods for corrosion inhibitors: Report prepared for the European Federation of Corrosion Working Party on Inhibitors
Al-Moubaraki et al. The red sea as a corrosive environment: corrosion rates and corrosion mechanism of aluminum alloys 7075, 2024, and 6061
US20160362598A1 (en) Decreasing corrosion on metal surfaces
US6602555B1 (en) Tobacco extract composition and method
US7264707B1 (en) Corrosion inhibitor materials for use in combination with cathodic protectors in metallic structures
JP2000219980A (en) Method for suppressing local corrosion of metals
Yaagoob et al. Surface and interfacial properties of poly (methyldiallylammonium chloride): Effect of hydrophobic pendant and synergism (KI) on corrosion of C1018CS in 15% HCl
Shaker et al. Protecting oil flowlines from corrosion using 5-ACETYL-2-ANILINO-4-DIMETHYLAMINOTHIAZOLE
Jenkins et al. Mitigation of under-deposit and weldment corrosion with an environmentally acceptable corrosion inhibitor
Huynh The inhibition of copper corrosion in aqueous environments with heterocyclic compounds
Deng et al. Effect of microstructure on corrosion of welded joints of X80 steel in water saturated supercritical CO2
Sun et al. Cathodic protection criteria of low alloy steel in simulated deep water environment
Christy et al. Anticorrosion activity of pheniramine maleate on mild steel in hydrochloric acid
Husin et al. Weight loss effect and potentiodynamic polarization response of 1-butyl-3-methylimidazolium chloride ionic liquid in highly acidic medium
EP0211065B1 (en) Corrosion inhibitor for high density brines
US20180201826A1 (en) Synergistic corrosion inhibitors
Hudgins Jr et al. The Effect of Cathodic Protection on the Corrosion Fatigue Behavior of Carbon Steel In Synthetic Sea Water
Xionghu et al. Application of Benzotriazole Corrosion Inhibitor in Synthetic-Based Drilling Fluid and its Overall Impact in Improving Drilling Fluid Functionality
Nitonye et al. Analysis of the effectiveness and efficiency of the VA solution on offshore pipelines and ship materials
Hadzihafizovic Corrosion theory in oil and gas fields