JP2000219819A - Fine particulate titanium dioxide composition, its production and cosmetic compounded with the fine particulate titanium dioxide composition - Google Patents

Fine particulate titanium dioxide composition, its production and cosmetic compounded with the fine particulate titanium dioxide composition

Info

Publication number
JP2000219819A
JP2000219819A JP2563099A JP2563099A JP2000219819A JP 2000219819 A JP2000219819 A JP 2000219819A JP 2563099 A JP2563099 A JP 2563099A JP 2563099 A JP2563099 A JP 2563099A JP 2000219819 A JP2000219819 A JP 2000219819A
Authority
JP
Japan
Prior art keywords
titanium dioxide
fine
fine particle
weight
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2563099A
Other languages
Japanese (ja)
Other versions
JP3636607B2 (en
Inventor
Nobuyuki Yokoyama
伸幸 横山
Yoshimasa Kamata
佳昌 蒲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP02563099A priority Critical patent/JP3636607B2/en
Publication of JP2000219819A publication Critical patent/JP2000219819A/en
Application granted granted Critical
Publication of JP3636607B2 publication Critical patent/JP3636607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide fine particulate titanium dioxide composition wettable with water and having excellent water dispersibility, ultraviolet shielding power, discoloration resistance and production workability. SOLUTION: The objective fine particulate titanium dioxide composition is produced by using a fine titanium dioxide particle having maximum particle diameter of <=0.1 μm and an average primary particle diameter of 0.01-0.08 μm as a core particle, coating the surface of the core particle with an inner layer consisting of 8-15 wt.% of a high-density silicon oxide in terms of SiO2 based on the fine titanium dioxide particle, coating the product with an intermediate layer consisting of 5-10 wt.% of hydrated aluminum oxide in terms of Al2O3 based on the fine titanium dioxide particle and finally coating the surface with an outer layer consisting of 2-7 wt.% of alginic acid based on the fine titanium dioxide particle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水とのなじみがよ
く、水分散性、紫外線遮蔽能および耐変色性が優れ、し
かも製造時の作業性(製造時のろ過性) が優れた微粒子
二酸化チタン組成物およびその製造方法ならびに上記微
粒子二酸化チタン組成物を配合した化粧料に関する。
TECHNICAL FIELD The present invention relates to a fine particle dioxide which has good compatibility with water, is excellent in water dispersibility, ultraviolet shielding ability and discoloration resistance, and has excellent workability during production (filterability during production). The present invention relates to a titanium composition, a method for producing the titanium composition, and a cosmetic containing the fine titanium dioxide composition.

【0002】[0002]

【従来の技術】最大粒子径が0.1μm以下である微粒
子二酸化チタンは、人体に対する安全性が高く、可視部
での透明性が優れ、また紫外部での遮蔽能を有すること
から、化粧料、塗料、化学繊維など、広い分野で使用さ
れている。この微粒子二酸化チタンは、その特性を発揮
するのに適するように、最大粒子径が0.1μm以下に
コントロールされていて、一次粒子径が小さいために媒
体中で分散する際に凝集しやすく、その解消のために
は、強力な分散エネルギーが必要になる。
2. Description of the Related Art Fine particle titanium dioxide having a maximum particle size of 0.1 μm or less is highly safe for the human body, has excellent transparency in the visible part, and has an ultraviolet shielding ability. It is used in a wide range of fields, such as paints, chemical fibers, etc. This fine particle titanium dioxide has a maximum particle diameter controlled to 0.1 μm or less so as to be suitable for exhibiting its properties, and because the primary particle diameter is small, it is easy to aggregate when dispersed in a medium, To resolve this, strong dispersion energy is required.

【0003】上記のような微粒子二酸化チタンの媒体中
で凝集しやすく、媒体中に充分に分散することができな
いという性質は、化粧料業界にとっては切実な問題であ
り、それを解消するために様々な検討が行われている
が、いまだ充分なものは見出されていない。特に、最近
の流行として、ベタツキの少なさや、さらさら感といっ
た肌ざわりを重視した化粧料が多く望まれていることか
ら、水系ベースの化粧料の需要が増えており、そのた
め、水分散性の優れた微粒子二酸化チタンが要望されて
いる。
[0003] The nature of the above-mentioned fine particles of titanium dioxide, which tend to agglomerate in a medium and cannot be sufficiently dispersed in the medium, is a serious problem for the cosmetics industry. Studies have been carried out, but nothing has yet been found. In particular, the demand for water-based cosmetics has increased in recent years, as there has been a great demand for cosmetics that emphasize the texture, such as low stickiness and smoothness. There is a need for fine particulate titanium dioxide.

【0004】[0004]

【発明が解決しようとする課題】微粒子二酸化チタン自
身や、その耐候性などを向上させるために表面に無機化
合物を被覆した微粒子二酸化チタン組成物は、本来、親
水性であるが、上記のように媒体中では凝集しやすく、
媒体中に充分に分散することができないという問題があ
る。
The fine particle titanium dioxide itself and the fine particle titanium dioxide composition whose surface is coated with an inorganic compound in order to improve the weather resistance and the like are inherently hydrophilic. Easy to aggregate in the medium,
There is a problem that it cannot be sufficiently dispersed in a medium.

【0005】そのため、金属石鹸やシリコーンにより表
面処理することが提案されているが、それらによって表
面処理した場合には、微粒子二酸化チタン組成物の粒子
表面が撥水性になってしまう。そこで、微粒子二酸化チ
タン系で、水系ベースの化粧料に配合でき、かつ、水分
散性、紫外線遮蔽能、耐変色性、製造時の作業性(製造
時のろ過性)などが優れた、高品質の組成物が求められ
ている。
[0005] For this reason, surface treatment with metal soap or silicone has been proposed. However, when the surface treatment is performed with these, the particle surface of the fine titanium dioxide composition becomes water repellent. Therefore, it is a high-quality, fine-particle titanium dioxide-based compound that can be blended with water-based cosmetics and has excellent water dispersibility, ultraviolet shielding ability, discoloration resistance, workability during production (filterability during production), etc. Is required.

【0006】本発明は、上記のような事情に鑑み、水へ
のなじみがよく、水分散性、紫外線遮蔽能、耐変色性お
よび製造時の作業性が優れた微粒子二酸化チタン組成物
を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a fine particle titanium dioxide composition which is well-adapted to water, and has excellent water dispersibility, ultraviolet shielding ability, discoloration resistance and workability during production. The purpose is to:

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、中核となる微粒
子二酸化チタンの表面に、内層として高密度の酸化ケイ
素を特定量被覆し、その上に中間層としてアルミニウム
の水和酸化物を特定量被覆し、その上に外層としてアル
ギン酸を特定量被覆することによって、水へのなじみが
よく、水分散性、紫外線遮蔽能、耐変色性および製造時
の作業性(製造時のろ過性)が優れた微粒子二酸化チタ
ン組成物を作り出すことに成功した。また、上記微粒子
二酸化チタン組成物を化粧料に配合することによって、
高い透明性と優れた紫外線遮蔽能を有する化粧料が得ら
れることも見出した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, coated a specific amount of high-density silicon oxide as an inner layer on the surface of the core fine particle titanium dioxide. By coating a specific amount of hydrated oxide of aluminum as an intermediate layer on it and coating a specific amount of alginic acid on it as an outer layer, it has good compatibility with water, water dispersibility, UV shielding ability, discoloration resistance A fine particle titanium dioxide composition having excellent properties and workability during production (filterability during production) was successfully produced. Also, by blending the fine particle titanium dioxide composition in cosmetics,
It has also been found that a cosmetic having high transparency and excellent ultraviolet shielding ability can be obtained.

【0008】すなわち、本発明の第一の要旨は、中核と
なる最大粒子径が0.1μm以下であり平均一次粒子径
が0.01〜0.08μmである微粒子二酸化チタンの
表面に、内層として微粒子二酸化チタンの重量に対しS
iO2 として8〜15%の高密度の酸化ケイ素を被覆
し、中間層として微粒子二酸化チタンの重量に対しAl
2 3 として5〜10%のアルミニウムの水和酸化物を
被覆し、外層として微粒子二酸化チタンの重量に対し2
〜7%のアルギン酸を被覆した微粒子二酸化チタン組成
物である。
That is, the first gist of the present invention is that
The maximum primary particle diameter is 0.1 μm or less and the average primary particle diameter
Is 0.01 to 0.08 μm.
On the surface, as the inner layer, S
iOTwo8-15% high density silicon oxide coating
And Al as the intermediate layer based on the weight of the fine particle titanium dioxide.
TwoOThree5-10% aluminum hydrated oxide
Coated, as an outer layer 2 parts by weight of fine titanium dioxide
Fine particle titanium dioxide composition coated with ~ 7% alginic acid
Things.

【0009】そして、本発明の第二の要旨は、上記微粒
子二酸化チタン組成物を次の第1〜3工程を経て製造す
る方法である。
A second aspect of the present invention is a method for producing the above-mentioned fine particle titanium dioxide composition through the following first to third steps.

【0010】〔第1工程〕最大粒子径が0.1μm以下
であり平均一次粒子径が0.01〜0.08μmである
微粒子二酸化チタンの水性縣濁液を、80℃以上に加熱
し、塩基を加えてpHを9以上に調整し、pH調整後、
上記水性縣濁液に、上記微粒子二酸化チタンの重量に対
しSiO2 として8〜15%のケイ酸塩化合物を添加
し、引き続きこの縣濁液に酸を一定速度で添加して中和
する。
[First Step] An aqueous suspension of fine particle titanium dioxide having a maximum particle diameter of 0.1 μm or less and an average primary particle diameter of 0.01 to 0.08 μm is heated to 80 ° C. or more to form a base. To adjust the pH to 9 or higher.
To the aqueous suspension, 8 to 15% of a silicate compound as SiO 2 based on the weight of the fine particle titanium dioxide is added, and then the suspension is neutralized by adding an acid at a constant rate.

【0011】〔第2工程〕中和後、微粒子二酸化チタン
の重量に対しAl2 3 として5〜10%の水溶性アル
ミニウム塩を添加し、次いで系のpHを3〜6に調整し
た後、熟成する。
[Second step] After neutralization, 5-10% of a water-soluble aluminum salt is added as Al 2 O 3 to the weight of the fine titanium dioxide, and then the pH of the system is adjusted to 3-6. Mature.

【0012】〔第3工程〕熟成後、微粒子二酸化チタン
の重量に対しアルギン酸として2〜8%の水溶性アルギ
ン酸塩を添加し、1時間以上熟成する。
[Third step] After aging, 2-8% of a water-soluble alginate as alginic acid is added to the weight of the fine titanium dioxide particles, and the mixture is aged for 1 hour or more.

【0013】さらに、本発明の第三の要旨は、上記微粒
子二酸化チタン組成物を全体に対し1〜80重量%の比
率で配合した化粧料である。
Further, a third aspect of the present invention is a cosmetic comprising the above-mentioned fine particle titanium dioxide composition in a ratio of 1 to 80% by weight based on the whole.

【0014】[0014]

【発明の実施の形態】まず、本発明の微粒子二酸化チタ
ン組成物について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the fine titanium dioxide composition of the present invention will be described.

【0015】本発明の微粒子二酸化チタン組成物の特徴
は、最大粒子径が0.1μm以下であり平均一次粒子径
が0.01〜0.08μmである微粒子二酸化チタンの
表面に、内層として高密度の酸化ケイ素の特定量被覆
し、続いて中間層としてアルミニウムの水和酸化物を特
定量被覆し、続いて外層としてアルギン酸を特定量被覆
して微粒子二酸化チタン組成物を構成したことにある。
上記順序で、中核となる微粒子二酸化チタンの表面に、
高密度の酸化ケイ素、アルミニウムの水和酸化物、アル
ギン酸を被覆することにより、微粒子酸化チタン組成物
に優れた水分散性、紫外線遮蔽能、耐変色性および作業
性を備えさせることができる。上記高密度の酸化ケイ素
とは、米国特許第2885366号明細書に記載のよう
な状態をいう。つまり、酸化ケイ素が無定形で重合度が
高く緻密な状態であることを意味する。
The fine particle titanium dioxide composition of the present invention is characterized in that the maximum particle diameter is 0.1 μm or less and the average primary particle diameter is 0.01 to 0.08 μm. A specific amount of silicon oxide, followed by a specific amount of a hydrated oxide of aluminum as an intermediate layer, and then a specific amount of alginic acid as an outer layer to constitute a fine particle titanium dioxide composition.
In the above order, on the surface of the core fine particle titanium dioxide,
By coating silicon oxide, aluminum hydrated oxide, and alginic acid with high density, the fine particle titanium oxide composition can have excellent water dispersibility, ultraviolet shielding ability, discoloration resistance, and workability. The high-density silicon oxide refers to a state as described in US Pat. No. 2,885,366. That is, it means that the silicon oxide is amorphous, has a high degree of polymerization, and is in a dense state.

【0016】被覆の順序は、得られる微粒子二酸化チタ
ン組成物の特性に対して影響を及ぼす。例えば、高密度
の酸化ケイ素の被覆を最初に行わず、アルミニウムの水
和酸化物またはアルギン酸の被覆の後に行うと、得られ
る微粒子二酸化チタン組成物の水分散性や耐変色性には
それほど大きな影響を生じないものの、製造時における
ろ過工程や洗浄工程でろ過ケーキがチキソトロピックに
なってしまい作業性が大きく低下し、しかも、得られる
微粒子二酸化チタン組成物の紫外線遮蔽能が低下する。
また、アルミニウムの水和酸化物の被覆とアルギン酸の
被覆の順序を入れ替えた場合、得られる微粒子二酸化チ
タン組成物の水分散性や紫外線遮蔽能が大きく低下す
る。
[0016] The order of coating affects the properties of the resulting particulate titanium dioxide composition. For example, if the coating of high-density silicon oxide is not performed first, but after the coating of aluminum hydrated oxide or alginic acid, the water dispersibility and discoloration resistance of the resulting fine-grained titanium dioxide composition are significantly affected. However, the filter cake becomes thixotropic in the filtration step and the washing step during production, and the workability is greatly reduced, and the ultraviolet shielding ability of the obtained fine particle titanium dioxide composition is reduced.
In addition, when the order of the coating of the aluminum hydrated oxide and the coating of the alginic acid is changed, the water dispersibility and ultraviolet shielding ability of the obtained fine particle titanium dioxide composition are significantly reduced.

【0017】微粒子二酸化チタンへの各被覆層の役割と
しては、内層としての高密度の酸化ケイ素は、微粒子二
酸化チタンに耐変色性や水分散性の向上、さらには上記
水分散性の向上に基づく紫外線遮蔽能の向上という特性
を付与するものと考えられる。中間層としてのアルミニ
ウムの水和酸化物は、さらなる耐変色性の向上と外層と
して被覆するアルギン酸を固着させる役割を担うものと
考えられる。そして、外層としてのアルギン酸は、得ら
れる微粒子二酸化チタン組成物に水分散性、紫外線遮蔽
能、作業性(ろ過性)の向上という特性を付与するもの
と考えられる。
The role of each coating layer on the fine particle titanium dioxide is such that the high density silicon oxide as the inner layer is based on the improvement of the discoloration resistance and the water dispersibility of the fine particle titanium dioxide, and the improvement of the water dispersibility. It is considered that the property of improving the ultraviolet shielding ability is imparted. It is considered that the hydrated oxide of aluminum as the intermediate layer plays a role in further improving discoloration resistance and fixing alginic acid to be coated as the outer layer. The alginic acid as the outer layer is considered to provide the obtained fine particle titanium dioxide composition with properties such as improved water dispersibility, ultraviolet shielding ability, and workability (filterability).

【0018】なお、微粒子二酸化チタン組成物の外層と
して、アルギン酸に代えて、ヒアルロン酸、カラギナ
ン、ペクチンなどの多糖類やカルボキシメチルセルロー
スを被覆しても水分散性などの向上が得られるが、本発
明者らが検討したところでは、アルギン酸で被覆した微
粒子二酸化チタン組成物が最も特性が優れていた。
It should be noted that the water dispersibility can be improved by coating the outer layer of the fine particle titanium dioxide composition with a polysaccharide such as hyaluronic acid, carrageenan or pectin or carboxymethylcellulose instead of alginic acid. According to the study, the fine particle titanium dioxide composition coated with alginic acid had the best properties.

【0019】つぎに、本発明の微粒子二酸化チタン組成
物の製造方法について詳細に説明する。
Next, the method for producing the fine particle titanium dioxide composition of the present invention will be described in detail.

【0020】本発明の微粒子二酸化チタン組成物は、微
粒子二酸化チタンを中核とし、その表面に特定の3工程
の被覆処理を経ることによって製造される。
The fine particle titanium dioxide composition of the present invention is produced by subjecting the surface of the fine particle titanium dioxide to a specific three-step coating treatment.

【0021】上記微粒子二酸化チタン組成物の製造にあ
たって使用する微粒子二酸化チタンとは、粉体とした場
合、最大粒子径が0.1μm以下であり平均一次粒子径
が0.01〜0.08μmである二酸化チタンをいう。
粒子の形状は球形でも棒状、針状のいずれでも構わない
が、球状でない場合、長軸の長さが上記の粒子径の範囲
内にあるのが好ましい。被覆処理を行う場合、上記微粒
子二酸化チタンの粉体を水に縣濁させて水性縣濁液とし
てもよいが、好ましくは、微粒子二酸化チタンの水性懸
濁液として、硫酸チタニル溶液や四塩化チタン溶液など
を加水分解し、塩酸解膠して得られる酸性チタニアゾル
またはルチル形結晶構造をもつ酸性チタニアゾルを微粒
子二酸化チタン組成物の水性縣濁液として用いるのが好
ましい。
The fine particle titanium dioxide used in the production of the fine particle titanium dioxide composition, when powdered, has a maximum particle diameter of 0.1 μm or less and an average primary particle diameter of 0.01 to 0.08 μm. Refers to titanium dioxide.
The shape of the particles may be spherical, rod-like, or needle-like, but if it is not spherical, it is preferable that the length of the major axis is within the above-mentioned range of the particle diameter. In the case of performing the coating treatment, the above-mentioned fine titanium dioxide powder may be suspended in water to form an aqueous suspension, but preferably, an aqueous suspension of the fine titanium dioxide is used as a titanyl sulfate solution or a titanium tetrachloride solution. It is preferable to use an acidic titania sol or an acidic titania sol having a rutile-type crystal structure obtained by hydrolyzing and peptizing hydrochloric acid as an aqueous suspension of the fine particle titanium dioxide composition.

【0022】第1工程では、上記の微粒子二酸化チタン
の水性縣濁液に、ケイ酸塩化合物を添加して、微粒子二
酸化チタンの表面に内層として高密度に酸化ケイ素を被
覆する。この際、シリカ源として使用するケイ酸塩化合
物としては、特に限定されることなく、例えば、ケイ酸
ソーダ、ケイ酸カリなどケイ酸アルカリなど、種々のも
のを用い得るが、特にケイ酸ソーダが好ましい。
In the first step, a silicate compound is added to the aqueous suspension of the above-mentioned fine particle titanium dioxide, and the surface of the fine particle titanium dioxide is coated with silicon oxide as an inner layer at a high density. At this time, the silicate compound used as the silica source is not particularly limited, for example, sodium silicate, alkali silicates such as potassium silicate, etc., various types can be used, particularly sodium silicate preferable.

【0023】微粒子二酸化チタンの粒子表面に緻密に酸
化ケイ素を被覆する、すなわち、高密度に酸化ケイ素で
被覆するための条件としては、添加前に水性懸濁液を8
0℃以上に加熱し、pHを苛性ソーダやアンモニア水を
用いてpH9.0以上に調整することが好ましい。ま
た、ケイ酸塩化合物の添加後の中和時においても、酸を
一定速度で添加し、その際、一定時間以上かけて中和す
ることが好ましい。酸による中和速度を早くすると高密
度の酸化ケイ素が形成されにくくなる。もし、高密度で
ない酸化ケイ素(低密度シリカ)が微粒子酸化チタンの
表面に被覆されると、粒子同士が凝集する傾向が生じ所
望の水分散性が得られない。
The condition for densely coating silicon oxide on the particle surface of the fine particle titanium dioxide, that is, for coating the silicon oxide with high density, is as follows.
It is preferable to heat to 0 ° C. or higher and adjust the pH to 9.0 or higher using caustic soda or aqueous ammonia. Also, at the time of neutralization after the addition of the silicate compound, it is preferable to add the acid at a constant rate, and at that time, neutralize for a certain time or more. If the rate of neutralization with an acid is increased, high-density silicon oxide is less likely to be formed. If silicon oxide having low density (low density silica) is coated on the surface of titanium oxide fine particles, the particles tend to agglomerate, and desired water dispersibility cannot be obtained.

【0024】酸化ケイ素の被覆量としては、中核となる
微粒子二酸化チタンの重量に対してSiO2 として8〜
15%、好ましくは10〜13%である。酸化ケイ素の
被覆量が上記範囲より少ない場合は、耐変色性、水分散
性が充分に向上せず、また、酸化ケイ素の被覆量が上記
範囲より多い場合は、微粒子酸化チタンの含有量が少な
くなり微粒子酸化チタン特有の紫外線遮蔽能が損なわれ
る。
The coating amount of silicon oxide is preferably 8 to 8% as SiO 2 with respect to the weight of the core fine particle titanium dioxide.
It is 15%, preferably 10 to 13%. If the coating amount of silicon oxide is less than the above range, discoloration resistance, water dispersibility is not sufficiently improved, and if the coating amount of silicon oxide is more than the above range, the content of fine particle titanium oxide is small. As a result, the ultraviolet shielding ability peculiar to the fine particle titanium oxide is impaired.

【0025】第2工程では、微粒子二酸化チタンの表面
に内層として被覆した高密度の酸化ケイ素上に、アルミ
ニウムの水和酸化物を被覆する。その被覆処理にあたっ
て使用するアルミニウム化合物としては、水溶性アルミ
ニウム塩を使用するのが適しており、その具体例として
は、例えば、アルミン酸ソーダ、硫酸アルミニウム、ポ
リ塩化アルミニウムなどが好ましい。
In the second step, a hydrated oxide of aluminum is coated on the high-density silicon oxide coated as an inner layer on the surface of the fine particle titanium dioxide. As the aluminum compound used in the coating treatment, a water-soluble aluminum salt is suitably used, and specific examples thereof include sodium aluminate, aluminum sulfate, and polyaluminum chloride.

【0026】アルミニウムの水和酸化物の被覆量は、中
核となる微粒子二酸化チタンの重量に対してAl2 3
として5〜10%、好ましくは6〜9%である。アルミ
ニウムの水和酸化物の被覆量が上記範囲より少ない場合
は、耐変色性が不充分になったり、外層として被覆する
アルギン酸がうまく固着しないおそれがある。また、ア
ルミニウムの水和酸化物の被覆量が上記範囲より多い場
合は、乾燥時における粒子同士の固着が強固になってし
まって解砕しにくく、分散性、紫外線遮蔽能の低下を招
くおそれがある。
The coating amount of the aluminum hydrated oxide is based on the weight of the core fine titanium dioxide, Al 2 O 3
5 to 10%, preferably 6 to 9%. When the coating amount of the aluminum hydrated oxide is less than the above range, the discoloration resistance may be insufficient, or the alginic acid coated as the outer layer may not adhere well. When the coating amount of the aluminum hydrated oxide is larger than the above range, the particles are firmly adhered to each other during drying and are hard to be crushed, which may cause a reduction in dispersibility and ultraviolet shielding ability. is there.

【0027】アルミニウム化合物を添加した後、pHを
3〜6に調整する。pHが3より低い場合は、アルギン
酸が凝集して固着し、水分散性が充分に向上せず、紫外
線遮蔽能も充分に向上せず、pHが6より高い場合は、
アルギン酸塩の溶解度が高くなりすぎ、アルミニウムの
水和酸化物にアルギン酸が充分に固着できなくなる可能
性がある。上記pH調整に際して中和剤を必要とする場
合、使用する中和剤は、塩基としてはアンモニア水、苛
性ソーダなどが好ましく、また、酸としては塩酸、硫酸
などが好ましい。
After the addition of the aluminum compound, the pH is adjusted to 3-6. When the pH is lower than 3, the alginic acid is aggregated and fixed, the water dispersibility is not sufficiently improved, the ultraviolet shielding ability is not sufficiently improved, and when the pH is higher than 6,
There is a possibility that the solubility of the alginate becomes too high and the alginate cannot be sufficiently fixed to the hydrated oxide of aluminum. When a neutralizing agent is required for the above pH adjustment, the neutralizing agent used is preferably ammonia water, caustic soda or the like as a base, and hydrochloric acid or sulfuric acid as an acid.

【0028】第3工程では、上記のように、微粒子二酸
化チタンの粒子表面に内層として高密度の酸化ケイ素、
ついでアルミニウムの水和酸化物を被覆した後、そのア
ルミニウムの水和酸化物上に、アルギン酸を被覆する。
上記アルギン酸の被覆処理にあたってアルギン酸源とし
ては水溶性アルギン酸塩を用いるが、その具体例として
は、例えば、アルギン酸ソーダ、アルギン酸カリウムな
どが好ましい。
In the third step, as described above, high-density silicon oxide is formed as an inner layer on the surface of the fine titanium dioxide particles,
Then, after the aluminum hydrated oxide is coated, alginic acid is coated on the aluminum hydrated oxide.
In the above-mentioned alginic acid coating treatment, a water-soluble alginic acid salt is used as the alginic acid source, and specific examples thereof include, for example, sodium alginate and potassium alginate.

【0029】使用する水溶性アルギン酸塩の分子量は、
20〜500が好ましく、より好ましくは50〜300
である。水溶性アルギン酸塩の分子量が上記範囲より小
さい場合、分散安定性や懸濁保持性が低下するおそれが
ある。また、水溶性アルギン酸塩の分子量が上記範囲よ
り大きい場合は、粒子間の固着が強固になり、解砕に大
きなエネルギーが必要となるため、結果として分散性、
紫外線遮蔽能などが低下するおそれがある。
The molecular weight of the water-soluble alginate used is:
20 to 500 are preferable, and 50 to 300 are more preferable.
It is. When the molecular weight of the water-soluble alginate is smaller than the above range, dispersion stability and suspension retention may be reduced. Further, when the molecular weight of the water-soluble alginate is larger than the above range, the adhesion between particles becomes strong, and large energy is required for crushing, and as a result, dispersibility,
There is a possibility that the ultraviolet shielding ability may be reduced.

【0030】アルギン酸の被覆量としては、中核となる
微粒子二酸化チタンの重量に対して2〜7%、好ましく
は3〜6%である。アルギン酸の被覆量が上記範囲より
少ない場合、満足する作業性が得られない。また、アル
ギン酸の被覆量が上記範囲より多い場合は、粒子間の固
着が強固になり、解砕に大きなエネルギーが必要になる
ので、結果的に分散性、紫外線遮蔽能などが低下するお
それがある。
The coating amount of alginic acid is 2 to 7%, preferably 3 to 6%, based on the weight of the core fine particle titanium dioxide. If the alginic acid coverage is less than the above range, satisfactory workability cannot be obtained. Further, when the coating amount of alginic acid is larger than the above range, adhesion between particles becomes strong, and large energy is required for crushing, and as a result, dispersibility, ultraviolet shielding ability, etc. may be reduced as a result. .

【0031】水溶性アルギン酸塩を添加した後は、1時
間以上熟成させる。水溶性アルギン酸塩を系中にすべて
溶解させ、微粒子二酸化チタン組成物の表面にアルギン
酸として固着させるには熟成時間が必要であり、熟成時
間が1時間より少ない場合は水溶性アルギン酸塩がすべ
て溶解せず、表面被覆が不完全に終わってしまう。この
熟成時間は長くてもよいが、生産性を考慮すると、通
常、3時間程度までが適している。
After the addition of the water-soluble alginate, the mixture is aged for 1 hour or more. It takes ripening time to dissolve all the water-soluble alginate in the system and fix it as alginic acid on the surface of the fine particle titanium dioxide composition. If the aging time is less than 1 hour, the water-soluble alginate is completely dissolved. And the surface coating ends incompletely. This aging time may be long, but in consideration of productivity, usually up to about 3 hours is suitable.

【0032】上記した3つの工程を経て得られた、微粒
子二酸化チタンを中核とし、その表面を高密度の酸化ケ
イ素、アルミニウムの水和酸化物、アルギン酸を順次被
覆した微粒子二酸化チタン組成物は、その後、公知の方
法でろ過、洗浄を行い、さらにろ過後の固形分であるケ
ーキ中に含まれる電解質成分を除去する目的で再度レパ
ルプ(上記ケーキを再度微粒子二酸化チタン濃度が70
g/lにスラリー化することを意味する)し、水洗を行
う。この際のpH調整は、製品のpHが中性になるよう
処理する。乾燥、粉砕操作についても一般的な方法が適
用される。粉砕操作に用いる粉砕機としてはエックアト
マイザー、流体エネルギーミルなどが使用できるが、水
分散性、紫外線遮蔽能をできるかぎり向上させるために
は粉砕強度の大きい流体エネルギーミルが好ましい。
The fine particle titanium dioxide composition obtained through the above-mentioned three steps, in which the fine particle titanium dioxide is the core and the surface of which is sequentially coated with high-density silicon oxide, aluminum hydrated oxide, and alginic acid, is The mixture is filtered and washed by a known method, and further repulped (to remove the above-mentioned cake, the fine particle titanium dioxide concentration is reduced to 70%) for the purpose of removing the electrolyte component contained in the cake which is the solid content after the filtration.
g / l), followed by washing with water. At this time, the pH is adjusted so that the pH of the product becomes neutral. General methods are applied to the drying and pulverizing operations. As a pulverizer used for the pulverizing operation, an Ech atomizer, a fluid energy mill, or the like can be used, but a fluid energy mill having a high pulverizing strength is preferable in order to improve water dispersibility and ultraviolet shielding ability as much as possible.

【0033】なお、上記方法で製造した微粒子二酸化チ
タン組成物を、水中で煮沸し、その後、ろ過したとこ
ろ、ろ液中には水溶性アルギン酸塩やアルギン酸はほと
んど認められなかった。微粒子二酸化チタン組成物自身
はアルギン酸の被覆前に比べて親水性の向上が確認でき
ているので、これらのことから、アルギン酸は上記の被
覆処理により粒子表面に強固に固着して存在しているも
のと推定される。
The fine particle titanium dioxide composition produced by the above method was boiled in water and then filtered. As a result, almost no water-soluble alginate or alginic acid was found in the filtrate. Since the improvement in hydrophilicity of the fine-particle titanium dioxide composition itself has been confirmed as compared to before the coating with alginic acid, it can be said that the alginic acid is firmly fixed on the particle surface by the above-mentioned coating treatment. It is estimated to be.

【0034】また、高密度の酸化ケイ素の被覆処理を行
う前に、中核となる微粒子酸化チタンの表面を、本発明
で目的とする特性を損なわない程度の範囲で、上記以外
の金属、例えば、ジルコニウム、チタン、亜鉛、鉄、セ
リウムなどの酸化物または水酸化物によって被覆してお
いてもよい。
Further, before performing the coating treatment with silicon oxide of high density, the surface of the fine particle titanium oxide as a core is treated with a metal other than the above, for example, a metal other than the above, as long as the properties intended in the present invention are not impaired. It may be covered with an oxide or a hydroxide of zirconium, titanium, zinc, iron, cerium, or the like.

【0035】上記本発明の微粒子二酸化チタン組成物を
有効成分として配合することにより、高い透明性と優れ
た紫外線遮蔽能を有する化粧料が得られ、特に日焼け止
め化粧料として優れたものが得られる。上記微粒子二酸
化チタン組成物を化粧料中に配合する際の配合量は、1
〜80重量%と広範囲の領域で使用可能であるが、例え
ばパウダーファンデーションのような粉体剤型では40
〜80重量%、液状ファンデーション、クリームのよう
な乳化剤型では1〜40重量%程度が好ましい。これら
の化粧料は、上記微粒子二酸化チタン組成物を配合する
以外、従来と同様に製造され、また、従来と同様の用途
に使用することができる。この化粧料には上記微粒子二
酸化チタン組成物以外に他の無機および有機の紫外線吸
収剤、あるいは界面活性剤などをさらに添加することも
できる。
By blending the fine particle titanium dioxide composition of the present invention as an active ingredient, a cosmetic having high transparency and excellent ultraviolet shielding ability can be obtained, and in particular, an excellent sunscreen cosmetic can be obtained. . The compounding amount when the above-mentioned fine particle titanium dioxide composition is compounded in cosmetics is 1
Although it can be used in a wide range of up to 80% by weight, for example, in a powder formulation such as a powder foundation, 40
About 80% by weight, and about 1 to 40% by weight for emulsifiers such as liquid foundations and creams. These cosmetics are produced in the same manner as in the conventional art except that the above-mentioned fine particle titanium dioxide composition is blended, and can be used for the same applications as in the conventional art. In addition to the above-mentioned fine particle titanium dioxide composition, other inorganic and organic ultraviolet absorbers or surfactants may be further added to this cosmetic.

【0036】[0036]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下の実施例などにおい
て、溶液または分散液の濃度を示す%は、特に基準を付
記しないかぎり、重量%である。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. In the following examples,% indicating the concentration of a solution or dispersion is% by weight unless otherwise specified.

【0037】実施例1 テイカ社製硫酸チタニル結晶の水溶液を加熱して生成す
る加水分解物を、ろ過、洗浄して得られる含水酸化チタ
ンケーキ35kg( 酸化チタン含有量:TiO 2 換算で
10kgに相当) に、48%水酸化ナトリウム水溶液4
0kgをかきまぜながら加え、加熱して95〜105℃
の範囲で2時間かきまぜた。ついでこの二酸化チタン水
和物の懸濁液をろ過し、ケーキを充分に洗浄した。洗浄
後のケーキに水50kgを加えてスラリー化し、さらに
35%塩酸14kgをかきまぜながら投入し、95℃で
2時間加熱熟成した。このスラリー中の固体粒子はX線
回折でルチル型二酸化チタンの結晶構造を示した。得ら
れた微粒子二酸化チタンの水性懸濁液は70g/lとな
るように濃度を調整をした。この微粒子二酸化チタンは
最大粒子径が0.07μmであり、平均一次粒子径が
0.015μmであった。
Example 1 An aqueous solution of a titanyl sulfate crystal manufactured by Teica was heated to form
Hydrolyzate is filtered and washed to obtain hydrous titanium oxide.
35 kg cake (titanium oxide content: TiO TwoIn conversion
10%), 48% aqueous sodium hydroxide solution 4
Add 0kg with stirring and heat to 95-105 ° C
For 2 hours. Then this titanium dioxide water
The suspension of the hydrate was filtered and the cake was thoroughly washed. Washing
50 kg of water is added to the subsequent cake to form a slurry,
Add 14kg of 35% hydrochloric acid while stirring, and at 95 ℃
Heat aging for 2 hours. The solid particles in this slurry are X-ray
Diffraction showed the crystal structure of rutile titanium dioxide. Get
The aqueous suspension of the finely divided particulate titanium dioxide is 70 g / l.
The concentration was adjusted as follows. This particulate titanium dioxide
The maximum particle size is 0.07 μm and the average primary particle size is
It was 0.015 μm.

【0038】上記のようにして得た微粒子二酸化チタン
の水性懸濁液を20リットル( TiO2 換算で1400
g) はかりとった後、以下の工程順に被覆処理を行っ
た。
20 liters of the aqueous suspension of fine particle titanium dioxide obtained as described above (1400 in terms of TiO 2)
g) After being weighed, coating treatment was performed in the following steps.

【0039】〔第1工程〕上記微粒子二酸化チタンの水
性縣濁液を苛性ソーダを用いてpHを9.0以上にし、
そこに200g/lのケイ酸ソーダ水溶液を840ml
( 微粒子二酸化チタンに対しSiO2 として12%) 添
加し、80℃に昇温した後、硫酸を用いて150分かけ
てpHが6.5となるように中和した。
[First Step] The aqueous suspension of the fine particle titanium dioxide was adjusted to pH 9.0 or more using caustic soda,
840 ml of 200 g / l aqueous sodium silicate solution
(12% as SiO 2 with respect to the fine particle titanium dioxide), and the mixture was heated to 80 ° C and neutralized with sulfuric acid over 150 minutes to adjust the pH to 6.5.

【0040】〔第2工程〕上記水性縣濁液にポリ塩化ア
ルミニウムを1120g( 微粒子二酸化チタンに対しA
l2O3として8%) 添加し、添加後、苛性ソーダを用
いてpHが5.0となるように中和し、30分間熟成し
た。
[Second Step] 1120 g of polyaluminum chloride was added to the aqueous suspension (A for fine titanium dioxide).
After the addition, the mixture was neutralized using caustic soda to a pH of 5.0 and aged for 30 minutes.

【0041】〔第3工程〕熟成後、上記水性縣濁液にア
ルギン酸ナトリウムを77.7g( 微粒子二酸化チタン
に対してアルギン酸として5%) を投入し、1時間熟成
後、pHを5.0に調整し、さらに30分間熟成した。
[Third Step] After aging, 77.7 g of sodium alginate (5% as alginic acid with respect to fine titanium dioxide) was added to the above aqueous suspension, and after aging for 1 hour, the pH was adjusted to 5.0. Adjusted and aged for another 30 minutes.

【0042】上記工程を経由後、ろ過、洗浄を行い、さ
らに再度レパルプ、水洗、ろ過、洗浄を行った。得られ
たろ過ケーキを乾燥し、流体エネルギーミルで粉砕して
微粒子二酸化チタン組成物を得た。
After passing through the above steps, filtration and washing were performed, and repulp, water washing, filtration and washing were performed again. The obtained filter cake was dried and pulverized with a fluid energy mill to obtain a fine particle titanium dioxide composition.

【0043】実施例2 第1工程におけるケイ酸ソーダ水溶液の添加量を700
ml( 微粒子二酸化チタンに対しSiO2 として10
%) に減らした以外は、実施例1と同様の処理を行っ
た。
Example 2 The addition amount of the aqueous sodium silicate solution in the first step was 700
ml (10 as SiO 2 for fine titanium dioxide)
%), Except that the treatment was performed in the same manner as in Example 1.

【0044】実施例3 第1工程におけるケイ酸ソーダ水溶液の添加量を980
ml( 微粒子二酸化チタンに対しSiO2 として14
%) に増やした以外は、実施例1と同様の処理を行っ
た。
Example 3 The amount of the aqueous sodium silicate solution added in the first step was 980.
ml (14 as SiO 2 for fine titanium dioxide)
%), Except that the same process was performed as in Example 1.

【0045】実施例4 第2工程におけるポリ塩化アルミニウムの添加量を84
0g( 微粒子二酸化チタンに対してAl2 3 として6
%) に減らした以外は、実施例1と同様の処理を行っ
た。
Example 4 The addition amount of polyaluminum chloride in the second step was 84
0 g (6 as Al 2 O 3 with respect to fine particle titanium dioxide)
%), Except that the treatment was performed in the same manner as in Example 1.

【0046】実施例5 第2工程におけるポリ塩化アルミニウムの添加量を12
60g( 微粒子二酸化チタンに対してAl2 3 として
9%) に増やした以外は、実施例1と同様の処理を行っ
た。
Example 5 The addition amount of polyaluminum chloride in the second step was 12
The same treatment as in Example 1 was performed, except that the amount was increased to 60 g (9% as Al 2 O 3 with respect to the fine particle titanium dioxide).

【0047】実施例6 第3工程におけるアルギン酸ナトリウムの添加量を4
6.7g( 微粒子二酸化チタンに対してアルギン酸とし
て3%)に減らした以外は、実施例1と同様の処理を行
った。
Example 6 The amount of sodium alginate added in the third step was 4
The same treatment as in Example 1 was performed except that the amount was reduced to 6.7 g (3% as alginic acid with respect to the fine particle titanium dioxide).

【0048】実施例7 第3工程におけるアルギン酸ナトリウムの添加量を9
3.3g( 微粒子二酸化チタンに対してアルギン酸とし
て6%)に増やした以外は、実施例1と同様の処理を行
った。
Example 7 The amount of sodium alginate added in the third step was 9
The same treatment as in Example 1 was performed, except that the amount was increased to 3.3 g (6% as alginic acid with respect to the fine particle titanium dioxide).

【0049】比較例1 第1工程におけるケイ酸ソーダ水溶液の添加を省略した
以外は、実施例1と同様の処理を行った。
Comparative Example 1 The same treatment as in Example 1 was performed except that the addition of the aqueous sodium silicate solution in the first step was omitted.

【0050】比較例2 第1工程におけるケイ酸ソーダ水溶液の添加量を350
ml( 微粒子二酸化チタンに対しSiO2 として5%)
に減らした以外は、実施例1と同様の処理を行った。
Comparative Example 2 The amount of the aqueous sodium silicate solution added in the first step was 350
ml (5% as SiO 2 with respect to fine particle titanium dioxide)
The same processing as in Example 1 was performed except that the number was reduced to.

【0051】比較例3 第1工程におけるケイ酸ソーダ水溶液の添加量を140
0ml( 微粒子二酸化チタンに対しSiO2 として20
%) に増やした以外は、実施例1と同様の処理を行っ
た。
Comparative Example 3 The amount of the aqueous sodium silicate solution added in the first step was 140
0ml (20 as SiO 2 for fine titanium dioxide)
%), Except that the same process was performed as in Example 1.

【0052】比較例4 第2工程を省略してポリ塩化アルミニウムの添加を行わ
なかった以外は、実施例1と同様の処理を行った。
Comparative Example 4 The same treatment as in Example 1 was performed except that the second step was omitted and the addition of polyaluminum chloride was not performed.

【0053】比較例5 第2工程におけるポリ塩化アルミニウムの添加量を42
0g( 微粒子二酸化チタンに対してAl2 3 として3
%) に減らした以外は、実施例1と同様の処理を行っ
た。
Comparative Example 5 The amount of polyaluminum chloride added in the second step was 42
0 g ( 3 as Al 2 O 3 with respect to fine particle titanium dioxide)
%), Except that the treatment was performed in the same manner as in Example 1.

【0054】比較例6 第2工程におけるポリ塩化アルミニウムの添加量を16
80g( 微粒子二酸化チタンに対してAl2 3 として
12%) に増やした以外は、実施例1と同様の処理を行
った。
Comparative Example 6 The amount of polyaluminum chloride added in the second step was 16
The same processing as in Example 1 was performed except that the amount was increased to 80 g (12% as Al 2 O 3 with respect to the fine particle titanium dioxide).

【0055】比較例7 第3工程におけるアルギン酸ナトリウムの添加を省略し
た以外は、実施例1と同様の処理を行った。
Comparative Example 7 The same treatment as in Example 1 was performed, except that the addition of sodium alginate in the third step was omitted.

【0056】比較例8 第3工程におけるアルギン酸ナトリウムの添加量を1
5.6g( 微粒子二酸化チタンに対してアルギン酸とし
て1%)に減らした以外は、実施例1と同様の処理を行
った。
Comparative Example 8 The amount of sodium alginate added in the third step was 1
The same treatment as in Example 1 was performed except that the amount was reduced to 5.6 g (1% as alginic acid with respect to the fine particle titanium dioxide).

【0057】比較例9 第3工程におけるアルギン酸ナトリウムの添加量を15
5.6g( 微粒子二酸化チタンに対してアルギン酸とし
て10%)に増やした以外は、実施例1と同様の処理を
行った。
Comparative Example 9 The amount of sodium alginate added in the third step was 15
The same treatment as in Example 1 was performed, except that the amount was increased to 5.6 g (10% as alginic acid with respect to the fine particle titanium dioxide).

【0058】比較例10 第1工程と第2工程の処理順序を逆にした以外は、実施
例1と同様の処理を行った。
Comparative Example 10 The same processing as in Example 1 was performed except that the processing order of the first step and the second step was reversed.

【0059】比較例11 第2工程と第3工程の処理順序を逆にした以外は、実施
例1と同様の処理を行った。
Comparative Example 11 The same processing as in Example 1 was performed except that the processing order of the second step and the third step was reversed.

【0060】比較例12 第1工程と第3工程の処理順序を逆にした以外は、実施
例1と同様の処理を行った。
Comparative Example 12 The same processing as in Example 1 was performed, except that the processing order of the first step and the third step was reversed.

【0061】比較例13 実施例1と同様に第1工程を処理した後、第2工程およ
び第3工程を省略し、そのままろ過、水洗、乾燥を行っ
た。
Comparative Example 13 After treating the first step in the same manner as in Example 1, the second and third steps were omitted, and filtration, washing and drying were performed as they were.

【0062】比較例14 中核となる二酸化チタンとして、平均一次粒子径0.0
15μmの微粒子二酸化チタンに代えて、平均一次粒子
径0.28μmの顔料級ルチル型二酸化チタン(商品
名:テイカ社製JR)を用いた以外は、実施例1と同様
の処理を行った。
Comparative Example 14 As the core titanium dioxide, an average primary particle diameter of 0.0
The same treatment as in Example 1 was performed, except that pigment-grade rutile type titanium dioxide having an average primary particle diameter of 0.28 μm (trade name: JR, manufactured by Teica) was used instead of the 15 μm fine particle titanium dioxide.

【0063】比較例15 実施例1と同様の濃度70g/lの微粒子二酸化チタン
の水性懸濁液を20リットル( TiO2 換算で1400
g) はかりとり、それをアンモニア水を用いてpH7.
5に中和し、30分間熟成した後、公知の方法でろ過、
洗浄し、ヘキサメタリン酸ナトリウムを14g( TiO
2 換算で1%) 配合した後、粉砕した。このヘキサメタ
リン酸ナトリウムは従来技術に従い微粒子二酸化チタン
の水分散性を向上させるために配合したものである。
Comparative Example 15 The same aqueous suspension of 70 g / l of fine particle titanium dioxide as in Example 1 was added to 20 liters (1400 in terms of TiO 2).
g) Weigh it and use ammonia water to adjust the pH to 7.
5 and aged for 30 minutes, filtered by a known method,
After washing, 14 g of sodium hexametaphosphate (TiO 2
( 1% in terms of 2 ) After mixing, the mixture was pulverized. This sodium hexametaphosphate is blended in accordance with the prior art to improve the water dispersibility of the fine particle titanium dioxide.

【0064】上記実施例1〜7および比較例1〜14で
得た試料を以下に示す方法でそれぞれ評価した。評価結
果を表3および表4に示す。なお、表1および表2には
各試料の被覆構成を示す。
The samples obtained in Examples 1 to 7 and Comparative Examples 1 to 14 were evaluated by the following methods. The evaluation results are shown in Tables 3 and 4. Tables 1 and 2 show the coating configuration of each sample.

【0065】〔作業性(チキソ性)〕表面処理工程(第
1工程〜第3工程)終了後の水性縣濁液約4リットル(
TiO2 換算で約280g) を、径240mmのヌッチ
ェで吸引ろ過を行って完全にろ過し、酸化チタン含水ケ
ーキを作製する。その酸化チタン含水ケーキの入ったヌ
ッチェを揺り動かしたとき、含水ケーキが流動性を帯び
るか否かを目視判定し、その結果を次の基準で記号化し
て表3および表4に示す。
[Workability (thixotropy)] About 4 liters of the aqueous suspension after the surface treatment step (first to third steps) is completed.
About 280 g in terms of TiO 2 ) is completely filtered by suction filtration using a Nutsche having a diameter of 240 mm to prepare a titanium oxide hydrated cake. When the Nutsche containing the titanium oxide hydrated cake was shaken, it was visually determined whether or not the hydrated cake had fluidity, and the results were symbolized in the following criteria and shown in Tables 3 and 4.

【0066】 〇:流動性を帯びない。つまり、作業性が良い ×:流動性を帯びる。つまり、チキソ性が発生し、作業
性が悪い
〇: Does not have fluidity. That is, the workability is good. X: Fluid. In other words, thixotropy occurs and workability is poor

【0067】〔水分散性〕水分散性を懸濁保持性によっ
て評価する。すなわち、各実施例および比較例で得た二
酸化チタン組成物15gと純水135gの割合混合し、
得られた混合物を300mlビーカーに投入する。ホモ
ジナイザーを用いて3000rpmで10分間分散す
る。この分散液を100mlメスシリンダーへ100m
lはかり込む。24時間放置後の分散液の状態を観察
し、その縣濁層の体積を測定し、その結果を表3および
表4に示す。この縣濁層の体積が大きいほど縣濁保持性
が優れ、水分散性が優れていることを示している。
[Water dispersibility] The water dispersibility is evaluated by the suspension retention. That is, a mixture of 15 g of the titanium dioxide composition obtained in each of Examples and Comparative Examples and 135 g of pure water was mixed,
The obtained mixture is put into a 300 ml beaker. Disperse using a homogenizer at 3000 rpm for 10 minutes. Transfer this dispersion to a 100 ml graduated cylinder
l Weigh in. After standing for 24 hours, the state of the dispersion was observed, and the volume of the suspended layer was measured. The results are shown in Tables 3 and 4. The larger the volume of the suspension layer, the better the suspension retention and the better the water dispersibility.

【0068】〔耐変色性〕各実施例および比較例で得た
二酸化チタン組成物を、それぞれ二酸化チタン組成物/
1%ビタミンE配合Finsolv TN(C12−1
5 AlkylyBenzoate、FINETEX
Inc.製)溶液=3/4の配合比率で3分間混合す
る。得られた混合物をホワイトボード上におきカバーガ
ラスをのせ、各試料の色調L、a、bを色彩色差計( ミ
ノルタ社製CR−200) で測定する。ブランクとして
被覆処理を行っていない二酸化チタン/Finsolv
TN溶液=3/4の混合物に対し上記と同様の操作を
してL0、a0、b0を測定する。そして、下記の式に
より各試料の変色度( ΔE) を求め、その結果を表3お
よび表4に示す。このΔE値が小さいほど耐変色性が優
れている。
[Discoloration resistance] The titanium dioxide compositions obtained in each of the examples and comparative examples were each replaced with a titanium dioxide composition /
Finsolv TN with 1% Vitamin E (C12-1
5 Alkyly Benzoate, Finetex
Inc. Mix) at a mixing ratio of 3/4 for 3 minutes. The obtained mixture is placed on a white board, a cover glass is placed thereon, and the color tone L, a, b of each sample is measured with a colorimeter (CR-200 manufactured by Minolta). Titanium dioxide not coated as blank / Finsolv
L0, a0, and b0 are measured by performing the same operation as described above for a mixture of TN solution = 3/4. Then, the degree of discoloration (ΔE) of each sample was determined by the following equation, and the results are shown in Tables 3 and 4. The smaller the ΔE value is, the better the discoloration resistance is.

【0069】ΔE=[(L−L0 2 +( a−a0 ) 2
( b−b0 ) 2 ] 1/2 L、a、b:試料後の色調 L0 、a0 、b0 :ブランクの色調
ΔE = [(L−L 0 ) 2 + (a−a 0 ) 2 +
(bb 0 ) 2 ] 1/2 L, a, b: color tone after sample L 0 , a 0 , b 0 : blank color tone

【0070】〔水スラリーでの紫外線遮蔽能〕各実施例
および比較例で得た二酸化チタン組成物15gと純水1
35gとを混合し、得られた混合物を300mlビーカ
ーに投入する。ホモジナイザーを用いて3000rpm
で10分間分散する。得られた分散液の一部をサンプリ
ングして、これを水で二酸化チタンの含有率として0.
0005%(2000倍)までに希釈する。希釈液を1
cm石英セルを用いて波長300nmにおける透過率を
測定し( 測定機器:HITACHI製U−3300) 、
その結果を表3および表4に示す。この透過率値が小さ
いほど紫外線遮蔽能が優れている。
[Ultraviolet Shielding Ability with Water Slurry] 15 g of the titanium dioxide composition obtained in each of Examples and Comparative Examples and pure water 1
35 g and the resulting mixture is charged into a 300 ml beaker. 3000 rpm using a homogenizer
Disperse for 10 minutes. A part of the obtained dispersion was sampled, and this was treated with water to obtain a titanium dioxide content of 0.1%.
Dilute to 0005% (2000-fold). 1 dilution
Using a cm quartz cell, the transmittance at a wavelength of 300 nm was measured (U-3300 manufactured by HITACHI).
The results are shown in Tables 3 and 4. The smaller the transmittance value, the better the ultraviolet shielding ability.

【0071】〔化粧料での紫外線遮蔽能〕化粧料として
下記の配合で日焼け止めクリームを調製し、それによっ
て紫外線遮蔽能を評価する。
[Ultraviolet Shielding Ability in Cosmetic] A sunscreen is prepared as a cosmetic with the following composition, and the ultraviolet shielding ability is evaluated.

【0072】日焼け止めクリーム配合: 〔水相〕 二酸化チタン組成物 10.0g ブチレングリコール 8.0g トリエタノールアミン 1.0g 純水 69.8g KS−66( 消泡剤) 0.05g 〔油相〕 ステアリン酸 1.8g セチルアルコール 1.4g スクワラン 6.0g 界面活性剤 レオドールスーパー SP−L10 1.0g 界面活性剤 レオドールスーパー TW−L120 1.0g Sunscreen cream formulation: [Water phase] Titanium dioxide composition 10.0 g Butylene glycol 8.0 g Triethanolamine 1.0 g Pure water 69.8 g KS-66 (antifoaming agent) 0.05 g [Oil phase] Stearic acid 1.8 g Cetyl alcohol 1.4 g Squalane 6.0 g Surfactant Leodol super SP-L10 1.0 g Surfactant Leodol super TW-L120 1.0 g

【0073】上記配合ではかりとった水相、油相をそれ
ぞれ80℃に昇温する。ホモジナイザーを用いて水相に
配合されている二酸化チタン組成物を分散する(300
0rpmで10分) 。この水相へ油相を約30秒かけて
添加する。添加後、ホモミキサーを用いて乳化する( 4
000rpmで30秒) 。乳化後、氷水で室温まで冷却
する。
The water phase and the oil phase weighed in the above formulation are each heated to 80 ° C. Disperse the titanium dioxide composition blended in the aqueous phase using a homogenizer (300
10 minutes at 0 rpm). The oil phase is added to the aqueous phase over about 30 seconds. After addition, emulsify using a homomixer (4
000 rpm for 30 seconds). After emulsification, cool to room temperature with ice water.

【0074】得られた各日焼け止めクリームをポリプロ
ピレン製フィルム( 厚み40μm)上に12μmの膜厚
になるように塗布し、分光光度計( 日立製作所社製U−
3300) を用いて波長300nmの透過率を測定し、
その結果を表3および表4に示す。この透過率値が低い
ほど紫外線遮蔽能が優れている。
Each of the obtained sunscreen creams was applied on a polypropylene film (thickness: 40 μm) so as to have a thickness of 12 μm, and a spectrophotometer (available from Hitachi, Ltd.)
3300) is used to measure the transmittance at a wavelength of 300 nm,
The results are shown in Tables 3 and 4. The lower the transmittance value, the better the ultraviolet shielding ability.

【0075】〔透明感〕上記日焼け止めクリームを10
名のパネラーの上腕部の皮膚に塗布し、各パネラーに目
視で透明感を評価させ、その評価結果を下記の基準で記
号化して表2に示す。
[Transparency] 10 parts of the above sunscreen cream
It was applied to the skin of the upper arm of the name paneler, and each paneler was visually evaluated for the transparency, and the evaluation results are shown in Table 2 as symbols according to the following criteria.

【0076】 〇:7名以上のパネラーが透明感があると評価した場合 ×:透明感があると評価したパネラーが6名以下の場合〇: When 7 or more panelists evaluated that there was transparency ×: When 6 or less panelists evaluated that there was transparency

【0077】上記作業性、水分散性、耐変色性、水スラ
リーでの紫外線遮蔽能、化粧料での紫外線遮蔽能および
透明感の評価結果を表3および表4に示すが、その前に
各試料の被覆構成を表1および表2に示す。なお、表1
および表2では、その被覆構成を示すにあたって、「高
密度の酸化ケイ素」を「高密度Si」と略記し、「アル
ミニウムの水和酸化物」を「Al水酸化物」と略記す
る。また、表1および表2中の「↑」は「上記と同じ」
であることを示し、比較例14では中核として平均一次
粒子径0.28μmのルチル形顔料級二酸化チタンを用
い(他のものは、いずれも、中核としては平均一次粒子
径0.015μmのルチル形微粒子二酸化チタンを用い
ている)、比較例15はルチル形微粒子二酸化チタンに
ヘキサメタリン酸ナトリウムを1%(TiO2 基準)配
合したものである。
Tables 3 and 4 show the evaluation results of the above workability, water dispersibility, discoloration resistance, ultraviolet ray shielding ability with water slurry, ultraviolet ray shielding ability with cosmetics, and transparency. Tables 1 and 2 show the coating configurations of the samples. Table 1
In Table 2 and Table 2, "high-density silicon oxide" is abbreviated as "high-density Si", and "hydrated oxide of aluminum" is abbreviated as "Al hydroxide". In Tables 1 and 2, “↑” means “same as above”.
In Comparative Example 14, rutile-type pigment-grade titanium dioxide having an average primary particle diameter of 0.28 μm was used as the core (all other rutile-type pigments having an average primary particle diameter of 0.015 μm were used as the core. In Comparative Example 15, rutile-type fine particle titanium dioxide was blended with 1% (based on TiO 2 ) of sodium hexametaphosphate.

【0078】[0078]

【表1】 [Table 1]

【0079】[0079]

【表2】 [Table 2]

【0080】表3および表4には、前記のように、各試
料の作業性、水分散性、耐変色性、水スラリーでの紫外
線遮蔽能、化粧料での紫外線遮蔽能および透明感の評価
結果を示すが、上記水スラリーでの紫外線遮蔽能および
化粧料での紫外線遮蔽能に関して表3および表4に示す
数値は波長300nmの紫外線の透過率(%)である。
Tables 3 and 4 show the evaluation of workability, water dispersibility, discoloration resistance, ultraviolet shielding ability with water slurry, ultraviolet shielding ability with cosmetics, and transparency as described above. The results are shown. The numerical values shown in Tables 3 and 4 with respect to the ultraviolet ray shielding ability of the water slurry and the ultraviolet ray shielding ability of the cosmetic are the transmittance (%) of ultraviolet rays having a wavelength of 300 nm.

【0081】[0081]

【表3】 [Table 3]

【0082】[0082]

【表4】 [Table 4]

【0083】実施例1〜7の特性を示す表3と比較例1
〜15の特性を示す表4との対比から明らかなように、
実施例1〜7は、いずれも、作業性が優れ、懸濁層の体
積が大きく、水分散性が優れ、△E値が小さく、耐変色
性が優れ、紫外線の透過率が小さく、紫外線遮蔽能が優
れ、かつ透明感を有していた。
Table 3 showing the characteristics of Examples 1 to 7 and Comparative Example 1
As is clear from comparison with Table 4 showing the characteristics of
Examples 1 to 7 are all excellent in workability, large in the volume of the suspension layer, excellent in water dispersibility, small in ΔE value, excellent in discoloration resistance, small in transmittance of ultraviolet rays, and blocked in ultraviolet rays. It was excellent in performance and had a transparent feeling.

【0084】[0084]

【発明の効果】以上説明したように、本発明の微粒子二
酸化チタン組成物は、水分散性、紫外線遮蔽能、耐変色
性および製造時の作業性(製造時のろ過性)が優れてい
る。
As described above, the fine particle titanium dioxide composition of the present invention is excellent in water dispersibility, ultraviolet shielding ability, discoloration resistance, and workability during production (filterability during production).

【0085】また、上記微粒子二酸化チタン組成物を配
合することにより、高い透明性と優れた紫外線遮蔽能を
有する化粧料を提供することができる。
Further, by blending the above-mentioned fine particle titanium dioxide composition, a cosmetic having high transparency and excellent ultraviolet shielding ability can be provided.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09C 3/08 C09C 3/08 Fターム(参考) 4C083 AB171 AB172 AB221 AB222 AB241 AB242 AC022 AC072 AC122 AC242 AC442 AC542 AD152 AD301 AD302 BB26 CC05 CC19 DD31 EE01 EE07 EE17 FF01 4J037 AA22 CA09 CA12 CA15 CA25 CC02 DD05 EE04 EE25 EE28 EE43 EE46 EE47 FF02 FF30Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C09C 3/08 C09C 3/08 F term (reference) 4C083 AB171 AB172 AB221 AB222 AB241 AB242 AC022 AC072 AC122 AC242 AC442 AC542 AD152 AD301 AD302 BB26 CC05 CC19 DD31 EE01 EE07 EE17 FF01 4J037 AA22 CA09 CA12 CA15 CA25 CC02 DD05 EE04 EE25 EE28 EE43 EE46 EE47 FF02 FF30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 最大粒子径が0.1μm以下であり平均
一次粒子径が0.01〜0.08μmである微粒子二酸
化チタンを中核とし、その表面に、内層として微粒子二
酸化チタンの重量に対しSiO2 として8〜15%の高
密度の酸化ケイ素を被覆し、中間層として微粒子二酸化
チタンの重量に対しAl2 3 として5〜10%のアル
ミニウムの水和酸化物を被覆し、外層として微粒子二酸
化チタンの重量に対し2〜7%のアルギン酸を被覆した
ことを特徴とする微粒子二酸化チタン組成物。
1. A fine particle titanium dioxide having a maximum particle diameter of 0.1 μm or less and an average primary particle diameter of 0.01 to 0.08 μm as a core, and an inner layer is formed on the surface thereof as SiO based on the weight of the fine particle titanium dioxide. 2 as to cover 8-15% of the density of the silicon oxide, the weight of the fine particulate titanium dioxide to coat the hydrated oxide of 5-10% of aluminum as for Al 2 O 3 intermediate layer, fine particles dioxide as the outer layer A fine-grain titanium dioxide composition coated with 2-7% of alginic acid based on the weight of titanium.
【請求項2】 請求項1記載の微粒子二酸化チタン組成
物を次の第1〜3工程を経て製造することを特徴とする
微粒子二酸化チタン組成物の製造方法。 〔第1工程〕最大粒子径が0.1μm以下であり平均一
次粒子径が0.01〜0.08μmである微粒子二酸化
チタンの水性縣濁液を、80℃以上に加熱し、塩基を加
えてpHを9以上に調整し、pH調整後、上記水性縣濁
液に、上記微粒子二酸化チタンの重量に対しSiO2
して8〜15%のケイ酸塩化合物を添加し、引き続きこ
の縣濁液に酸を一定速度で添加して中和する。 〔第2工程〕中和後、微粒子二酸化チタンの重量に対し
Al2 3 として5〜10%の水溶性アルミニウム塩を
添加し、次いで系のpHを3〜6に調整した後、熟成す
る。 〔第3工程〕熟成後、微粒子二酸化チタンの重量に対し
アルギン酸として2〜8%の水溶性アルギン酸塩を添加
し、1時間以上熟成する。
2. A method for producing a particulate titanium dioxide composition, comprising producing the particulate titanium dioxide composition according to claim 1 through the following first to third steps. [First step] An aqueous suspension of fine particle titanium dioxide having a maximum particle size of 0.1 µm or less and an average primary particle size of 0.01 to 0.08 µm is heated to 80 ° C or more, and a base is added. The pH is adjusted to 9 or more, and after the pH adjustment, a silicate compound of 8 to 15% as SiO 2 with respect to the weight of the fine particle titanium dioxide is added to the aqueous suspension, and then the acid is added to the suspension. At a constant rate to neutralize. After Second Step] neutralization, after adjusting the addition of 5-10% of the water-soluble aluminum salt as Al 2 O 3 relative to the weight of particulate titanium dioxide, then the pH of the system to 3-6 and aged. [Third Step] After aging, 2-8% of a water-soluble alginate as alginic acid is added to the weight of the fine titanium dioxide particles, and the mixture is aged for 1 hour or more.
【請求項3】 請求項1記載の微粒子二酸化チタン組成
物を全体に対して1〜80重量%の比率で配合したこと
を特徴とする化粧料。 【0001】
3. A cosmetic comprising the fine particle titanium dioxide composition according to claim 1 in a ratio of 1 to 80% by weight based on the whole. [0001]
JP02563099A 1999-02-03 1999-02-03 Fine particle titanium dioxide composition, production method thereof, and cosmetics containing the fine particle titanium dioxide composition Expired - Fee Related JP3636607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02563099A JP3636607B2 (en) 1999-02-03 1999-02-03 Fine particle titanium dioxide composition, production method thereof, and cosmetics containing the fine particle titanium dioxide composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02563099A JP3636607B2 (en) 1999-02-03 1999-02-03 Fine particle titanium dioxide composition, production method thereof, and cosmetics containing the fine particle titanium dioxide composition

Publications (2)

Publication Number Publication Date
JP2000219819A true JP2000219819A (en) 2000-08-08
JP3636607B2 JP3636607B2 (en) 2005-04-06

Family

ID=12171198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02563099A Expired - Fee Related JP3636607B2 (en) 1999-02-03 1999-02-03 Fine particle titanium dioxide composition, production method thereof, and cosmetics containing the fine particle titanium dioxide composition

Country Status (1)

Country Link
JP (1) JP3636607B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376089B1 (en) * 2001-03-14 2003-03-15 주식회사 태평양 A base composition for blocking ultraviolet rays and cosmetics containing the same
JP2007246465A (en) * 2006-03-17 2007-09-27 Shiseido Co Ltd Powder dispersion composition and method for dispersing powder
JP2008081578A (en) * 2006-09-27 2008-04-10 Ishihara Sangyo Kaisha Ltd Titanium dioxide pigment and method for producing the same
JP2011510950A (en) * 2008-01-31 2011-04-07 グラクソ グループ リミテッド Oral Care Composition Effective for Dentin Hypersensitivity
CN103635542A (en) * 2011-06-28 2014-03-12 纳幕尔杜邦公司 Treated inorganic particle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376089B1 (en) * 2001-03-14 2003-03-15 주식회사 태평양 A base composition for blocking ultraviolet rays and cosmetics containing the same
JP2007246465A (en) * 2006-03-17 2007-09-27 Shiseido Co Ltd Powder dispersion composition and method for dispersing powder
JP2008081578A (en) * 2006-09-27 2008-04-10 Ishihara Sangyo Kaisha Ltd Titanium dioxide pigment and method for producing the same
JP2011510950A (en) * 2008-01-31 2011-04-07 グラクソ グループ リミテッド Oral Care Composition Effective for Dentin Hypersensitivity
CN103635542A (en) * 2011-06-28 2014-03-12 纳幕尔杜邦公司 Treated inorganic particle
CN103635542B (en) * 2011-06-28 2016-08-17 纳幕尔杜邦公司 Treated inorganic particle

Also Published As

Publication number Publication date
JP3636607B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
JP4836232B2 (en) Method for producing silica-coated fine particle titanium oxide or silica-coated fine particle zinc oxide
JP2852487B2 (en) Titanium dioxide aqueous dispersion
JP4097745B2 (en) Zinc oxide dispersion
KR100791555B1 (en) A disperse system having fine powder-typed inorganic metal oxide dispersed in water and preparing method for the same
US6358495B1 (en) Titanium-silica complex and cosmetic preparation compounding the same
JP4755803B2 (en) Metal oxide / silica composite and cosmetic containing the same
GB2226018A (en) Titanium dioxide dispersions
WO2004085315A1 (en) Porous titanium oxide powder and method for production thereof
EP0596442A1 (en) Ultraviolet-shielding agent, method for the preparation thereof and cosmetic composition compounded therewith
KR102176830B1 (en) Silicon-oxide-coated zinc oxide and method for manufacturing same, silicon-oxide-coated zinc-oxide-containing composition, and cosmetic
JP2000509756A (en) Improved pigment method for durable pigments
JPH11193354A (en) Silica-coated zinc oxide particle, its preparation, and composition containing it
WO1995016637A1 (en) Ultrafine iron-containing rutile titanium dioxide particle and process for producing the same
JPH09208438A (en) Dispersing element of titanium dioxide and silicone fine particle
CN107001063B (en) Silica-coated zinc oxide, method for producing same, composition containing silica-coated zinc oxide, and cosmetic material
JPH07257923A (en) High concentration titanium dioxide aqeous dispersion
JP2000219819A (en) Fine particulate titanium dioxide composition, its production and cosmetic compounded with the fine particulate titanium dioxide composition
JP2001058821A (en) Zinc oxide particle having suppressed surface activity, its production and utilization thereof
JP2717904B2 (en) Iron-containing ultrafine rutile titanium dioxide and method for producing the same
JP2008094917A (en) Surface-coated zinc oxide and its manufacturing method, and ultraviolet ray-shielding composition comprising the same
JP2009501754A (en) Dispensing containing barium sulfate
WO2016136797A1 (en) Silicon oxide-coated zinc oxide, silicon oxide-coated zinc oxide-containing composition, and cosmetic product
JPH07751B2 (en) Fine particle titanium dioxide powder
JPH11322337A (en) Butterfly-like rutile type titanium dioxide and its production, and its use
JP2007015979A (en) Surface-treated pigment for cosmetic use and cosmetic composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050105

R150 Certificate of patent or registration of utility model

Ref document number: 3636607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150114

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees