JP2000219568A - Ceramic article - Google Patents

Ceramic article

Info

Publication number
JP2000219568A
JP2000219568A JP11329935A JP32993599A JP2000219568A JP 2000219568 A JP2000219568 A JP 2000219568A JP 11329935 A JP11329935 A JP 11329935A JP 32993599 A JP32993599 A JP 32993599A JP 2000219568 A JP2000219568 A JP 2000219568A
Authority
JP
Japan
Prior art keywords
ceramics
infrared
infrared ray
glass
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11329935A
Other languages
Japanese (ja)
Inventor
Akihiko Sakamoto
明彦 坂本
Masanori Wada
正紀 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP11329935A priority Critical patent/JP2000219568A/en
Publication of JP2000219568A publication Critical patent/JP2000219568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to easily and efficiently measure or examine the internal structure by making a tubular or stick-like article using an infrared ray transmissive ceramics which is opaque to visible light and has specific transmissivity to specific wavelengths of infrared-rays. SOLUTION: A tubular or stick-like ceramic article opaque to visible light is made of an infrared ray transmissive ceramics having a transmissivity of >=45% at the thickness of 1 mm for the infrared ray having the wavelength of 1,550 nm and made incident from air. The ceramic articles are preferably prepared by using infrared ray transmissive ceramics which satisfy the following relations: (1-R)2>=0.84 and μ<=0.7/mm, wherein R is reflectance at the wavelength of 1,550 nm, and μ is total of a reflection coefficient and absorption coefficient. The infrared ray transmissive ceramics is selected from the ceramics in a narrow sense (such as alumina, zirconia or the like) as well as the ceramics in a wide sense (such as opal glass, colored glass or the like).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管状又は棒状のセ
ラミックス物品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tubular or rod-shaped ceramic article.

【0002】[0002]

【従来の技術】セラミックス材料は諸工業において幅広
く使用されている。特に微細な内孔を有する精密毛細管
をはじめとして、精密な形状の管状又は棒状のセラミッ
クス部品が、光学部品や電子部品、あるいはそれらの固
定部材、案内部材、整列部材、補強部材、被覆部材、接
続部材等として数多く製品化されている。このような精
密部品の製造においては、内孔寸法等の内部寸法を精度
良く測定することや、気泡やクラック等の内部欠陥を検
出することが重要な課題となっている。
2. Description of the Related Art Ceramic materials are widely used in various industries. In particular, precision-shaped tubular or rod-shaped ceramic parts, including precision capillaries with minute internal holes, are used for optical and electronic components, or their fixing members, guide members, alignment members, reinforcing members, coating members, and connections. Many products have been commercialized as members. In the production of such precision parts, it is important to accurately measure internal dimensions such as inner hole dimensions and to detect internal defects such as bubbles and cracks.

【0003】[0003]

【発明が解決しようとする課題】可視光に対して透明な
材料の場合、光学的な測定機器を用いれば、内部寸法の
測定や欠陥の検出が容易に行える。しかしながら、一般
にセラミックス材料は可視光に対して不透明であるた
め、このような手段を用いることができない。
In the case of a material that is transparent to visible light, the measurement of internal dimensions and the detection of defects can be easily performed by using an optical measuring device. However, since ceramic materials are generally opaque to visible light, such means cannot be used.

【0004】そのため、寸法精度の測定には各種精密ゲ
ージ類を使用せざるを得ず、ゲージの届かない内部の測
定が行えないことや、測定に手間がかかるといった問題
がある。また、内部欠陥の検出には超音波や放射線を用
いる方法等がしばしば行われるが、これらの方法はいず
れも測定装置が複雑であったり、検査の効率が低いとい
う問題がある。
[0004] For this reason, various precision gauges must be used for measuring the dimensional accuracy, so that there is a problem that the inside of the gauge cannot be measured and that the measurement is troublesome. In addition, methods that use ultrasonic waves or radiation are often used for detecting internal defects, but all of these methods have problems in that the measuring device is complicated or the inspection efficiency is low.

【0005】本発明の目的は、可視光に対して不透明で
ありながら、容易に、しかも効率よく内部構造の測定や
検査が行える管状又は棒状のセラミックス物品を提供す
ることである。
An object of the present invention is to provide a tubular or rod-shaped ceramic article which is opaque to visible light, but can easily and efficiently measure and inspect the internal structure.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために鋭意研究を重ねた結果、セラミックス
の中には可視光に対して不透明であっても赤外線には透
明なものがあること、及びこのような赤外線透過セラミ
ックスを使用して作製した管状物や棒状物は、赤外線を
利用することによって容易に内部構造の測定や検査が行
えることを見いだし、本発明を提案するに至った。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, some of the ceramics are opaque to visible light but transparent to infrared light. In addition, it has been found that tubular and rod-shaped objects manufactured using such infrared-transmitting ceramics can easily measure and inspect the internal structure by using infrared light, and propose the present invention. Reached.

【0007】即ち、本発明のセラミックス物品は、可視
光に対して不透明な管状又は棒状のセラミックス物品に
おいて、空気中から入射する波長1550nmの赤外線
の厚さ1mmにおける透過率が45%以上、好ましくは
60%以上である赤外線透過セラミックスからなること
を特徴とする。
That is, the ceramic article of the present invention is a tubular or rod-shaped ceramic article that is opaque to visible light and has a transmittance of 45% or more, preferably 1% or more, of infrared rays having a wavelength of 1550 nm incident from the air at a thickness of 1 mm. It is characterized by being made of infrared transmitting ceramics of 60% or more.

【0008】なお本発明において、”可視光に対して不
透明”とは、可視光を用いて内部構造の測定や検査を行
うことが困難なものであり、具体的には可視域(380
〜760nm)における直進光の平均透過率が厚さ1m
mで50%以下であることを意味する。
In the present invention, "opaque to visible light" means that it is difficult to measure or inspect the internal structure using visible light.
760 nm), the average transmissivity of the straight traveling light is 1 m in thickness.
m means 50% or less.

【0009】[0009]

【発明の実施の形態】本発明のセラミックス物品は、可
視光に対して不透明な赤外線透過セラミックスからな
る。赤外線透過率は、波長1550nmにおいて厚さ1
mmで45%以上である。ここで波長1550nmの赤
外線透過率に着目した理由を述べる。測定や検査に赤外
線を用いるには、赤外線レーザーの発光、受光部品が必
要となるが、現在入手可能なものの波長は790nm、
1310nm、1550nm等である。一般に波長が長
くなると測定の分解能が低くなるため、測定精度が低下
するが、セラミックス中を光線が透過するためには波長
は長い方が有利である。本発明者等の研究によれば、波
長1550nmの受発光部品を使用すれば、サブミクロ
ンの測定精度を確保しつつ測定に充分な透過光量を得易
いことが分かった。また1550nmの赤外線透過率が
厚さ1mmで45%以上あれば、この波長の赤外線を用
いて精度の良い測定や検査を行うことが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic article of the present invention is made of an infrared transmitting ceramic which is opaque to visible light. The infrared transmittance has a thickness of 1 at a wavelength of 1550 nm.
It is 45% or more in mm. Here, the reason for paying attention to the infrared transmittance at a wavelength of 1550 nm will be described. In order to use infrared light for measurement and inspection, light emission and light receiving parts of infrared laser are required.
1310 nm, 1550 nm, and the like. In general, the longer the wavelength, the lower the resolution of the measurement, and the lower the measurement accuracy. However, the longer the wavelength, the more advantageous it is for transmitting light through ceramics. According to the study by the present inventors, it has been found that when a light receiving / emitting component having a wavelength of 1550 nm is used, a sufficient amount of transmitted light for measurement can be easily obtained while ensuring measurement accuracy of submicron. If the transmittance of infrared light at 1550 nm is 45% or more at a thickness of 1 mm, accurate measurement and inspection can be performed using infrared light of this wavelength.

【0010】なお本発明の物品を測定又は検査する場
合、必ずしも1550nmの赤外線を使用する必要はな
い。つまり要求される測定又は検査の精度や、セラミッ
クスの赤外線透過特性等によっては、1550nmの赤
外線よりも他の波長の赤外線を使用する方が有利な場合
もあるためである。
When measuring or inspecting the article of the present invention, it is not always necessary to use infrared rays of 1550 nm. In other words, depending on the required accuracy of measurement or inspection, the infrared transmission characteristics of ceramics, and the like, it may be more advantageous to use infrared light of another wavelength than infrared light of 1550 nm.

【0011】また本発明のセラミックス物品は、155
0nmにおける反射率をR、反射係数と吸収係数の和を
μとしたとき、(1−R)2 ≧0.84、かつ、μ≦
0.7/mmの条件を満たすことが好ましい。その理由
を以下に示す。
The ceramic article of the present invention has
When the reflectance at 0 nm is R and the sum of the reflection coefficient and the absorption coefficient is μ, (1−R) 2 ≧ 0.84 and μ ≦
Preferably, the condition of 0.7 / mm is satisfied. The reason is shown below.

【0012】透過率Tと肉厚Lとの関係は、T=Aex
p(−μL)の式で表される。なお定数Aは(1−R)
2 で置き換えられる。この式から明らかなように、材料
の肉厚Lが一定の時、透過率は定数A及びμによって決
まる。肉厚Lが1mmのときに透過率Tが45%以上と
なるようなAとμの組み合わせは無数にあるが、Aが
0.84より小さい場合、又はμが0.7/mmより大
きい場合、肉厚Lが大きい場合の透過率の減少が著し
い。このためこのような材料からなる物品は、1550
nmの赤外線で測定・検査できる範囲が肉厚の小さいも
のに限られてしまい、実用的でない。
The relationship between the transmittance T and the thickness L is given by T = Aex
It is represented by the equation of p (-μL). The constant A is (1-R)
Replaced by 2 . As is apparent from this equation, when the thickness L of the material is constant, the transmittance is determined by the constants A and μ. There are countless combinations of A and μ such that the transmittance T is 45% or more when the thickness L is 1 mm, but when A is less than 0.84 or when μ is greater than 0.7 / mm. When the thickness L is large, the transmittance significantly decreases. Articles made of such materials are therefore 1550
The range that can be measured and inspected with infrared light of nm is limited to those having a small wall thickness, which is not practical.

【0013】なお、上記赤外線透過セラミックスは、具
体的には狭義のセラミックス(アルミナ、ジルコニア
等)に限られるものではなく、ガラス(乳白ガラス、着
色ガラス等)、ガラスセラミックス等を含む広義のセラ
ミックスからなる。これら材料の赤外線透過率の調節
は、種々の方法により行うことができる。例えば、狭義
のセラミックスやガラスセラミックスでは析出結晶の粒
径やマトリックス相との屈折率の差を、また乳白ガラス
では分相により生じる異種粒子の粒径や各相の屈折率の
差をそれぞれ制御すること等により赤外線透過率を調節
することができる。
The infrared transmitting ceramics are not specifically limited to ceramics in a narrow sense (alumina, zirconia, etc.) but include ceramics in a broad sense including glass (milky glass, colored glass, etc.) and glass ceramics. Become. The infrared transmittance of these materials can be adjusted by various methods. For example, in the narrow sense of ceramics and glass ceramics, the grain size of precipitated crystals and the difference in refractive index from the matrix phase are controlled, and in opalescent glass, the particle size of heterogeneous particles caused by phase separation and the difference in the refractive index of each phase are controlled. Thus, the infrared transmittance can be adjusted.

【0014】各材料の製造方法を以下に述べる。A method for manufacturing each material will be described below.

【0015】狭義のセラミックスの場合、例えばジルコ
ニアのように結晶系が正方晶系に属するものや、アルミ
ナのように六方晶系でも複屈折が小さな結晶を、ホット
プレス法等によって1300〜1800℃で成形し、気
泡をできるだけ少なくなるように焼結させればよい。
In the case of ceramics in a narrow sense, for example, a crystal whose crystal system belongs to a tetragonal system, such as zirconia, or a crystal having a small birefringence even in a hexagonal system, such as alumina, is subjected to a hot pressing method at 1300 to 1800 ° C. What is necessary is just to shape | mold and sinter so that a bubble may be reduced as much as possible.

【0016】ガラスセラミックス材料の場合、例えば重
量%でSiO2 60〜75%、Al23 15〜28
%、Li2O 1.8〜5%、K2O 0〜10%、Ti
21.5〜5%、ZrO2 0〜4%を含有するガラス
を900〜1250℃の範囲で熱処理し結晶化させ、β
−石英固溶体やβ−スポジュメン固溶体等を析出させた
ものや、SiO2 50〜80%、Li2O 8〜13
%、P25 1〜4%、Al23 1〜11%、ZnO
0〜7%、K2O 0〜6%を含有するガラスを80
0〜1100℃で結晶化させ、珪酸リチウム、クオー
ツ、クリストバライト等を析出させたものが使用でき
る。これらのガラスセラミックスは、殆どの場合、結晶
相とガラス相が混在しているが、結晶相とマトリックス
相の屈折率差を小さくするために、ガラス中に金属元
素、半導体元素等を添加剤として加えておくことで赤外
線の透過率を向上させることができる。なお、ここでは
結晶相とガラス相の存在比を考慮する必要はない。
In the case of a glass-ceramic material, for example, SiO 2 is 60 to 75% by weight and Al 2 O 3 is 15 to 28.
%, Li 2 O 1.8~5%, K 2 O 0~10%, Ti
A glass containing 1.5 to 5% of O 2 and 0 to 4% of ZrO 2 is heat-treated in the range of 900 to 1250 ° C. to crystallize,
-Quartz solid solution, β-spodumene solid solution or the like precipitated, SiO 2 50 to 80%, Li 2 O 8 to 13
%, P 2 O 5 1~4% , Al 2 O 3 1~11%, ZnO
Glass containing 0-7% and 0-6% K 2 O
Crystallized at 0 to 1100 ° C. to precipitate lithium silicate, quartz, cristobalite and the like can be used. In these glass ceramics, in most cases, a crystal phase and a glass phase are mixed, but in order to reduce the refractive index difference between the crystal phase and the matrix phase, a metal element, a semiconductor element, or the like is added to the glass as an additive. By adding this, the transmittance of infrared rays can be improved. Here, it is not necessary to consider the abundance ratio between the crystal phase and the glass phase.

【0017】ガラス材料の場合、例えば重量%でSiO
2 60〜70%、Al23 3〜14%、B23
〜4%、BaO 1〜3%、ZnO 0〜5%、Na2
O10〜22%を含む分相乳白ガラスが使用できる。
In the case of a glass material, for example, SiO
2 60-70%, Al 2 O 3 3-14%, B 2 O 3 1
~4%, BaO 1~3%, 0~5 % ZnO, Na 2
Phase-separated opalescent glass containing 10-22% O can be used.

【0018】なお何れの場合においても、良好な赤外線
透過特性を得るためには、析出結晶や異種粒子の粒径を
3μm以下にすることが好ましく、屈折率差もできるだ
け小さい方が好ましい。またガラスやガラスセラミック
スの場合、赤外域に吸収をもつ着色イオンの含有量を制
御することによって赤外線透過率を調整することも可能
である。
In any case, in order to obtain good infrared transmission characteristics, it is preferable that the particle size of precipitated crystals and foreign particles be 3 μm or less, and that the difference in refractive index be as small as possible. In the case of glass and glass ceramics, it is also possible to adjust the infrared transmittance by controlling the content of colored ions having absorption in the infrared region.

【0019】また本発明のセラミックス物品を電子部品
等の精密部品用途に使用する場合、赤外線透過セラミッ
クスとして、ジルコニア、アルミナ等を析出結晶とする
狭義のセラミックスや、β−石英固溶体、β−スポジュ
ウメン固溶体、珪酸リチウム等を析出結晶とするガラス
セラミックスを使用することが望ましい。これらは機械
的、熱的、化学的特性に優れており、精密部品用途に好
適な材料である。
When the ceramic article of the present invention is used for precision parts such as electronic parts, as infrared transmitting ceramics, strictly defined ceramics having precipitated crystals of zirconia, alumina, etc., β-quartz solid solution, β-spodumene solid solution It is desirable to use glass ceramics having lithium silicate or the like as precipitated crystals. These materials have excellent mechanical, thermal and chemical properties and are suitable for precision parts.

【0020】[0020]

【実施例】以下、実施例に基づいて本発明を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0021】表1は本発明の実施例(試料No.1〜
5)、表2は比較例(試料No.6、7)を示してい
る。
Table 1 shows examples of the present invention (samples No. 1 to No. 1).
5) and Table 2 show comparative examples (sample Nos. 6 and 7).

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】まず、表に示した不透明なセラミックス材
料を用意し、直径2.5mm、長さ10mmの円柱状に
加工した後、超音波加工によって直径0.1mmの内孔
を形成して毛細管状試料を作成した。
First, an opaque ceramic material as shown in the table was prepared and processed into a cylindrical shape having a diameter of 2.5 mm and a length of 10 mm, and an inner hole having a diameter of 0.1 mm was formed by ultrasonic processing to form a capillary. A sample was prepared.

【0025】なお試料No.1、2及び6の作製に用い
たセラミックス材料は、Li2 O−Al23 −SiO
2 系ガラスセラミックスであり、Li2 O−Al23
−SiO2 系ガラスを、それぞれ950℃で2時間、1
000℃で1時間、1200℃で2時間熱処理して結晶
化させたものである。試料No.3で用いたセラミック
ス材料は、Na2 O−Al23 −SiO2 系ガラスか
らなる乳白ガラスであり、原料を1550℃にて溶融
後、徐冷してガラスを分相させることによって異種粒子
を生成させたものである。試料No.4、5及び7で用
いたセラミックス材料は、アルミナセラミック及びジル
コニアセラミックであり、原料にバインダーを加えて混
練した後、ホットプレス法により焼結させて作製した。
Sample No. The ceramic material used for the production of 1, 2, and 6 was Li 2 O—Al 2 O 3 —SiO
It is a 2 type glass ceramic, and it is Li 2 O-Al 2 O 3
2 hours -SiO 2 glass, at 950 ° C., respectively, 1
It is crystallized by heat treatment at 000 ° C. for 1 hour and 1200 ° C. for 2 hours. Sample No. The ceramic material used in Example 3 is an opalescent glass made of a Na 2 O—Al 2 O 3 —SiO 2 system glass. The raw materials are melted at 1550 ° C., and then gradually cooled to separate the glass to separate different particles. Is generated. Sample No. The ceramic materials used in 4, 5, and 7 were alumina ceramic and zirconia ceramic, and were prepared by adding a binder to the raw materials, kneading the mixture, and then sintering by hot pressing.

【0026】また表中の赤外線透過率は、波長1550
nmのレーザー光を試料に照射し、直進光の透過光量を
測定することによって求めた。平均可視光透過率は、分
光光度計を用いて、試料に380〜760nmの可視光
を照射して直進光の透過光量を測定することにより求め
た。定数Aは、試料の屈折率を測定し、次式によって求
めた。ここでn1 は空気の屈折率、n2 は試料の屈折率
を示す。
The infrared transmittance in the table indicates that the wavelength is 1550.
The laser light of nm was applied to the sample, and the amount of transmitted straight light was measured. The average visible light transmittance was determined by irradiating a sample with visible light of 380 to 760 nm using a spectrophotometer and measuring the amount of transmitted straight light. The constant A was obtained by measuring the refractive index of the sample and using the following equation. Here, n 1 indicates the refractive index of air and n 2 indicates the refractive index of the sample.

【0027】 R={(n1 −n2 )/(n1 +n2 )}2 A=(1−R)2 定数μは、赤外透過率T、定数A、試料肉厚Lから、次
式によって求めた。
R = {(n 1 −n 2 ) / (n 1 + n 2 )} 2 A = (1−R) 2 The constant μ is calculated from the infrared transmittance T, the constant A, and the sample thickness L as follows. It was determined by the formula.

【0028】μ=ln(A/T)/L 析出結晶又は異種粒子の粒径は、走査型電子顕微鏡を用
いて測定した。
Μ = ln (A / T) / L The particle size of the precipitated crystals or foreign particles was measured using a scanning electron microscope.

【0029】次に、各試料について、赤外線による内孔
測定の可否を評価した。この評価は、まず1550nm
の赤外レーザービームを試料の直径方向に走査させ、各
試料の直径方向の位置に対する透過率分布を測定した。
次にこの透過率分布から、内径部分が明確に特定できる
もの(図1)を○、特定が困難なもの(図2)を×とし
た。
Next, each sample was evaluated as to whether or not the inner hole measurement by infrared rays was possible. This evaluation was performed at 1550 nm
Was scanned in the diameter direction of the sample, and the transmittance distribution with respect to the position in the diameter direction of each sample was measured.
Next, based on this transmittance distribution, those in which the inner diameter portion could be clearly identified (FIG. 1) were rated as 、, and those in which identification was difficult (FIG. 2) were rated as x.

【0030】その結果、赤外線透過率の高いセラミック
ス材料を用いて作製した実施例の各試料は、赤外線によ
る内孔測定が可能であった。これに対して赤外線透過率
の低い材料からなる比較例の各試料は、内孔測定が不可
能であった。
As a result, in each of the samples manufactured using the ceramic material having a high infrared transmittance, the inner hole measurement by infrared was possible. On the other hand, in each sample of the comparative example made of a material having a low infrared transmittance, the inner hole measurement was impossible.

【0031】これらの事実は、本発明のセラミックス物
品が、1550nmの赤外線による内部構造の測定、検
査が可能であることを示している。
These facts show that the ceramic article of the present invention can measure and inspect the internal structure by infrared rays at 1550 nm.

【0032】[0032]

【発明の効果】上述のように、本発明のセラミックス物
品は、光学的な手法で内部寸法の測定や、気泡やクラッ
ク等の内部欠陥の検査が行える。このため、欠陥がな
く、しかも精密な寸法精度が要求される光学部品や電子
部品、あるいはそれらの固定部材、案内部材、整列部
材、補強部材、被覆部材、接続部材等の精密部品として
好適である。
As described above, the ceramic article of the present invention can measure the internal dimensions and inspect internal defects such as bubbles and cracks by an optical method. For this reason, it is suitable as an optical component or an electronic component that is free from defects and requires precise dimensional accuracy, or a precision component such as a fixing member, a guide member, an alignment member, a reinforcing member, a covering member, a connection member, or the like. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】内孔測定が可能な毛細管状試料の断面透過率分
布を示す説明図である。
FIG. 1 is an explanatory diagram showing a cross-sectional transmittance distribution of a capillary sample capable of measuring an inner hole.

【図2】内孔測定が不可能な毛細管状試料の断面透過率
分布を示す説明図である。
FIG. 2 is an explanatory diagram showing a cross-sectional transmittance distribution of a capillary sample in which inner hole measurement is impossible.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可視光に対して不透明な管状又は棒状の
セラミックス物品において、空気中から入射する波長1
550nmの赤外線の厚さ1mmにおける透過率が45
%以上である赤外線透過セラミックスからなることを特
徴とするセラミックス物品。
1. A tubular or rod-shaped ceramic article which is opaque to visible light.
The transmittance of infrared light of 550 nm at a thickness of 1 mm is 45.
% Or more of infrared transmitting ceramics.
【請求項2】 1550nmにおける反射率をR、反射
係数と吸収係数の和をμとしたとき、(1−R)2
0.84、かつ、μ≦0.7/mmの条件を満たす赤外
線透過セラミックスからなることを特徴とする請求項1
のセラミックス物品。
2. When the reflectance at 1550 nm is R and the sum of the reflection coefficient and the absorption coefficient is μ, (1-R) 2
2. An infrared transmitting ceramic material which satisfies the condition of 0.84 and μ ≦ 0.7 / mm.
Ceramic articles.
JP11329935A 1998-11-24 1999-11-19 Ceramic article Pending JP2000219568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11329935A JP2000219568A (en) 1998-11-24 1999-11-19 Ceramic article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33229298 1998-11-24
JP10-332292 1998-11-24
JP11329935A JP2000219568A (en) 1998-11-24 1999-11-19 Ceramic article

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006301030A Division JP2007039335A (en) 1998-11-24 2006-11-07 Manufacturing method for ceramic article

Publications (1)

Publication Number Publication Date
JP2000219568A true JP2000219568A (en) 2000-08-08

Family

ID=26573376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11329935A Pending JP2000219568A (en) 1998-11-24 1999-11-19 Ceramic article

Country Status (1)

Country Link
JP (1) JP2000219568A (en)

Similar Documents

Publication Publication Date Title
CN1657462B (en) Glass ceramic having a low thermal expansion
Schultz Binary titania‐silica glasses containing 10 to 20 wt% TiO2
Kapany et al. Recent developments in infrared fiber optics∗
TWI692459B (en) UV transmission glass
Webber et al. Some physical properties of Ge As Se infrared optical glasses
US7524781B2 (en) Non-lead optical glass and optical fiber
EP4059903B1 (en) Glass ceramic having specific thermal expansion characteristics
US20220371940A1 (en) Ultraviolet transmission glass
KR100414242B1 (en) Ceramic article
Hanada et al. Physical Properties and Structure of Rf‐Sputtered Amorphous Films in the System Ti02‐Si02
Hussain Optical band gap, oxidation polarizability, optical basicity and electronegativity measurements of silicate glasses using ellipsometer and abbe refractometer
Jiang et al. The structural, thermal, and optical analyses of multicomponent germanium oxide glasses for engineering mid‐Infrared fiber chemical sensing
JP2000219568A (en) Ceramic article
US20220388893A1 (en) Ultraviolet transmission glass
KR100247355B1 (en) Freezing point meter and freezing point measuring method
WO2012002493A1 (en) Method for measuring the fictive temperature of optical glass
Chen et al. Effect of Ceramic Crucibles on Magneto-Optical PbO-Bi2O3-B2O3Glasses Properties
JP2007039335A (en) Manufacturing method for ceramic article
Krause Glasses
JP2000146533A (en) Instrument and method for measuring thickness of light- transmission body
Kobayashi et al. Determination of refractive indices and linear coefficients of thermal expansion of silicate glasses containing titanium oxides
WO2019082616A1 (en) Optical glass, optical member, and wearable device
Fageria et al. Effect of TeO2 Ions on Structural, Thermal Optical and Properties ZnO-Bi2O3-B2O3 Glasses Doped with NiO
Sakaguchi et al. Refractive index dispersion in ternary germanate glasses
Sakamoto et al. Infrared optical properties of β-spodumene solid solution glass-ceramic for fiber-optic devices

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070205