JP2000218158A - Method for judging residual life of filter for adsorbing organic gas - Google Patents

Method for judging residual life of filter for adsorbing organic gas

Info

Publication number
JP2000218158A
JP2000218158A JP1886799A JP1886799A JP2000218158A JP 2000218158 A JP2000218158 A JP 2000218158A JP 1886799 A JP1886799 A JP 1886799A JP 1886799 A JP1886799 A JP 1886799A JP 2000218158 A JP2000218158 A JP 2000218158A
Authority
JP
Japan
Prior art keywords
filter
ratio
organic gas
calibration curve
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1886799A
Other languages
Japanese (ja)
Inventor
Shigeaki Sawada
重明 澤田
Takanari Shiraishi
登業 白石
Toshiko Sakuratani
敏子 櫻谷
Koichi Shintani
晃一 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP1886799A priority Critical patent/JP2000218158A/en
Publication of JP2000218158A publication Critical patent/JP2000218158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge the residual life of an organic gas adsorbing filter having a physical adsorption function stably in a short time by preparing a calibration curve exhibiting the relationship between a break ratio and a heat-desorption ratio by using a standard organic gas and calculating the break ratio by the calibration curve from the heat-desorption ratio of a filter to be tested. SOLUTION: After a calibration curve exhibiting the relationship between a break ratio and a heat-desorption ratio is prepared with the use of a standard organic gas such as toluene and an organic gas to be tested, the break ratio is calculated by the calibration curve from the heat-desorption ratio of a filter to be tested. The break ratio is obtained from the formula: break ratio (%)=(C/C0)×100 by measuring a filter inlet concentration C0 and an outlet concentration C. The desorption ratio means the difference between a weight-loss ratio to a temperature zone (about 600 deg.C) causing the reduction of carbon itself after weight reduction by contained water and the weight-loss ratio of a new filter. The break ratio of a filter is calculated by comparing the desorption ratio with the calibration curve, and the residual life of the filter is judged from the break ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、物理吸着機能を有
するフィルターにおいて、有機系ガスを吸着したフィル
ターの余命を、短時間に、安定して判定する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stably determining the life expectancy of a filter having an organic gas adsorbed thereon in a short time in a filter having a physical adsorption function.

【0002】[0002]

【従来の技術】近年、半導体を始めとする精密エレクト
ロニクスの製造クリーンルーム内に存在する微量ガス
が、製造収率を悪化させることが明らかになっている。
そこで、低濃度の有害ガスを、完全かつ簡易に除去しう
ると共に、取扱いが容易で安全な空気浄化用フィルター
として、粒状活性炭や活性炭繊維などを利用した微量ガ
ス吸着用フィルターが開発されている。
2. Description of the Related Art In recent years, it has been clarified that a trace gas present in a clean room for manufacturing semiconductors and other precision electronics deteriorates the manufacturing yield.
Therefore, a trace gas adsorption filter using granular activated carbon, activated carbon fiber or the like has been developed as an air purification filter which can completely and easily remove low-concentration harmful gases, is easy to handle, and is safe.

【0003】このフィルターは、対象とするガスが有機
系ガスでない場合(アルカリ系ガス、酸性ガス、イオウ
系ガス等)は、目的とする成分を中和あるいは酸化等の
化学反応によって除去することを基本としている。その
ため、活性炭などに各種の薬剤を添着している。一方、
対象ガスがアセトン、トルエン、有機溶剤等の有機系ガ
スであるフィルターは、活性炭などが本来持っている優
れた物理吸着機能を利用するものである。
When the target gas is not an organic gas (such as an alkaline gas, an acid gas, or a sulfur gas), the filter removes the target component by a chemical reaction such as neutralization or oxidation. Basic. Therefore, various chemicals are impregnated on activated carbon or the like. on the other hand,
A filter in which the target gas is an organic gas such as acetone, toluene, or an organic solvent utilizes an excellent physical adsorption function inherent to activated carbon or the like.

【0004】フィルターの性能は、対象ガス成分に対し
て、どの程度吸着するか(吸着性能)と、いつまで保つ
か(余命)とに大きく分けられる。吸着性能について
は、各種分析機器を用いて短時間に知見を得ることがで
きるが、余命については簡単ではない。しかし、フィル
ターの余命を判定することは重要であり、特に、対象ガ
スが有機系ガスの場合は、吸着機構が物理吸着を主体と
しているため、飽和すると吸着作用がなくなり、むしろ
脱着現象さえ生じるので、フィルターの余命を判定する
方法が望まれてきた。
[0004] The performance of a filter can be broadly divided into how much it adsorbs to the target gas component (adsorption performance) and how long it is maintained (remaining life). Regarding the adsorption performance, knowledge can be obtained in a short time using various analytical instruments, but the life expectancy is not simple. However, it is important to determine the life expectancy of the filter, especially when the target gas is an organic gas, since the adsorption mechanism is mainly based on physical adsorption, the adsorption action is lost when saturated, and even a desorption phenomenon occurs. Thus, a method for determining the life expectancy of a filter has been desired.

【0005】本来、ある環境下でのフィルターの入口濃
度と出口濃度をモニタし、出口濃度が目標値を超えた時
を寿命とするわけであるが、そのためには寿命と同じ多
くの時間を要することになる。対象ガスが有機系ガスで
ない場合は、化学反応によって除去するため、対象ガス
の種類が限られており、また添着した薬剤の減少量から
フィルターの余命を判定できる。しかし有機系ガスの場
合は、物理吸着によるため、例えば吸着法で余命を判定
しようとしても、すでに吸着されたガスと試験用の被吸
着ガスで置換現象が生じ、正確なフィルターの余命判定
は困難である。
[0005] Originally, the inlet concentration and outlet concentration of a filter under a certain environment are monitored, and the life is determined when the outlet concentration exceeds a target value. For this purpose, as much time as the life is required. Will be. When the target gas is not an organic gas, the target gas is removed by a chemical reaction. Therefore, the types of the target gas are limited, and the life expectancy of the filter can be determined based on the decrease in the amount of the drug attached. However, in the case of organic gases, due to physical adsorption, even if you try to determine the life expectancy by, for example, the adsorption method, a replacement phenomenon occurs between the gas already adsorbed and the gas to be adsorbed for testing, making it difficult to accurately determine the life expectancy of the filter It is.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の問題
を解決し、物理吸着機能を有する有機系ガス吸着用フィ
ルターの余命を短時間に、安定して判定できる有機系ガ
ス吸着用フィルターの余命判定方法を提供することを技
術的な課題とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and provides an organic gas adsorption filter capable of stably determining the life expectancy of an organic gas adsorption filter having a physical adsorption function in a short time. An object of the present invention is to provide a method for determining a life expectancy.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討した結果、本発明に到達し
た。すなわち、本発明の要旨は次の通りである。 (1)物理吸着機能を有する有機系ガス吸着用フィルタ
ーの余命を判定するに際し、あらかじめ標準有機ガスを
用いて破過率と加熱による脱着率の関係を示す検量線を
作成し、被検査用フィルターの加熱による脱着率から検
量線で破過率を算出し、被検査用フィルターの余命を判
定することを特徴とする有機系ガス吸着用フィルターの
余命判定方法。 (2)物理吸着機能を有する有機系ガス吸着用フィルタ
ーが活性炭を主成分とするものである上記(1)記載の
有機系ガス吸着用フィルターの余命判定方法。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, the gist of the present invention is as follows. (1) In determining the life expectancy of an organic gas adsorption filter having a physical adsorption function, a calibration curve indicating the relationship between the breakthrough rate and the desorption rate due to heating was prepared using a standard organic gas in advance, and the filter to be inspected was used. A method for determining the life expectancy of an organic gas adsorption filter, comprising calculating a breakthrough rate from a desorption rate due to heating by a calibration curve and judging the life expectancy of the filter for inspection. (2) The method for determining the life expectancy of an organic gas adsorption filter according to the above (1), wherein the organic gas adsorption filter having a physical adsorption function is mainly composed of activated carbon.

【0008】[0008]

【発明の実施の形態】以下、本発明について詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0009】本発明の有機系ガス吸着用フィルターの余
命判定方法は、標準有機ガス、例えばトルエンあるいは
被処理用の有機ガスを用いて、破過率と加熱による脱着
率の関係を示す検量線を作成し、被検査用フィルターの
加熱による脱着率から検量線で破過率を算出するもので
ある。破過とは、フィルターから流出する流体の吸着物
質濃度が許容限界に達し、それを超えることであり、さ
らに流体の供給を続けると、フィルターの出口における
吸着物質濃度が次第に上がる。破過率は、フィルターの
入口濃度C0 、出口濃度Cをそれぞれ経時的に測定し、
下式より求める。 破過率(%)=(C/C0 )×100 破過率は、目的に応じてある値に指定され(一般に5〜
10%)、フィルター交換の目安とされる。
The method for determining the life expectancy of an organic gas adsorption filter according to the present invention uses a standard organic gas, for example, toluene or an organic gas to be treated, and obtains a calibration curve showing the relationship between the breakthrough rate and the desorption rate by heating. It is prepared and the breakthrough rate is calculated by a calibration curve from the desorption rate due to heating of the test filter. Breakthrough is when the concentration of adsorbed material in the fluid flowing out of the filter reaches and exceeds an allowable limit. As the supply of fluid continues, the concentration of adsorbed material at the outlet of the filter gradually increases. The breakthrough rate is determined by measuring the inlet concentration C 0 and the outlet concentration C of the filter with time, respectively.
Obtain from the following formula. Breakthrough rate (%) = (C / C 0 ) × 100 The breakthrough rate is specified to a certain value according to the purpose (generally 5 to 5).
10%), which is a guide for replacing filters.

【0010】まず、標準有機ガスとしてトルエンを用い
た場合の、検量線の作成方法について説明する。検量線
作成用として、トルエンを吸着させた任意の破過品を作
製する。破過品は、未使用のフィルターをカラムに充填
し、窒素ガス中に一定濃度のトルエンガスを配合したガ
スを通過させ、各々の破過率での破過品を得る。
First, a method for preparing a calibration curve when toluene is used as the standard organic gas will be described. For the preparation of a calibration curve, an arbitrary breakthrough product adsorbing toluene is prepared. As the breakthrough product, an unused filter is filled in a column, and a gas in which a certain concentration of toluene gas is mixed in nitrogen gas is passed to obtain breakthrough products at respective breakthrough rates.

【0011】次に、任意に作製した破過品の脱着率を測
定する。脱着率は、含有する水分による重量減少の後、
炭素自体が減少を起こす温度域(600℃付近)までの
減量率と、未使用フィルターにおける減量率との差とす
る。減量率の測定は、熱重量測定装置(TGA)を使用
し、不活性雰囲気中で、天秤部の雰囲気温度を上昇さ
せ、フィルターの重量減少を経時的に測定することによ
り行う。これらの結果を用い、図1のようなトルエンの
検量線を作成する。検量線は、破過率に対して脱着率を
プロットして得られる。
Next, the desorption rate of the arbitrarily prepared breakthrough product is measured. Desorption rate, after weight loss due to moisture contained,
The difference between the weight loss rate up to a temperature range (around 600 ° C.) at which carbon itself decreases and the weight loss rate of an unused filter is defined. The weight loss rate is measured by using a thermogravimetric device (TGA), increasing the ambient temperature of the balance section in an inert atmosphere, and measuring the weight loss of the filter over time. Using these results, a calibration curve of toluene as shown in FIG. 1 is created. The calibration curve is obtained by plotting the desorption rate against the breakthrough rate.

【0012】次に、得られた検量線を用いて、被検査用
フィルターの余命を判定する。まず、被検査用フィルタ
ーの脱着率を測定するが、前記と同様の方法で行う。求
められた脱着率を、検量線と比較してフィルターの破過
率を算出し、得られた破過率から、フィルターの余命を
判定する。例えば、フィルター交換の時期の破過度を、
10%と設定した場合、1年間使用したフィルターについ
て得られた破過率が2%であれば、そのフィルターの余
命をあと4年と判定する。
Next, the remaining life of the filter to be inspected is determined using the obtained calibration curve. First, the desorption rate of the filter to be inspected is measured by the same method as described above. The obtained desorption rate is compared with a calibration curve to calculate the filter breakthrough rate, and the remaining life of the filter is determined from the obtained breakthrough rate. For example, if the filter replacement time
If it is set to 10% and the breakthrough rate obtained for a filter used for one year is 2%, the life expectancy of the filter is determined to be another four years.

【0013】さらに、本発明の応用として、TGAによ
り脱着させたガスを、ガスクロマトグラフ質量分析計
(GC−MS)等で測定することにより、フィルターの
使用場所に存在するガスの種類を知ることもできる。
Further, as an application of the present invention, the type of gas present at the place where the filter is used can be known by measuring the gas desorbed by TGA with a gas chromatograph mass spectrometer (GC-MS) or the like. it can.

【0014】[0014]

【作用】本発明において、検量線は一度作成すればよ
く、後は余命を知りたいフィルターの脱着率を測定すれ
ばよいので、短時間で余命を判定することができる。ま
た、活性炭などの吸着剤の充填の仕方や、対象ガスの初
濃度等の要因による影響を受けないため、安定した結果
が得られる。
In the present invention, it is sufficient to prepare a calibration curve once, and thereafter, it is only necessary to measure the desorption rate of the filter whose life expectancy is to be determined, so that the life expectancy can be determined in a short time. In addition, since the method is not influenced by factors such as the method of filling the adsorbent such as activated carbon and the initial concentration of the target gas, a stable result can be obtained.

【0015】[0015]

【実施例】次に、本発明を実施例により具体的に説明す
る。 実施例1 フィルターは、繊維状活性炭をポリエステルの不織布で
挟んだ活性炭シート(ユニチカ(株)製)を用いた。未
使用の活性炭シートを直径25mmの円状に切り取り、3枚
分(約0.4g)を直径25mmの円状カラムに充填し、窒素ガ
スで希釈した3ppm のトルエンガスを通気して、17、5
2、60、100%の破過品を作製した。
Next, the present invention will be described in detail with reference to examples. Example 1 The filter used was an activated carbon sheet (manufactured by Unitika Ltd.) in which fibrous activated carbon was sandwiched between polyester nonwoven fabrics. An unused activated carbon sheet was cut into a circle having a diameter of 25 mm, and three sheets (approximately 0.4 g) were filled in a circular column having a diameter of 25 mm.
2, 60 and 100% breakthrough products were produced.

【0016】これらのシートを乳鉢で粉砕し、TGA
(セイコー電子(株)製)により測定した。測定は、7
mgの粉砕サンプルを装置(天秤部)に入れ、窒素ガス15
0ml/分で30分通気した。その後、同流量の窒素通気中
で、天秤部の雰囲気温度を上昇させ、サンプルの重量減
少を経時的に測定した。補正用としては、未使用の活性
炭シートを使用した。それぞれ、重量の減少値から脱着
率を算出した。活性炭シートの17、52、60、100%の破過
品の、得られた脱着率の結果を表1に示す。
These sheets are ground in a mortar,
(Manufactured by Seiko Electronics Co., Ltd.). The measurement is 7
mg of the ground sample is placed in the instrument (balance section).
Aeration was performed at 0 ml / min for 30 minutes. Thereafter, the atmosphere temperature of the balance section was increased in a nitrogen flow at the same flow rate, and the weight loss of the sample was measured over time. An unused activated carbon sheet was used for correction. In each case, the desorption rate was calculated from the weight reduction value. Table 1 shows the results of the obtained desorption rates of the 17, 52, 60, and 100% breakthrough products of the activated carbon sheet.

【0017】[0017]

【表1】 [Table 1]

【0018】次に、表1をもとにして、標準有機ガスが
トルエンである場合の検量線を作成した。得られた検量
線を図1に示す。さらに、得られた脱着率と、上記サン
プルのトルエン吸着率との関係を図2に示す。図2の脱
着率と吸着率との比較から、得られた脱着率はトルエン
の吸着率と良好な相関性を示した。したがって、フィル
ター交換時期の破過率、すなわち吸着率を任意の値に設
定すると、使用フィルターの脱着率の測定から余命の判
定が可能となる。
Next, a calibration curve was prepared based on Table 1 when the standard organic gas was toluene. The obtained calibration curve is shown in FIG. FIG. 2 shows the relationship between the obtained desorption rate and the toluene adsorption rate of the sample. From the comparison between the desorption rate and the adsorption rate in FIG. 2, the obtained desorption rate showed a good correlation with the adsorption rate of toluene. Therefore, if the breakthrough rate at the filter replacement time, that is, the adsorption rate is set to an arbitrary value, it is possible to determine the remaining life from the measurement of the desorption rate of the used filter.

【0019】被検査用フィルターとして、3ヶ月使用し
たユニチカ社製の活性炭シートを用い、同様にして脱着
率を算出した。得られた脱着率の結果を表2に示す。
An activated carbon sheet manufactured by Unitika Ltd. used for 3 months was used as a filter for inspection, and the desorption rate was calculated in the same manner. Table 2 shows the results of the obtained desorption rates.

【0020】[0020]

【表2】 [Table 2]

【0021】表2の脱着率の値を、図1の検量線から得
られる近似式に代入して、被検査用フィルターの破過の
程度を算出したところ、3ヶ月使用品は 1.1%の破過度
であることが判明した。したがって、3ヶ月使用品の余
命は、フィルター交換時期の破過度を10%と設定した場
合、あと約24ヶ月と判定された。
The degree of breakthrough of the filter to be inspected was calculated by substituting the value of the desorption rate in Table 2 into an approximate expression obtained from the calibration curve in FIG. It turned out to be excessive. Therefore, the life expectancy of the product used for 3 months was determined to be about 24 months when the excess of the filter replacement time was set to 10%.

【0022】[0022]

【発明の効果】本発明によれば、物理吸着機能を有する
フィルターにおいて、有機系ガスを吸着したフィルター
の余命を、短時間に、安定して判定することが可能とな
る。
According to the present invention, in a filter having a physical adsorption function, it is possible to stably determine the life expectancy of a filter that has adsorbed an organic gas in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機系ガス吸着用フィルターの余命判
定方法で得られる、標準有機ガスとしてトルエンを用い
た検量線の一例を示すグラフである。
FIG. 1 is a graph showing an example of a calibration curve obtained by using the toluene as a standard organic gas, which is obtained by the method for determining a life expectancy of an organic gas adsorption filter according to the present invention.

【図2】実施例1で得られた脱着率と、上記サンプルの
トルエン吸着率との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a desorption rate obtained in Example 1 and a toluene adsorption rate of the sample.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新谷 晃一 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 Fターム(参考) 4D012 CA11 CB03 CE02 CF05 CF10 CG01 CK07 4G066 AA05B BA03 BA05 BA11 BA38 CA04 CA51 DA02 DA03 EA20 GA01 5B049 AA04 BB07 EE03 EE41 GG09 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Koichi Shintani 23 Uji Kozakura, Uji City, Kyoto Unitika Central Research Laboratory F-term (reference) 4D012 CA11 CB03 CE02 CF05 CF10 CG01 CK07 4G066 AA05B BA03 BA05 BA11 BA38 CA04 CA51 DA02 DA03 EA20 GA01 5B049 AA04 BB07 EE03 EE41 GG09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物理吸着機能を有する有機系ガス吸着用
フィルターの余命を判定するに際し、あらかじめ標準有
機ガスを用いて破過率と加熱による脱着率の関係を示す
検量線を作成し、被検査用フィルターの加熱による脱着
率から検量線で破過率を算出し、被検査用フィルターの
余命を判定することを特徴とする有機系ガス吸着用フィ
ルターの余命判定方法。
1. To determine the life expectancy of an organic gas adsorption filter having a physical adsorption function, a calibration curve showing the relationship between the breakthrough rate and the desorption rate due to heating is prepared in advance using a standard organic gas, and the inspection is performed. A method for determining the life expectancy of an organic gas adsorption filter, comprising calculating a breakthrough rate using a calibration curve from a desorption rate due to heating of the filter for use, and judging the life expectancy of the filter to be inspected.
【請求項2】 物理吸着機能を有する有機系ガス吸着用
フィルターが活性炭を主成分とするものである請求項1
記載の有機系ガス吸着用フィルターの余命判定方法。
2. The organic gas adsorption filter having a physical adsorption function is mainly composed of activated carbon.
The method for judging the life expectancy of the organic gas adsorption filter according to the above.
JP1886799A 1999-01-27 1999-01-27 Method for judging residual life of filter for adsorbing organic gas Pending JP2000218158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1886799A JP2000218158A (en) 1999-01-27 1999-01-27 Method for judging residual life of filter for adsorbing organic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1886799A JP2000218158A (en) 1999-01-27 1999-01-27 Method for judging residual life of filter for adsorbing organic gas

Publications (1)

Publication Number Publication Date
JP2000218158A true JP2000218158A (en) 2000-08-08

Family

ID=11983503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1886799A Pending JP2000218158A (en) 1999-01-27 1999-01-27 Method for judging residual life of filter for adsorbing organic gas

Country Status (1)

Country Link
JP (1) JP2000218158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440344B2 (en) 2020-05-27 2024-02-28 進和テック株式会社 Lifespan determination method and lifespan determination device for physical adsorption filters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7440344B2 (en) 2020-05-27 2024-02-28 進和テック株式会社 Lifespan determination method and lifespan determination device for physical adsorption filters

Similar Documents

Publication Publication Date Title
Kędziora et al. Extraction media used in needle trap devices—Progress in development and application
Barratt The preparation of standard gas mixtures. A review
Koziel et al. Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters
WO2013133872A1 (en) Detection and measurement of volatile organic compounds
Srivastava et al. Monitoring and reporting VOCs in ambient air
WO2016144248A1 (en) Method for active or passive sampling of particles and gas phase organic and non-organic components in a fluid flow
US4249904A (en) Method and apparatus for extraction of airborne N-nitroso compounds without artifact formation
Idris et al. A comparative study of selected sorbents for sampling of aromatic VOCs from indoor air
Tumbiolo et al. Thermogravimetric calibration of permeation tubes used for the preparation of gas standards for air pollution analysis
Plaisance et al. Assessment of uncertainty of benzene measurements by Radiello diffusive sampler
US3888124A (en) Atmospheric mercury sampling material and method
Ohira et al. Can breath isoprene be measured by ozone chemiluminescence?
CN107817281B (en) NO electrochemical sensor for breath detection
Patil et al. Determination of benzene, aniline and nitrobenzene in workplace air: a comparison of active and passive sampling
Sanchez-Pedreno et al. The investigation of coating materials for the detection of nitrobenzene with coated quartz piezoelectric crystals
JP2000218158A (en) Method for judging residual life of filter for adsorbing organic gas
Harper Novel sorbents for sampling organic vapours
Ballesta et al. Validation and modelling of a novel diffusive sampler for determining concentrations of volatile organic compounds in air
Spinhirne et al. Generation And Calibration Of Standard Gas Mixtures Or Volatile Fatty Acids Using Permeation Tubes And Solid-Phase Microextraction
US11857910B2 (en) Metal-organic frameworks for sorption and sensing applications
Patil et al. Evaluation of Tenax TA for the determination of chlorobenzene and chloronitrobenzenes in air using capillary gas chromatography and thermal desorption
JP6217290B2 (en) Sample gas measuring apparatus and sample gas measuring method
Bo et al. Development of a fiber-packed in-tube extraction device and its application in BTEX analysis
Chen et al. Trapping and preconcentration of volatile organic sulfur compounds in water samples by portable and battery-powered trapping device prior to gas chromatography-sulfur chemiluminescence determination
Bolat et al. MOF-801 based solid phase microextraction fiber for the monitoring of indoor BTEX pollution