JP2000216215A - Member for carrying used for industrial robot - Google Patents

Member for carrying used for industrial robot

Info

Publication number
JP2000216215A
JP2000216215A JP1492799A JP1492799A JP2000216215A JP 2000216215 A JP2000216215 A JP 2000216215A JP 1492799 A JP1492799 A JP 1492799A JP 1492799 A JP1492799 A JP 1492799A JP 2000216215 A JP2000216215 A JP 2000216215A
Authority
JP
Japan
Prior art keywords
fiber
carbon
carrying
metal
enforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1492799A
Other languages
Japanese (ja)
Inventor
Daisuke Uchida
大介 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mitsubishi Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mitsubishi Oil Corp filed Critical Nippon Mitsubishi Oil Corp
Priority to JP1492799A priority Critical patent/JP2000216215A/en
Publication of JP2000216215A publication Critical patent/JP2000216215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a light weight, to make easily handle and to hardly generate a deformation, a material degradation, powder splashing and so on by being constituted of fiber enforced carbon compound material or further by covering by metal over a whole surface. SOLUTION: A member for carrying is robot hand or an effector for carrying a semiconductor wafer or a liquid crystal glass substrate and comprises a plate body having a normal and proper form to be able to mount the semiconductor wafer or the liquid crystal glass substrate thereon. For example, a plate body which has a single handling part and more than two branched parts is given. A metallic fiber, a carbon fiber and so on can be used for an enforced fiber of fiber enforced carbon compound material which forms the member for carrying, and the carbon fiber is preferable among them. Finally, coating for heatproof such as metal, ceramic or so on is preferably provided. The member for carrying having a superior appearance can be obtained which prevents carbon powder from splashing without loosing basic material properties such as a heat conductivity, a heat expansion rate, a mechanical strength and so on.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は産業用ロボットに使
用される搬送用部材に関し、特にクリーンルーム内にお
いて半導体ウエハや液晶ガラス基板を炉内に搬送し焼成
処理する際に使用する搬送用ロボットハンドもしくはエ
フェクター(これらを搬送用部材と称する)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transfer member used for an industrial robot, and more particularly to a transfer robot hand or a transfer robot hand used for transferring a semiconductor wafer or a liquid crystal glass substrate into a furnace in a clean room for baking. The present invention relates to an effector (these are referred to as transfer members).

【0002】[0002]

【従来の技術】近年、シリコーンウエハや液晶ガラス基
板の大型化に伴い、より軽量で剛性の高い搬送用ハンド
もしくはエフェクターが望まれている。従来、産業用ロ
ボットに使用されるこれらの搬送用部材においては通
常、スチールやアルミニウム等の金属製の部材が使用さ
れている。しかしながら、金属は比重が大きいため、ハ
ンドもしくはエフェクターが大きくなると重量が増加す
るため、たわみや振動が大きくなるという欠点がある。
また、最近では軽量化を目的として炭素繊維強化プラス
チック(以下、CFRPと略する)が使用されはじめて
いるが、耐熱性や熱伝導性に乏しいため、CFRPの構
成成分である樹脂のガラス転移点を超える温度環境下で
は、塑性変形や機械物性低下等を招く恐れがあり使用に
適さないという欠点があり、適用範囲が制限されるとい
う問題点を有していた。
2. Description of the Related Art In recent years, with the increase in the size of a silicon wafer or a liquid crystal glass substrate, a lighter and more rigid transfer hand or effector has been desired. 2. Description of the Related Art Conventionally, metal members such as steel and aluminum have been used for these transfer members used for industrial robots. However, since the metal has a large specific gravity, the weight increases as the hand or the effector increases, and thus there is a disadvantage that the deflection and the vibration increase.
Recently, carbon fiber reinforced plastics (hereinafter abbreviated as CFRP) have begun to be used for the purpose of weight reduction. However, since they have poor heat resistance and thermal conductivity, the glass transition point of the resin, which is a component of CFRP, has to be reduced. Under a temperature environment exceeding the above, there is a possibility that plastic deformation or deterioration of mechanical properties may be caused, which is not suitable for use, and there is a problem that the applicable range is limited.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、これ
ら従来技術の問題点を解消することにあり、軽量にして
取扱い易いと共に、厳しい環境下で長時間反復使用して
も変形、物性低下、粉末飛散等を生じ難く、適用範囲の
広い新規搬送用部材を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art. The object of the present invention is to reduce the weight and ease of handling, and to reduce the deformation and physical properties even after repeated use in a severe environment for a long time. Another object of the present invention is to provide a new conveying member which is less likely to cause powder scattering and has a wide application range.

【0004】[0004]

【課題を解決するための手段】本発明は、第1に、繊維
強化炭素複合材料によって構成されていることを特徴と
する産業用ロボットに使用される搬送用部材にある。本
発明は、第2に、繊維強化炭素複合材料の表面全体が金
属被覆されている上記第1の搬送用部材にある。
Means for Solving the Problems The present invention firstly resides in a transport member used for an industrial robot, which is constituted by a fiber-reinforced carbon composite material. Secondly, the present invention resides in the first transport member in which the entire surface of the fiber-reinforced carbon composite material is metal-coated.

【0005】[0005]

【発明の実施の形態】本発明における産業用ロボットに
使用される搬送用部材の典型例は、前記したように半導
体ウエハもしくは液晶ガラス基板の搬送用ロボットハン
ドもしくはエフェクターであり、半導体ウエハや液晶ガ
ラス基板を載置できるよう通常適宜形状の板状体からな
る。一例としては図1に図示したように単一の手元部と
2以上に枝分かれした先端部をもつ板状体が挙げられ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical example of a transfer member used for an industrial robot according to the present invention is a robot hand or an effector for transferring a semiconductor wafer or a liquid crystal glass substrate, as described above. It is usually made of a suitably shaped plate so that the substrate can be placed thereon. As an example, as shown in FIG. 1, a plate-like body having a single hand portion and a tip portion branched into two or more can be cited.

【0006】本発明では上記の搬送用部材を繊維強化炭
素複合材料で形成する。繊維強化炭素複合材料の強化繊
維としては、金属繊維、セラミック繊維、炭素繊維など
を用いることができ、なかでも炭素繊維が好ましい。金
属繊維としてはステンレス繊維、銅繊維、ニッケル繊
維、チタン繊維、タングステン繊維などが挙げられ、該
セラミック繊維としては炭化珪素繊維、アルミナ繊維、
ガラス繊維、炭化チタン繊維、窒化ホウ素繊維などが挙
げられ、該炭素繊維としてはポリアクリロニトリル系炭
素繊維(PAN系炭素繊維)、ピッチ系炭素繊維、レー
ヨン系炭素繊維などが挙げられる。
In the present invention, the above-mentioned conveying member is formed of a fiber-reinforced carbon composite material. As the reinforcing fibers of the fiber-reinforced carbon composite material, metal fibers, ceramic fibers, carbon fibers, and the like can be used, and among them, carbon fibers are preferable. Examples of the metal fiber include stainless steel fiber, copper fiber, nickel fiber, titanium fiber, tungsten fiber, and the like, and the ceramic fiber includes silicon carbide fiber, alumina fiber,
Examples thereof include glass fibers, titanium carbide fibers, and boron nitride fibers. Examples of the carbon fibers include polyacrylonitrile-based carbon fibers (PAN-based carbon fibers), pitch-based carbon fibers, and rayon-based carbon fibers.

【0007】強化繊維としては、引張弾性率が通常10
〜1000GPa、特に50〜1000GPaのものが
好ましく使用される。また引張強度は通常0.1〜6G
Pa、特に3〜6GPaのものを使用することが好まし
い。特にピッチ系炭素繊維が好ましく、熱伝導率が通常
100〜1500W/mK、特に300〜1200W/
mKのピッチ系炭素繊維は特に好ましい。
As the reinforcing fiber, the tensile modulus is usually 10
Those having a pressure of up to 1000 GPa, particularly 50 to 1000 GPa, are preferably used. The tensile strength is usually 0.1-6G
It is preferable to use Pa, especially 3 to 6 GPa. Pitch-based carbon fibers are particularly preferred, and have a thermal conductivity of usually 100 to 1500 W / mK, particularly 300 to 1200 W / mK.
mK pitch-based carbon fibers are particularly preferred.

【0008】強化繊維の強化形態は特に限定されず、一
方向強化、二次元強化、三次元強化、多次元強化、ラン
ダム強化などを用いることができる。繊維強化炭素複合
材料は、一方向プリプレグ、二次元織物プリプレグを積
層、炭化したり、一方向材、二次元織物、フェルト、マ
ット、三次元織物などに含浸などでマトリックスを形成
後、炭化して得ることができる。二次元織物としては平
織り、綾織り、朱子織り、模紗織りなどが用いられる
が、組布といわれるものを使用することもできる。特に
搬送用部材の手元から先端方向に向かって繊維を配向さ
せた構造とすることが好ましい。また、搬送用部材の横
方向の剛性を強化させるために、上記繊維配向に対して
±45度方向及び垂直方向即ち90度方向に適宜繊維を
配向することもできる。
[0008] The reinforcing form of the reinforcing fiber is not particularly limited, and one-way reinforcing, two-dimensional reinforcing, three-dimensional reinforcing, multidimensional reinforcing, random reinforcing and the like can be used. The fiber-reinforced carbon composite material is formed by laminating and carbonizing unidirectional prepregs and two-dimensional woven prepregs, or forming a matrix by impregnating one-way materials, two-dimensional woven fabrics, felts, mats, three-dimensional woven fabrics, etc. Obtainable. As the two-dimensional fabric, plain weave, twill weave, satin weave, mosaic weave and the like are used, but what is called a braided fabric can also be used. In particular, it is preferable to have a structure in which the fibers are oriented from the hand of the conveying member toward the distal end. Further, in order to enhance the lateral rigidity of the conveying member, the fibers can be appropriately oriented in a direction of ± 45 degrees and a direction perpendicular to the fiber orientation, that is, in a direction of 90 degrees.

【0009】マトリックスの形成方法は、ピッチ、熱可
塑性樹脂、熱硬化性樹脂などを強化繊維に含浸する方
法、化学気相蒸着法(CVD)、化学気相浸透法(CV
I)などによって熱分解炭素を形成する方法などを用い
ることができる。ピッチとしては石炭ピッチ、石油ピッ
チ、合成ピッチなどを用いることができ、これらピッチ
を原料とした等方性ピッチ、メソ相ピッチなどを用いる
ことができ、該熱硬化性樹脂としてはフェノール樹脂、
エポキシ樹脂、フラン樹脂、尿素樹脂などを用いること
ができる。
The matrix may be formed by a method of impregnating a reinforcing fiber with a pitch, a thermoplastic resin, a thermosetting resin, or the like, a chemical vapor deposition (CVD) method, a chemical vapor infiltration method (CV).
A method of forming pyrolytic carbon according to I) or the like can be used. As the pitch, coal pitch, petroleum pitch, synthetic pitch and the like can be used, and isotropic pitch and mesophase pitch using these pitches as a raw material can be used.
Epoxy resins, furan resins, urea resins, and the like can be used.

【0010】ピッチ、熱硬化性樹脂、熱可塑性樹脂には
充填剤、例えば炭素粉、黒鉛粉、炭化珪素粉、シリカ
粉、炭素繊維ウィスカ、炭素短繊維、炭化珪素短繊維な
どを混合し、含浸することもできる。前記の炭化条件と
しては、不活性ガス中、通常400〜3500℃、特に
500〜3300℃での加熱が好ましい。また得られた
繊維強化炭素複合材料は緻密化処理をすることができ、
具体的には繰り返しマトリック形成工程に通すことによ
り複合材料の密度を向上させることができる。
Fillers such as carbon powder, graphite powder, silicon carbide powder, silica powder, carbon fiber whiskers, carbon short fibers, and silicon carbide short fibers are mixed and impregnated with pitch, thermosetting resin and thermoplastic resin. You can also. As the carbonization conditions, heating in an inert gas is usually 400 to 3500C, particularly preferably 500 to 3300C. The obtained fiber-reinforced carbon composite material can be subjected to a densification treatment,
Specifically, the density of the composite material can be improved by repeatedly passing through the matrix forming step.

【0011】本発明で用いるに適する繊維強化炭素複合
材料の繊維体積含有率(Vf)は通常30〜80vol
%、好ましくは40〜70vol%である。本発明で用
いるに適する繊維強化炭素複合材料のマトリックス含有
量(Vm)は通常20〜70vol%、好ましくは25
〜60vol%である。本発明で用いるに適する繊維強
化炭素複合材料の空隙率は通常0〜10vol%、好ま
しくは0〜5vol%である。本発明で用いるに適する
繊維強化炭素複合材料のかさ密度は通常1.5〜2.2
g/cm3 、好ましくは1.6〜2.1g/cm3 、さ
らに好ましくは1.7〜2.0g/cm3 である。
The fiber volume content (Vf) of the fiber-reinforced carbon composite material suitable for use in the present invention is usually 30 to 80 vol.
%, Preferably 40 to 70 vol%. The matrix content (Vm) of the fiber-reinforced carbon composite material suitable for use in the present invention is usually 20 to 70 vol%, preferably 25 vol%.
6060 vol%. The porosity of the fiber-reinforced carbon composite material suitable for use in the present invention is generally 0 to 10 vol%, preferably 0 to 5 vol%. The bulk density of the fiber reinforced carbon composite material suitable for use in the present invention is usually 1.5 to 2.2.
g / cm 3, preferably not 1.6~2.1g / cm 3, more preferably a 1.7~2.0g / cm 3.

【0012】本発明では上記した繊維強化炭素複合材
料、好ましくは炭素繊維強化炭素複合材料(C/Cコン
ポジット)で搬送用部材を形成するが、最終的には表面
に金属もしくはセラミック等の耐熱性被覆を設けること
が好ましい。特に金属被覆を設けることが好ましい。
In the present invention, the conveying member is formed of the above-described fiber reinforced carbon composite material, preferably a carbon fiber reinforced carbon composite material (C / C composite). Preferably, a coating is provided. In particular, it is preferable to provide a metal coating.

【0013】金属被覆は炭素材料の基礎物性は維持しな
がら、カーボン粉の飛散などを防止すればよいので炭素
材料内部まで含浸、浸透させる必要はなく、またこの被
覆により熱膨張率、弾性率、強度など炭素材料の物性そ
のものを変化させるというものでもない。あくまで炭素
材料表面にのみ被覆するだけでよく、炭素材料そのもの
の物性は実質的に変化させない。
The metal coating may prevent scattering of the carbon powder while maintaining the basic physical properties of the carbon material. Therefore, it is not necessary to impregnate and infiltrate the inside of the carbon material. It does not change the physical properties of the carbon material itself, such as strength. Only the surface of the carbon material need be coated, and the physical properties of the carbon material itself are not substantially changed.

【0014】被覆する金属の種類は特に制限されない
が、なかでもメッキで用いられる金、銀、銅、スズ、ニ
ッケルおよびこれらの混合物やこれら金属を主体とした
合金などが好ましく用いられ、特に錆びにくい金、ス
ズ、ニッケルおよびこれらの混合物やこれらの金属を主
体とした合金などが好ましく用いられる。また、下地メ
ッキの上に、多種の金属種をメッキして用いることもで
きる。
The type of metal to be coated is not particularly limited, but gold, silver, copper, tin, nickel, a mixture thereof, an alloy mainly composed of these metals, etc., which are used for plating, are preferably used, and are particularly resistant to rust. Gold, tin, nickel, mixtures thereof, and alloys mainly containing these metals are preferably used. In addition, various kinds of metal can be plated on the base plating and used.

【0015】金属皮膜の厚さは通常0.1〜500μ
m、好ましくは1〜200μm、より好ましくは1〜1
00μm、最も好ましくは2〜50μmである。膜厚が
上記範囲より小さいと気密性、カーボン粉の飛散防止が
困難になり、膜厚が該範囲より大きいと皮膜が剥離しや
すくなったり、炭素材料の基礎物性が変化したりするの
で好ましくない。金属皮膜形成前に、皮膜と炭素材料の
密着性をよくするために研磨あるいは目粗しをすること
もできる。
The thickness of the metal film is usually 0.1 to 500 μm.
m, preferably 1 to 200 μm, more preferably 1 to 1
00 μm, most preferably 2 to 50 μm. When the film thickness is smaller than the above range, airtightness, it is difficult to prevent the scattering of carbon powder, and when the film thickness is larger than the above range, the film is easily peeled or the basic physical properties of the carbon material are changed, which is not preferable. . Before forming the metal film, polishing or roughening may be performed to improve the adhesion between the film and the carbon material.

【0016】かくして得られた金属被覆炭素材料は、公
知の方法、例えば、CVD、物理気相蒸着法(PV
D)、電解メッキ、無電解メッキなどで得ることができ
る。本発明の搬送用部材は、熱伝導率が通常5〜120
0W/m・K、好ましくは60〜1200W/m・K、
さらに好ましくは150〜1200W/m・K、最も好
ましくは300〜1200W/m・Kであることが好ま
しい。
The metal-coated carbon material thus obtained can be obtained by a known method such as CVD, physical vapor deposition (PV).
D), electrolytic plating, electroless plating and the like. The transfer member of the present invention has a thermal conductivity of usually 5 to 120.
0 W / m · K, preferably 60 to 1200 W / m · K,
More preferably, it is 150 to 1200 W / m · K, and most preferably, it is 300 to 1200 W / m · K.

【0017】また引張強度は、通常20〜1000MP
a、好ましくは50〜600MPa、さらに好ましくは
60〜500MPaであることが好ましい。また、引張
弾性率は通常3〜800GPa、特に20〜700GP
aであることが好ましい。さらに熱膨張係数は、通常−
3.0〜20×10-6/℃、好ましくは−2.0〜10
×10-6/℃、さらに好ましくは−1.0〜7.0×1
-6/℃であることが好ましい。これらの物性は金属被
覆の前後で実質的に変化しないものであり、金属被覆後
の熱伝導性,熱膨張率および機械強度などの各種物性の
変化量は金属被覆前に比べて通常±5%以内、好ましく
は±3%以内、更に好ましくは±1%以内である。
The tensile strength is usually 20 to 1000MP.
a, preferably 50 to 600 MPa, more preferably 60 to 500 MPa. The tensile modulus is usually 3 to 800 GPa, especially 20 to 700 GPa.
a is preferred. Furthermore, the coefficient of thermal expansion is usually-
3.0-20 × 10 −6 / ° C., preferably −2.0-10
× 10 -6 / ° C, more preferably -1.0 to 7.0 × 1
It is preferably 0 -6 / ° C. These physical properties do not substantially change before and after metal coating, and the amount of change in various physical properties such as thermal conductivity, coefficient of thermal expansion and mechanical strength after metal coating is usually ± 5% as compared to before metal coating. Within, preferably within ± 3%, more preferably within ± 1%.

【0018】このようにして熱伝導性,熱膨張率および
機械強度などの基礎物性を損なうことなく、気密性に優
れ、炭素粉の飛散を防止し、はんだや銀ろう付けなどが
容易な、外観上優れた金属表面を持つ金属被覆した繊維
供炭素複合材料からなる搬送用部材が得られる。
In this way, without impairing the basic physical properties such as thermal conductivity, coefficient of thermal expansion and mechanical strength, it has excellent airtightness, prevents scattering of carbon powder, and is easy to solder and silver braze. A transport member made of a metal-coated fiber-carbon composite material having an excellent metal surface is obtained.

【0019】[0019]

【実施例】以下に実施例を挙げ、本発明を具体的に説明
するが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0020】〔実施例1〕引張強度3500MPa、引
張弾性率230GPaのPAN系炭素繊維を一方向に引
き揃えた後に積層し、さらに炭素質ピッチを含浸させて
圧力1MPa、温度1000℃で加圧炭化処理して一方
向強化C/Cコンポジットを得た。該一方向強化C/C
コンポジットを、図1に示すような1000mm×60
0mm×8mmの形状に加工した。このとき成形体の剛
性が十分得られるように、成形体の炭素繊維は手元部か
ら先端部AおよびB方向に配向させた。この部品を陰極
脱脂後、電流7Aで20分電解ニッケルメッキを行っ
た。このようにして得られた成形体のかさ密度1.70
g/cm3 、繊維体積含有率Vf=50%、引張弾性率
128GPaであった。C/Cコンポジットの表面には
炭素材料特有の炭素粉は全く見られず、白色の紙を押し
当てて数回強く擦ったが紙が黒色に汚れることはなく表
面は完全に被覆されていた。ニッケル被覆C/Cコンポ
ジットにカッターで正方形に傷を入れ、粘着テープにて
はがし試験を行ったが、金属膜は剥がれることはなく、
密着性は十分であった。また、当該ニッケル被覆C/C
コンポジットに、図1で示すような位置で重量約1kg
の黒鉛板を載せたまま、図2に示す状態で大気中450
℃の電気炉に10分間投入し、その後炉外に取り出し1
0分間室温に放置・冷却するという熱衝撃試験を50サ
イクル行ったが、金属膜に剥離等の異状は全く見られ
ず、また上記はがし試験を行ってみても金属膜は剥がれ
ることなく良好な状態で、且つ重量変化も全く見られな
かった。次に、上記熱衝撃試験前後の当該C/Cコンポ
ジットについて、図3に示すような片持ちばりの状態で
先端両端部の自重たわみを測定した。その結果、表1に
示すように試験後においても、熱荷重によるたわみの増
加は全く見られなかった。なお表1のたわみ変化量と
は、〔たわみ変化量〕=〔試験後のたわみ量〕−〔試験
前のたわみ量〕で測定された値である。
[Example 1] PAN-based carbon fibers having a tensile strength of 3500 MPa and a tensile modulus of 230 GPa were unidirectionally aligned and then laminated, impregnated with carbonaceous pitch, and pressure carbonized at a pressure of 1 MPa and a temperature of 1000 ° C. Processing resulted in a unidirectionally reinforced C / C composite. The one-way reinforced C / C
The composite was 1000 mm × 60 as shown in FIG.
It was processed into a shape of 0 mm × 8 mm. At this time, the carbon fibers of the molded body were oriented in the direction of the tip A and B from the hand so that the rigidity of the molded body could be sufficiently obtained. This part was subjected to electrolytic nickel plating at a current of 7 A for 20 minutes after the cathode was degreased. The bulk density of the molded body thus obtained is 1.70.
g / cm 3 , fiber volume content Vf = 50%, and tensile modulus 128 GPa. No carbon powder peculiar to the carbon material was found on the surface of the C / C composite, and white paper was pressed and rubbed strongly several times, but the paper was not stained black and the surface was completely covered. The nickel-coated C / C composite was cut into squares with a cutter and peeled off with an adhesive tape, but the metal film was not peeled off.
The adhesion was sufficient. The nickel-coated C / C
The composite is weighed about 1 kg at the position shown in Fig. 1.
2 with the graphite plate placed in the air in the state shown in FIG.
Into an electric furnace for 10 minutes, then take it out of the furnace
After 50 cycles of thermal shock test of leaving and cooling to room temperature for 0 minutes, no abnormalities such as peeling were observed on the metal film, and the metal film was in good condition without peeling even when the peeling test was performed. And no change in weight was observed. Next, with respect to the C / C composite before and after the thermal shock test, deflection of its own weight at both ends of the tip was measured in a cantilever state as shown in FIG. As a result, as shown in Table 1, even after the test, no increase in deflection due to thermal load was observed. The deflection change amount in Table 1 is a value measured by [deflection change amount] = [deflection amount after test] − [deflection amount before test].

【0021】[0021]

【表1】 [Table 1]

【0022】〔実施例2〕引張強度3500MPa、引
張弾性率800GPa、熱伝導率300W/mKのピッ
チ系炭素繊維を一方向に引き揃えた後に積層し、さらに
炭素質ピッチを含浸させて圧力1MPa、温度1000
℃で加圧炭化処理して一方向強化C/Cコンポジットを
得た。該一方向強化C/Cコンポジットを、図1に示す
ような1000mm×600mm×8mmの形状に加工
した。このとき成形体の剛性が十分得られるように、成
形体の炭素繊維は手元部から先端部AおよびB方向に配
向させた。この部品を陰極脱脂後、電流7Aで20分電
解ニッケルメッキを行った。このようにして得られた成
形体のかさ密度1.90g/cm3 、繊維体積含有率V
f=60%、引張弾性率245GPa、炭素繊維配向方
向の熱伝導率は400W/mK、炭素繊維に垂直な方向
の熱伝導率は20W/mKであった。C/Cコンポジッ
トの表面には炭素材料特有の炭素粉は全く見られず、白
色の紙を押し当てて数回強く擦ったが紙が黒色に汚れる
ことはなく表面は完全に被覆されていた。ニッケル被覆
C/Cコンポジットにカッターで正方形に傷を入れ、粘
着テープにてはがし試験を行ったが、金属膜は剥がれる
ことはなく、密着性は十分であった。また、当該ニッケ
ル被覆C/Cコンポジットに、図1で示すような位置で
重量約1kgの黒鉛板を載せたまま、図2に示す状態で
大気中450℃の電気炉に10分間投入し、その後炉外
に取り出し10分間室温に放置・冷却するという熱衝撃
試験を50サイクル行ったが、金属膜に剥離等の異状は
全く見られず、また上記はがし試験を行ってみても金属
膜は剥がれることなく良好な状態で、且つ重量変化も全
く見られなかった。次に、上記熱衝撃試験前後の当該C
/Cコンポジットについて、図3に示すような片持ちば
りの状態で先端両端部の自重たわみを測定した。その結
果、表2に示すように試験後においても、熱荷重による
たわみの増加は全く見られなかった。
Example 2 Pitch-based carbon fibers having a tensile strength of 3500 MPa, a tensile elasticity of 800 GPa and a thermal conductivity of 300 W / mK were aligned in one direction, laminated, and further impregnated with carbonaceous pitch to a pressure of 1 MPa. Temperature 1000
The carbonized body was pressurized at ℃ to obtain a unidirectionally reinforced C / C composite. The unidirectional reinforced C / C composite was processed into a shape of 1000 mm × 600 mm × 8 mm as shown in FIG. At this time, the carbon fibers of the molded body were oriented in the direction of the tip A and B from the hand so that the rigidity of the molded body could be sufficiently obtained. This part was subjected to electrolytic nickel plating at a current of 7 A for 20 minutes after the cathode was degreased. The bulk density of the molded body thus obtained is 1.90 g / cm 3 , and the fiber volume content V
f = 60%, tensile elasticity 245 GPa, thermal conductivity in the carbon fiber orientation direction was 400 W / mK, and thermal conductivity in the direction perpendicular to the carbon fiber was 20 W / mK. No carbon powder peculiar to the carbon material was found on the surface of the C / C composite, and white paper was pressed and rubbed strongly several times, but the paper was not stained black and the surface was completely covered. The nickel-coated C / C composite was cut into squares with a cutter and peeled off with an adhesive tape, and the test was performed. The metal film was not peeled off and the adhesion was sufficient. In addition, while the graphite plate having a weight of about 1 kg was placed on the nickel-coated C / C composite at the position shown in FIG. 1, it was put into an electric furnace at 450 ° C. in the atmosphere for 10 minutes in the state shown in FIG. After 50 cycles of a thermal shock test in which the sample was taken out of the furnace and left at room temperature for 10 minutes and cooled, no abnormalities such as peeling were observed on the metal film, and the metal film was peeled even after the above peeling test was performed. It was in a good condition without any change in weight. Next, before and after the thermal shock test,
With respect to the / C composite, the deflection of its own weight at both ends was measured in a cantilevered state as shown in FIG. As a result, as shown in Table 2, even after the test, no increase in the deflection due to the thermal load was observed.

【0023】[0023]

【表2】 [Table 2]

【0024】〔比較例1〕アルミニウム(JIS規格
A2017)を母材として、実施例1と同様の形状の部
品を製作した。得られた部品の、密度は2.71g/c
3 、引っ張り弾性率は71GPaであった。同じく熱
衝撃試験を実施して自重たわみを測定した。その結果、
表3に示すように熱応力により先端部が大きくたわんで
塑性変形を起こしてしまい、熱衝撃に耐えることができ
なかった。
[Comparative Example 1] Aluminum (JIS standard)
A2017) was used as a base material to fabricate a part having the same shape as in Example 1. The density of the obtained part is 2.71 g / c.
m 3 , and the tensile modulus was 71 GPa. Similarly, a thermal shock test was performed to measure the deflection under its own weight. as a result,
As shown in Table 3, the tip portion was largely bent by thermal stress, causing plastic deformation, and could not withstand thermal shock.

【0025】[0025]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で製造した搬送用部材の平面図。FIG. 1 is a plan view of a conveying member manufactured in an embodiment.

【図2】実施例での本発明の搬送用部材の使用状態を示
す概略断面図。
FIG. 2 is a schematic cross-sectional view showing a use state of the conveying member of the present invention in an embodiment.

【図3】実施例におけるたわみ量測定試験の状態を示す
概略断面図。
FIG. 3 is a schematic cross-sectional view showing a state of a deflection amount measurement test in an example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化炭素複合材料によって構成され
ていることを特徴とする産業用ロボットに使用される搬
送用部材。
1. A transfer member used for an industrial robot, comprising a fiber reinforced carbon composite material.
【請求項2】 繊維強化炭素複合材料の表面全体が金属
被覆されている請求項1記載の搬送用部材。
2. The conveying member according to claim 1, wherein the entire surface of the fiber-reinforced carbon composite material is metal-coated.
JP1492799A 1999-01-22 1999-01-22 Member for carrying used for industrial robot Pending JP2000216215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1492799A JP2000216215A (en) 1999-01-22 1999-01-22 Member for carrying used for industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1492799A JP2000216215A (en) 1999-01-22 1999-01-22 Member for carrying used for industrial robot

Publications (1)

Publication Number Publication Date
JP2000216215A true JP2000216215A (en) 2000-08-04

Family

ID=11874611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1492799A Pending JP2000216215A (en) 1999-01-22 1999-01-22 Member for carrying used for industrial robot

Country Status (1)

Country Link
JP (1) JP2000216215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384134B1 (en) * 2001-05-03 2003-05-14 주식회사 미래엔지니어링 Composite Sandwich Robot Hand

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100384134B1 (en) * 2001-05-03 2003-05-14 주식회사 미래엔지니어링 Composite Sandwich Robot Hand

Similar Documents

Publication Publication Date Title
US7871705B2 (en) Carbon fiber composite transfer member with reflective surfaces
EP2289861A1 (en) Carbon fiber carbon composite molded body, carbon fiber-reinforced carbon composite material and manufacturing method thereof
WO2002098819A1 (en) Method for producing sic fiber-reinforced sic composite material
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
US20110200819A1 (en) Carbon fiber composite material, and brake member, structural member for semiconductor, heat resistant panel and heat sink using the carbon fiber composite material
JPH0543364A (en) Oxidation-resistant corbon fiber-reinforced carbon composite material and its production
CN113896558A (en) High-performance thermal dredging composite material and preparation method thereof
JP2006045596A (en) Composite body with high thermal conductivity and low thermal expansion, and its manufacturing method
JP2000216215A (en) Member for carrying used for industrial robot
Gottlieb et al. Continuous fiber-reinforced ceramic matrix composites
JP2007308731A (en) Material for setter for sintering
KR101956683B1 (en) Manufacturing method of fiber reinforced ceramic matrix composites containing metal carbide filler
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JP2000191386A (en) Metal coated carbon material
JP4307798B2 (en) Heat dissipation material
JP3219314B2 (en) Method for producing boron carbide-based carbon material
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
JP4964913B2 (en) Carbon fiber reinforced carbon composite material
JPH0291270A (en) Oxidation-resistant carbon fiber-reinforced carbon material and production thereof
JPH0274671A (en) Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof
US20150299053A1 (en) Method for controlling characteristics of ceramic carbon composite, and ceramic carbon composite
JP4152580B2 (en) Method for manufacturing and repairing C / C crucible for pulling Si single crystal
JPH06272167A (en) Fiber for composite material
JP2005303114A (en) Metal-coated carbon material and heat dissipation substrate

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20031226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A131 Notification of reasons for refusal

Effective date: 20041019

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050125