JP2000214305A - Compact lens array for erect real image - Google Patents

Compact lens array for erect real image

Info

Publication number
JP2000214305A
JP2000214305A JP11163327A JP16332799A JP2000214305A JP 2000214305 A JP2000214305 A JP 2000214305A JP 11163327 A JP11163327 A JP 11163327A JP 16332799 A JP16332799 A JP 16332799A JP 2000214305 A JP2000214305 A JP 2000214305A
Authority
JP
Japan
Prior art keywords
image
condensing curved
curved surface
lens array
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11163327A
Other languages
Japanese (ja)
Inventor
Iwatatsu Fujioka
嚴達 藤陵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARK KK
Mark KK
Original Assignee
MARK KK
Mark KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARK KK, Mark KK filed Critical MARK KK
Priority to JP11163327A priority Critical patent/JP2000214305A/en
Publication of JP2000214305A publication Critical patent/JP2000214305A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a lens array for an erect real image having simple constitution, made excellent in mass-productivity, made compact, making the distance between object images short and having excellent performance. SOLUTION: Equal fine projecting condensing curved surfaces are respectively arranged at equal intervals in a state where they are connected through a thin base layer on a line on the front surface and the back surface of a plane parallel transparent base plate, and the light condensing curved surfaces on the front and the back surfaces hold an optical axis in common. The 1st image of an object is reduced and formed at a distance being nearly 1/2 thickness of the base plate by the projecting condensing curved surface on the object side, and the image is enlarged and reformed by the projecting condensing curved surface on an image side so as to obtain an erect real image. By setting relation between the thickness of the base plate and curvature, the erect image is obtained. A metallic mold is formed by pressing a punch on one projecting condensing curved surface to a metallic plane at equal intervals. Ultraviolet curing resin is dripped on the metallic mold and a transparent base plate is placed thereon, and ultraviolet rays are radiated from a base plate side. The material of the projecting condensing curved surface layer on the object side is equal to that of the base plate and the layer and the base plate are integrally molded by an injection molding method when the material is plastic, and by a press molding method when the material is glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は複写機,ファクシミ
リ,イメージスキャナなどの原稿読み取りに好適な正立
実像の小型レンズアレイに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an erect real image compact lens array suitable for reading an original such as a copier, a facsimile, and an image scanner.

【0002】[0002]

【従来の技術】正立実像を得るレンズアレイとしては屈
折率分布型ロッドレンズアレイが用いられているが、色
収差の除去には難点があり、充分なカラー対応が可能と
はなっていない。また、正立実像を得るために微小結像
レンズとルーフミラーを組み合わせた方法(特開平2−
308121号公報)やダハプリズムをレンズ間に挿入
する方法(特開平6−273692号公報)があるが、
ミラーの平面度やプリズム頂角の公差も厳しくせねばな
らず、複雑で部品点数も増加する。特開昭55−909
07号公報に記載されている棒状レンズは、物体側の棒
状レンズにより結像された第1像をこれと対称に向かい
合わせにおかれた像側の棒状レンズにより再結像するも
ので、第1像に近接し、向かい合う凸面はコンデンサの
働きをし、周辺光量の保持には有利であるが、焦点近傍
の両凸面はゴミ,キズの防止が困難で目立ちやすく、レ
ンズ枚数も多くその光軸合わせの精度も厳しくなる。
2. Description of the Related Art As a lens array for obtaining an erect real image, a gradient index rod lens array is used, but there is a difficulty in removing chromatic aberration, and it is not possible to cope with a sufficient color. Also, a method of combining a micro-imaging lens and a roof mirror to obtain an erect real image (Japanese Patent Laid-Open No.
308121) and a method of inserting a roof prism between lenses (Japanese Patent Application Laid-Open No. 6-273692).
The flatness of the mirror and the tolerance of the prism apex angle must be tight, which is complicated and increases the number of parts. JP-A-55-909
The rod-shaped lens described in JP-A-07-07207 re-images the first image formed by the rod-shaped lens on the object side by a rod-shaped lens on the image side which is symmetrically opposed to the first image. The convex surface close to and facing one image acts as a condenser and is advantageous for holding the peripheral light amount. However, the biconvex surface near the focal point is difficult to prevent dust and scratches and is conspicuous, and the number of lenses is large. The accuracy of alignment also becomes severe.

【0003】[0003]

【発明が解決しようとする課題】本発明は簡単な構成で
量産性に優れ、小型で物像間距離も短く、しかも性能の
優れた正立実像のレンズアレイを提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an erect real image lens array having a simple structure, excellent mass productivity, a small size, a short distance between object images, and excellent performance.

【0004】[0004]

【課題を解決するための手段】本発明は図1に示すよう
に平行平面の透明基板の一方(物体側)の表面の直線上
に等しい微小凸集光曲面がそれぞれ薄いベース層で繋が
れた状態で等間隔に配し、反対(像側)の表面の直線上
にもこれと等しい微小凸集光曲面がそれぞれ薄いベース
層で繋がれた状態で等間隔に配され、透明基板の表裏の
微小凸集光曲面がそれぞれ光軸を共有するレンズアレイ
において、正立等倍の実像を得るために物体よりの発散
光が物体側の微小凸集光曲面により基板厚みのほぼ1/
2の距離に縮小結像され、その像を物体側と対称に配さ
れた像側に凸なる微小凸集光曲面により拡大再結像する
構成において、図2に示すように物体側より順に、 ri :球面の曲率半径または非球面の頂点曲率半径 di :光軸上の厚みまたは空気間隔 ni :材質の屈折率 とし r3 :物体側凸集光曲面の曲率半径または非球面の頂点
曲率半径 d3 :物体側凸集光曲面層の軸上厚み n2 :物体側凸集光曲面層の材質の屈折率 d4 :基板の1/2厚み n3 :基板の材質の屈折率 において、 1.14<{(d33 +d42 )・(n2 −1)}/r323 <1.55 ……(1) なる条件を満足することを特徴とするものである。微小
凸集光曲面を等間隔で創成するには、比較的軟らかい金
属平面に所定の形状に形成された凸曲面のポンチを等間
隔に押圧した後、表面硬化すれば精度のよい金型が得ら
れることが分かった。この金型に紫外線硬化樹脂を滴下
し透明基板をのせ、基板側から紫外線で照射すれば精度
のよい微小凸集光曲面列が得られる。反対側の面にも同
じ金型またはデータが多少異なっても間隔ピッチの等し
い金型を用い、表裏の微小凸集光曲面の光軸が合致する
治具を用いて金型上に紫外線硬化樹脂を滴下し、片面の
完成している透明基板をのせ、基板側から紫外線を照射
すれば、正立実像のレンズアレイを作ることができる。
According to the present invention, as shown in FIG. 1, fine convex condensing curved surfaces which are equal to a straight line on one (object side) surface of a parallel flat transparent substrate are connected by thin base layers. In the same state, fine convex light-condensing curved surfaces equivalent to this are also arranged at equal intervals on a straight line on the opposite (image side) surface, with the thin base layers connected to each other. In a lens array in which the minute convex converging curved surfaces share the same optical axis, the divergent light from the object is reduced to approximately 1 / th of the substrate thickness by the minute convex converging curved surface on the object side in order to obtain an erect real-size real image.
In a configuration in which the image is reduced and formed at a distance of 2 and the image is enlarged and re-imaged by a minute convex condensing curved surface convex to the image side arranged symmetrically to the object side, in order from the object side as shown in FIG. r i : radius of curvature of spherical surface or apex of aspheric surface di : thickness on the optical axis or air space ni : refractive index of material r 3 : radius of curvature of object-side convex condensing curved surface or apex of aspheric surface Curvature radius d 3 : On-axis thickness of object-side convex condensing curved surface layer n 2 : Refractive index of material of object-side convex condensing curved surface layer d 4 : 1/2 thickness of substrate n 3 : Refractive index of substrate material , and satisfies the 1.14 <{(d 3 n 3 + d 4 n 2) · (n 2 -1)} / r 3 n 2 n 3 <1.55 ...... (1) the condition Things. In order to create minute convex condensing curved surfaces at equal intervals, press a punch of a convex curved surface formed in a predetermined shape on a relatively soft metal plane at equal intervals, and then harden the surface to obtain an accurate mold. I knew it could be done. An ultraviolet curable resin is dropped on this mold, a transparent substrate is placed thereon, and irradiation with ultraviolet rays is performed from the substrate side, so that a fine convex converging curved surface array with high accuracy can be obtained. On the opposite side, use the same mold or a mold with the same pitch even if the data is slightly different, and use a jig with the optical axis of the fine convex condensing curved surface on the front and back to fix the ultraviolet curing resin on the mold Is dropped, a completed transparent substrate on one side is placed, and ultraviolet rays are irradiated from the substrate side, whereby a lens array of an erect real image can be formed.

【0005】また、物体側凸集光曲面層の材質の屈折率
2 と基板の材質の屈折率n3 が等しく、その材質がプ
ラスチックの場合は射出成形法で、材質がガラスの場合
はプレス成形法により一体成形ができることも本発明の
大きな特徴である。
In addition, when the refractive index n 2 of the material of the object side convex condensing curved surface layer is equal to the refractive index n 3 of the material of the substrate and the material is plastic, injection molding is used. It is a major feature of the present invention that it can be integrally molded by a molding method.

【0006】次に条件式(1)について説明する。条件
式(1)は物体側の凸集光曲面の曲率半径または非球面
の頂点曲率半径と凸集光曲面層の軸上厚みおよび材質の
屈折率,基板の厚みとその屈折率の間の関係に関し、物
体側の第1像の結像倍率m1 の範囲を定めるもので物体
側の凸集光曲面により倍率m1 に縮小し、対称に配置さ
れた像側の凸集光曲面による倍率m2 =1/m1 により
拡大再結像されると正立等倍の実像が得られる。像側の
上記対応値が多少異なった場合は像側の再結像倍率m2
が異なり、総合倍率M(=m1 ×m2 )は1とはならな
いが収差への影響は少ない。
Next, conditional expression (1) will be described. Conditional expression (1) is the relationship between the radius of curvature of the convex condensing curved surface on the object side or the apex radius of curvature of the aspheric surface, the axial thickness of the convex condensing curved surface layer, the refractive index of the material, the thickness of the substrate, and its refractive index. With respect to, the range of the imaging magnification m 1 of the first image on the object side is defined, the magnification is reduced to m 1 by the convex condensing curved surface on the object side, and the magnification m by the symmetrically arranged convex condensing curved surface on the image side. When the image is enlarged and re-imaged by 2 = 1 / m 1, a real image at the same magnification of the erect image is obtained. If the corresponding value on the image side is slightly different, the re-imaging magnification m 2 on the image side
However, the total magnification M (= m 1 × m 2 ) does not become 1, but has little influence on aberration.

【0007】したがって、物体側の結像倍率m1 の範囲
を定めることが本発明の構成上重要なポイントとなる。
条件式(1)は {r3 /(n2 −1)}・(1−m1 )=(d3 /n
2 )+(d4 /n3 ) において、 0.14<−m1 <0.55 の範囲内に定めるもので、下限を越えるときは物像間の
距離が大きくなり、本発明の主旨である小型化が不可能
になるとともに、物体側の凸集光曲面の有効口径に限度
もあり、有効FナンバーEFNOが大きくなり再結像時の
像面照度が低下する。上限を越えるときは像面照度は大
きくなるが、コンデンサがないため周辺光量が減少す
る。
Therefore, determining the range of the imaging magnification m 1 on the object side is an important point in the configuration of the present invention.
Conditional expression (1) is {r 3 / (n 2 -1)} · (1-m 1 ) = (d 3 / n
2 ) In (d 4 / n 3 ), the distance is set within the range of 0.14 <−m 1 <0.55. If the lower limit is exceeded, the distance between object images becomes large. A certain miniaturization becomes impossible, and the effective aperture of the convex condensing curved surface on the object side is limited, the effective F number EF NO becomes large, and the image surface illuminance at the time of re-imaging decreases. When the value exceeds the upper limit, the image plane illuminance increases, but the peripheral light amount decreases because there is no condenser.

【0008】請求項2において、物体側および像側に向
かった凸の集光曲面が周縁に行くほど、曲率の小さくな
る非球面を採用するときは球面収差,非点収差および像
面湾曲がよくなるので性能も向上し、物界および像界も
広くとれるので、レンズ間隔のピッチを大きくすること
ができる。請求項3において、凸集光曲面部以外の薄い
平面ベース層を砂摺面とするときは迷光の防止に効果が
あり、この面を黒艶消しとすればさらに有効である。ま
た、レンズ部以外を遮光板で覆うことももちろん可能で
ある。請求項4において、再結像側の凸集光曲面の曲率
半径または非球面の頂点曲率半径が物体側の凸集光曲面
の曲率半径または非球面の頂点曲率半径の5%以内と定
めたのは、この条件を外れると総合結像倍率が正立等倍
の目的から15%以上と大きく外れるからである。請求
項5は、請求項3に記載の迷光防止を更に有効とするた
めのもので、図3(A)に示すように、物体側のレンズ
間隙の隙間より物体に向かって幅の狭くなる櫛の歯状の
遮光壁、像側のレンズ間隔の隙間より像に向かって幅の
狭くなる櫛の歯状の遮光壁の一方または双方を設けると
きは迷光防止が完璧となる。
[0008] In the second aspect, the spherical aberration, astigmatism, and field curvature are improved when an aspherical surface having a smaller curvature is employed as the convex light-converging curved surface facing the object side and the image side goes to the periphery. Therefore, the performance is improved, and the object field and the image field can be widened, so that the pitch between the lenses can be increased. In the third aspect, when a thin flat base layer other than the convex condensing curved surface portion is used as a sanding surface, it is effective in preventing stray light, and it is more effective to make this surface a matte black. In addition, it is of course possible to cover portions other than the lens portion with a light shielding plate. In claim 4, the radius of curvature of the convex condensing curved surface on the re-imaging side or the apex radius of curvature of the aspheric surface is determined to be within 5% of the radius of curvature of the convex condensing curved surface on the object side or the apex radius of curvature of the aspheric surface. This is because, if this condition is deviated, the total imaging magnification deviates as much as 15% or more for the purpose of erecting the same magnification. A fifth aspect of the present invention is to make the stray light prevention according to the third aspect more effective, and as shown in FIG. 3A, a comb whose width becomes narrower toward the object than the gap of the lens gap on the object side. When one or both of the tooth-shaped light-shielding wall and the comb-teeth-shaped light-shielding wall whose width becomes narrower toward the image than the gap between the lenses on the image side is provided, stray light prevention is perfect.

【0009】請求項8は、請求項5記載の遮光壁をレン
ズ間隔の隙間より物体および像に向かっての幅が一定
で、図3(B)に示すように、長さをレンズ外径の3倍
以下とすることにより、製作も容易で迷光防止の効果も
ある。
According to an eighth aspect of the present invention, the width of the light-shielding wall according to the fifth aspect is constant from the gap between the lenses toward the object and the image, and as shown in FIG. By making it three times or less, it is easy to manufacture and has an effect of preventing stray light.

【0010】請求項6は、物体側の凸集光曲面による結
像倍率−m1 が小さいときは、物体高を大きくとっても
周辺光量の減少も少ないため、1列のアレイでも凸集光
曲面の配列ピッチを大きくとれるが、−m1 が大きくな
ると物体高の増加にともない、周辺光量の減少が生ず
る。この場合、図4に示すようにアレイを2列に増加
し、そのピッチを1/2ずらすときは光量不足を補填す
る効果がある。
[0010] Claim 6, when the imaging magnification -m 1 by convex condensing curved surface of the object side is small, less reduction in large very peripheral light amount of the object height, the convex condensing curved surface in one row of the array take larger array pitch but with an increase of the object height when -m 1 increases, a decrease in the peripheral light amount occurs. In this case, when the array is increased to two rows as shown in FIG. 4 and the pitch is shifted by 1 /, there is an effect of compensating for the insufficient light quantity.

【0011】[0011]

【実施例】次に本発明による正立実像の小型レンズアレ
イの実施例1から10までを第1表から第10表に示
す。図2は、物体である原稿は厚さd1 の原稿押さえ板
に密着しており、空気間隔を隔てて透明基板の物体側お
よび像側にそれぞれ凸集光曲面層を接着したレンズアレ
イの1つを示しており、物体の物体側凸集光曲面層によ
る第1像は基板厚みのほぼ1/2の位置に倍率m1 で縮
小結像し、その像を像側の凸集光曲面層で倍率m2 で拡
大結像する。総合倍率M=m1 ×m2 である。物体側よ
り順に平面または球面の曲率半径または非球面の頂点曲
率半径をri ,軸上の厚みまたは空気間隔をdi ,材質
のe線に対する屈折率をni ,アッベ数をνi とし、非
球面の形状の式は、 X:非球面上の点のレンズ面頂点における接平面からの
距離 h:光軸からの高さ C:非球面頂点の曲率(C=1/r) K:円錐定数 A2i:非球面係数 とするとき、
Next, Tables 1 to 10 show Embodiments 1 to 10 of an erect real image compact lens array according to the present invention. FIG. 2 shows a lens array 1 in which a document as an object is in close contact with a document holding plate having a thickness of d 1 , and a convex condensing curved surface layer is bonded to the object side and the image side of the transparent substrate with an air gap therebetween. The first image of the object formed by the object-side convex condensing curved surface layer is reduced and formed at a position of approximately の of the thickness of the substrate with a magnification m 1 , and the image is formed. To form an enlarged image at a magnification of m 2 . The total magnification M = m 1 × m 2 . In order from the object side, the radius of curvature of a plane or a sphere or the radius of curvature of the apex of an aspheric surface is r i , the thickness or air interval on the axis is d i , the refractive index of the material with respect to the e-line is n i , and the Abbe number is v i . The formula for the shape of the aspheric surface is as follows: X: distance from a tangent plane at the vertex of the lens surface to a point on the aspheric surface h: height from the optical axis C: curvature of the aspherical vertex (C = 1 / r) K: cone Constant A 2i : aspherical surface coefficient

【0012】[0012]

【数1】 で表される。なお、各実施例において、全系の焦点距離
はf,有効FナンバーはEFNO,物体高はy,再結像の
像高はy’で示し、物像間距離も記す。
(Equation 1) It is represented by In each embodiment, the focal length of the entire system is represented by f, the effective F number is represented by EF NO , the object height is represented by y, the image height of re-imaging is represented by y ', and the distance between the object and the image is also described.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【表4】 [Table 4]

【0017】[0017]

【表5】 [Table 5]

【0018】[0018]

【表6】 [Table 6]

【0019】[0019]

【表7】 [Table 7]

【0020】[0020]

【表8】 [Table 8]

【0021】[0021]

【表9】 [Table 9]

【0022】[0022]

【表10】 本発明の正立実像の小型レンズアレイの各実施例の収差
曲線およびMTF曲線を図5乃至図14に示す。この曲
線から分かるように球面収差,非点収差およびコマ収差
がよく補正されており、倍率の色収差が0であることも
優れた特徴に挙げられる。白色光MTFも非球面の採用
時は600DPIの高周波数で、非球面を使用しないと
きは400DPIの周波数で拡い深度と高いMTF値を
示している。カラー原稿にも充分対応できることも本発
明の長所である。
[Table 10] FIGS. 5 to 14 show aberration curves and MTF curves of each embodiment of the erect real image compact lens array of the present invention. As can be seen from this curve, spherical aberration, astigmatism, and coma are well corrected, and the chromatic aberration of magnification is zero. The white light MTF also has a wide depth and a high MTF value at a high frequency of 600 DPI when the aspherical surface is employed, and at a frequency of 400 DPI when the aspherical surface is not used. It is also an advantage of the present invention that it can sufficiently handle color documents.

【0023】[0023]

【発明の効果】以上、説明したように本発明は、金型の
製作も所定の形状に形成された凸曲面のポンチを1つ作
り、それを比較的軟らかい金属平面に等間隔に押圧して
得られるため、微小凸集光曲面は均一な精度の良いもの
が得られ、透明基板への転写も薄いベース層で繋がれた
状態で一工程で行うことができる。表面および裏面の微
小凸集光曲面の光軸が合致する治具を用いて反対側の面
にも転写すれば正立実像のレンズアレイを精度良く作る
ことができる。また、物体側凸集光曲面層の材質の屈折
率n2 と基板の材質の屈折率n3 が等しく、その材質が
プラスチックの場合は射出成形法で、材質がガラスの場
合はプレス成形法により一体成形ができることも本発明
の大きな特徴である。物体の縮小像である第1像が、透
明基板のほぼ1/2厚の位置と内部にできるため、再結
像の正立実像はゴミの形成が全く起こらない長所があ
る。簡単な構成で量産性に優れ、小型で物像間距離も短
く、カラー原稿にも対応可能で600DPIの高周波数
でも高い性能を有するレンズアレイを低コストで提供で
きる。
As described above, according to the present invention, in the manufacture of a mold, a punch having a convex curved surface formed in a predetermined shape is formed and pressed at a regular interval onto a relatively soft metal plane. As a result, a fine convex light-condensing curved surface having a uniform and high accuracy can be obtained, and transfer to a transparent substrate can be performed in one step while being connected by a thin base layer. If an image is transferred to the opposite surface using a jig in which the optical axes of the minute convex condensing curved surfaces on the front surface and the rear surface match, a lens array of an erect real image can be accurately formed. Moreover, equal refractive index n 3 of the material of refractive index n 2 and the substrate material of the object side convex condensing curved surface layer, by injection molding if the material is a plastic, if the material is a glass by press molding The ability to be integrally molded is also a major feature of the present invention. Since the first image, which is a reduced image of the object, is formed at the position and inside of the transparent substrate at a thickness of approximately 1 /, the erect real image of re-imaging has an advantage that no dust is formed at all. It is possible to provide a low-cost lens array that has a simple configuration, is excellent in mass productivity, is small, has a short distance between object images, can handle color documents, and has high performance even at a high frequency of 600 DPI.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の正立実像の小型レンズアレイの側断面
図および平面図である。
FIG. 1 is a side sectional view and a plan view of an erect real image compact lens array according to the present invention.

【図2】本発明の光学系を示す図である。FIG. 2 is a diagram showing an optical system of the present invention.

【図3】本発明の迷光防止遮光壁の説明図である。FIG. 3 is an explanatory view of a stray light preventing light-shielding wall according to the present invention.

【図4】本発明のアレイを2列にした平面図である。FIG. 4 is a plan view showing the array of the present invention in two columns.

【図5】実施例1の収差曲線およびMTF/DEF曲線
である。
FIG. 5 is an aberration curve and an MTF / DEF curve of Example 1.

【図6】実施例2の収差曲線およびMTF/DEF曲線
である。
FIG. 6 shows an aberration curve and an MTF / DEF curve of Example 2.

【図7】実施例3の収差曲線およびMTF/DEF曲線
である。
FIG. 7 is an aberration curve and an MTF / DEF curve of Example 3.

【図8】実施例4の収差曲線およびMTF/DEF曲線
である。
FIG. 8 shows an aberration curve and an MTF / DEF curve of Example 4.

【図9】実施例5の収差曲線およびMTF/DEF曲線
である。
9 is an aberration curve and an MTF / DEF curve of Example 5. FIG.

【図10】実施例6の収差曲線およびMTF/DEF曲
線である。
FIG. 10 shows an aberration curve and an MTF / DEF curve of Example 6.

【図11】実施例7の収差曲線およびMTF/DEF曲
線である。
11 shows an aberration curve and an MTF / DEF curve of Example 7. FIG.

【図12】実施例8の収差曲線およびMTF/DEF曲
線である。
FIG. 12 shows an aberration curve and an MTF / DEF curve of Example 8.

【図13】実施例9の収差曲線およびMTF/DEF曲
線である。
13 shows an aberration curve and an MTF / DEF curve of Example 9. FIG.

【図14】実施例10の収差曲線およびMTF/DEF
曲線である。
FIG. 14 shows aberration curves and MTF / DEF of Example 10.
It is a curve.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 平行平面の透明基板の片側の表面の直線
上に等しい微小凸集光曲面がそれぞれ薄いベース層で繋
がれた状態で等間隔に配し、反対側の表面の直線上にも
これと等しい微小凸集光曲面がそれぞれ薄いベース層で
繋がれた状態で等間隔に配され、透明基板の表裏の微小
凸集光曲面がそれぞれ光軸を共有するレンズアレイにお
いて正立等倍の実像を得るために物体よりの発散光が物
体側の微小凸集光曲面により基板厚みのほぼ1/2の距
離に縮小結合され、その像を物体側と対称に配された像
側に凸なる微小凸集光曲面により拡大再結像する構成に
おいて物体側より順に ri :球面の曲率半径または非球面の頂点曲率半径 di :光軸上の厚みまたは空気間隔 ni :材質の屈折率 とし、 r3 :物体側凸集光曲面の曲率半径または非球面の頂点
曲率半径 d3 :物体側凸集光曲面層の軸上厚み n2 :物体側凸集光曲面層の材質の屈折率 d4 :基板の1/2厚み n3 :基板の材質の屈折率 において、 1.14<{(d33 +d42 )・(n2 −1)}/r323 <1.55 ……(1) なる条件を満足することを特徴とする正立実像の小型レ
ンズアレイ。
1. A micro-convex condensing curved surface equal to a straight line on one surface of a transparent substrate in a parallel plane is arranged at equal intervals while being connected by a thin base layer, and also on a straight line on an opposite surface. Equivalent microconvex condensing curved surfaces are arranged at equal intervals in a state where they are connected by a thin base layer, and the microconvex condensing curved surfaces on the front and back of the transparent substrate are erect equal magnification in a lens array each sharing an optical axis. In order to obtain a real image, the divergent light from the object is reduced and combined to a distance of about 1/2 of the substrate thickness by the minute convex condensing curved surface on the object side, and the image becomes convex on the image side arranged symmetrically with the object side fine convex condensing curved surface r in order from the object side in the structure to expand reimaging by i: radius of curvature or aspheric vertex curvature radius d i of the spherical: thickness or air space along the optical axis n i: the refractive index of the material , r 3: the object-side convex condensing curved surface of curvature radius or aspherical Vertex curvature radius d 3: axial thickness of the object side convex condensing curved surface layer n 2: refractive index of the material of the object side convex condensing curved surface layer d 4: 1/2 the thickness of the substrate n 3: refraction of the material of the substrate in rate, 1.14 <{(d 3 n 3 + d 4 n 2) · (n 2 -1)} / r 3 n 2 n 3 satisfies the <1.55 ... (1) the condition A small lens array of an upright real image.
【請求項2】 請求項1記載の微小凸集光曲面は、球面
または周縁に行くほど、曲率の小さくなる非球面である
ことを特徴とする正立実像の小型レンズアレイ。
2. The small lens array according to claim 1, wherein the minute convex light condensing curved surface is an aspheric surface whose curvature decreases as it goes to a spherical surface or a peripheral edge.
【請求項3】 請求項1および2記載の微小凸集光曲面
部以外の薄い平面ベース層は、砂摺面であることを特徴
とする正立実像の小型レンズアレイ。
3. A small lens array of an upright real image, wherein the thin flat base layer other than the minute convex condensing curved surface portion according to claim 1 or 2 is a sandblast surface.
【請求項4】 請求項1乃至3記載のレンズアレイにお
いて、像側の微小凸集光曲面の曲率半径または非球面の
頂点曲率半径の絶対値は、物体側の微小凸集光曲面の曲
率半径または非球面の頂点曲率半径の5%以内に許容さ
れることを特徴とする正立実像の小型レンズアレイ。
4. The lens array according to claim 1, wherein the absolute value of the radius of curvature of the minute convex condensing curved surface on the image side or the absolute value of the apex curvature radius of the aspheric surface is determined by the radius of curvature of the minute convex condensing curved surface on the object side. Alternatively, an erect real image compact lens array characterized by being allowed within 5% of the apex radius of curvature of the aspherical surface.
【請求項5】 請求項1乃至4記載のレンズアレイにお
いて、物体側のレンズ間隔の隙間より物体に向かって幅
の狭くなる櫛の歯状の遮光壁、像側のレンズ間隔の隙間
より像に向かって幅の狭くなる櫛の歯状の遮光壁の一方
または双方を設けることを特徴とする正立実像の小型レ
ンズアレイ。
5. The lens array according to claim 1, wherein a comb-shaped light-shielding wall having a width narrower toward the object than a gap between the object-side lenses and an image from the gap between the image-side lenses. An erect real image miniature lens array comprising one or both of a comb-shaped light-shielding wall having a width narrowing toward the end.
【請求項6】 請求項1乃至5記載のレンズアレイにお
いて、透明基板の物体側および像側の微小凸集光曲面の
直線上の列は、2列であることも可能な正立実像の小型
レンズアレイ。
6. The small erect real image according to claim 1, wherein the linear rows of the minute convex condensing curved surfaces on the object side and the image side of the transparent substrate can be two rows. Lens array.
【請求項7】 請求項1記載の構成において、物体側凸
集光曲面層の材質の屈折率n2 と基板の材質の屈折率n
3 が等しく、その材質がプラスチックの場合は射出成形
法で、材質がガラスの場合はプレス成形法により一体成
形ができることを特徴とする正立実像の小型レンズアレ
イ。
7. The refractive index n 2 of the material of the object-side convex light-condensing curved layer and the refractive index n of the material of the substrate in the configuration according to claim 1.
3. An erect real image compact lens array characterized by being able to be integrally molded by an injection molding method when the material is plastic and by a press molding method when the material is glass.
【請求項8】 請求項5記載の遮光壁は、レンズ間隔の
隙間より物体および像に向かっての幅が一定で、長さは
レンズ外径の3倍以下とすることを特徴とする正立実像
の小型レンズアレイ。
8. The erecting wall according to claim 5, wherein the width toward the object and the image from the gap between the lenses is constant, and the length is three times or less the outer diameter of the lens. Small lens array of real images.
JP11163327A 1998-11-20 1999-06-10 Compact lens array for erect real image Pending JP2000214305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11163327A JP2000214305A (en) 1998-11-20 1999-06-10 Compact lens array for erect real image

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33132298 1998-11-20
JP10-331322 1998-11-20
JP11163327A JP2000214305A (en) 1998-11-20 1999-06-10 Compact lens array for erect real image

Publications (1)

Publication Number Publication Date
JP2000214305A true JP2000214305A (en) 2000-08-04

Family

ID=26488795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11163327A Pending JP2000214305A (en) 1998-11-20 1999-06-10 Compact lens array for erect real image

Country Status (1)

Country Link
JP (1) JP2000214305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084259A (en) * 2001-09-10 2003-03-19 Citizen Electronics Co Ltd Composite liquid crystal micro lens for contact image sensor
JP2013080145A (en) * 2011-10-05 2013-05-02 Rohm Co Ltd Lens array, lens unit and image reading apparatus
US8917429B2 (en) 2012-12-18 2014-12-23 Seiko Epson Corporation Document illumination device, contact-type image sensor module, and image reading device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084259A (en) * 2001-09-10 2003-03-19 Citizen Electronics Co Ltd Composite liquid crystal micro lens for contact image sensor
JP2013080145A (en) * 2011-10-05 2013-05-02 Rohm Co Ltd Lens array, lens unit and image reading apparatus
US8917429B2 (en) 2012-12-18 2014-12-23 Seiko Epson Corporation Document illumination device, contact-type image sensor module, and image reading device

Similar Documents

Publication Publication Date Title
CN106405789B (en) Optical imaging system
CN106405790B (en) Optical imaging system
CN106168701B (en) Optical imaging system
US8077400B2 (en) Thin type optical lens system for taking image
CN106468823B (en) Optical imaging system
US7961406B2 (en) Optical lens system for taking image
CN101755230B (en) Image forming optical system
US7643225B1 (en) Optical lens system for taking image
US7826151B2 (en) Optical lens system for taking image
US8253843B2 (en) Optical lens system for taking image
US7684128B2 (en) Optical lens system for taking image
CN106154498B (en) Optical imaging system
US7738186B2 (en) Optical lens system for taking image
CN106443964B (en) Optical imaging system
US7436603B2 (en) Optical lens system for taking image
CN106338810B (en) Optical imaging system
CN101726833B (en) Projection lens
US8654454B2 (en) Thin optical lens assembly
CN107272146B (en) Optical imaging system
US20190204570A1 (en) Optical imaging lens assembly
CN107179598B (en) Optical imaging system
US7885015B2 (en) Two-lens type optical lens system for taking image
CN110244433A (en) Optical imaging system
CN110275275A (en) Optical imaging system
US6208474B1 (en) Original reading lens and original reading apparatus using the same