JP2000213062A - Aseismatic construction structure - Google Patents

Aseismatic construction structure

Info

Publication number
JP2000213062A
JP2000213062A JP11016199A JP1619999A JP2000213062A JP 2000213062 A JP2000213062 A JP 2000213062A JP 11016199 A JP11016199 A JP 11016199A JP 1619999 A JP1619999 A JP 1619999A JP 2000213062 A JP2000213062 A JP 2000213062A
Authority
JP
Japan
Prior art keywords
column
intermediate column
earthquake
resistant
aseismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11016199A
Other languages
Japanese (ja)
Other versions
JP3211164B2 (en
Inventor
Kyoji Noguchi
恭司 野口
Kunio Watanabe
邦夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Original Assignee
Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd filed Critical Mitsui Construction Co Ltd
Priority to JP01619999A priority Critical patent/JP3211164B2/en
Publication of JP2000213062A publication Critical patent/JP2000213062A/en
Application granted granted Critical
Publication of JP3211164B2 publication Critical patent/JP3211164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aseismatic structure having excellent aseismatic performance and capable of keeping a column axial force function even after yield by forming a column yield type hinge on an aseismatic intermediate column at the time of final proof stress of a skeleton while utilizing the features of a short span rigid frame structure in which the aseismatic intermediate column is erected on a beam. SOLUTION: A skeleton is constituted of a column 2, a beam 3, and an aseismatic intermediate column 4, the aseismatic intermediate column 4 is erected in a span intermediate part of the beam 3, the column 2 and the beam 3 are made of reinforced concrete, and the aseismatic intermediate column 4 is made of a steel frame. A width of a cross section of the aseismatic intermediate column 4 in a part where the beam 3 and the aseismatic intermediate column 4 are mutually joined is smaller than a width of a cross section of concrete of the beam 3, the aseismatic intermediate column 4 is erected over upper and lower stories by passing through the cross section of the concrete of the beam 3, and the beam 3 and the aseismatic intermediate column 4 form a rigid join part due to concrete bearing pressure strength of the beam 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば集合住宅
などに適用される耐震建築構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earthquake-resistant building structure applied to, for example, an apartment house.

【0002】[0002]

【従来の技術】上記した複数階を有する集合住宅などに
適用される耐震建築構造体は、例えば特公昭59−14
142号公報、特公平1−52549号公報に開示され
ているように、桁行方向にラーメン構造体を配置したも
のが一般的である。
2. Description of the Related Art An earthquake-resistant building structure applied to an apartment house having a plurality of floors as described above is disclosed in, for example, Japanese Patent Publication No. 59-14.
As disclosed in Japanese Patent Publication No. 142 and Japanese Patent Publication No. 1-52549, a structure in which a ramen structure is arranged in a row direction is generally used.

【0003】図1は上記した耐震建築構造体の一例を示
す正面図に相当する説明図である。なお、図1の耐震建
築構造体は、桁行方向(長手方向:図1の左右方向)が
7スパン、はり間方向(短手方向:図1の前後方向)が
1スパンの地上12階である。ここで、「スパン」とは
対向配置される2本の柱間の単位のことで、1スパンと
はそれが1単位、つまり柱が2本の場合のことである。
また、「スパン長さ」とは柱間の直線状の距離、「スパ
ン数」とはスパンの数をそれぞれ意味する。
FIG. 1 is an explanatory view corresponding to a front view showing an example of the above-mentioned earthquake-resistant building structure. In addition, the seismic building structure of FIG. 1 is 12 floors above the ground where the girder direction (longitudinal direction: left-right direction in FIG. 1) is 7 spans and the beam-to-beam direction (short direction: front-rear direction in FIG. 1) is 1 span. . Here, the “span” is a unit between two columns that are arranged to face each other, and one span is one unit, that is, a case where there are two columns.
Further, “span length” means a linear distance between columns, and “span number” means the number of spans.

【0004】図1において、1は基礎、2は基礎1に立
設させた柱、3は梁、4は柱2の間の梁3に立設させた
耐震中間柱を示す。ここで、梁3は、隣接する基礎1同
士または柱2同士を各階毎に横方向に連結する横架材
で、最下階の梁(基礎梁)、2階以上一般階の梁を含む
ものである。そして、桁行方向のラーメン構造体は、柱
2、梁3、耐震中間柱4で構成されている。以下に、柱
2、梁3、耐震中間柱4を鉄筋コンクリート造(以下、
「RC造」と記す場合がある。)とした耐震建築構造体
について説明する。
In FIG. 1, 1 is a foundation, 2 is a column erected on the foundation 1, 3 is a beam, and 4 is an earthquake-resistant intermediate column erected on a beam 3 between the columns 2. Here, the beam 3 is a transverse member that connects the adjacent foundations 1 or columns 2 to each other in the horizontal direction for each floor, and includes a beam on the lowest floor (foundation beam) and a beam on two or more floors. . The ramen structure in the girder direction includes columns 2, beams 3, and earthquake-resistant intermediate columns 4. In the following, the pillar 2, the beam 3, and the quake-resistant intermediate pillar 4 are reinforced concrete
It may be described as "RC construction". ) Will be described.

【0005】上記した耐震建築構造体は耐震中間柱4を
配置することにより、耐震中間柱4を含めた柱2の本数
を増やし、梁3のスパン長さを短くするので、耐震性能
に優れた短スパンラーメン構造体となる。ここで、柱2
は基礎1に立設しているので、柱軸力を基礎1で支持す
ることができる。しかし、耐震中間柱4は梁3(基礎梁
または梁)のスパン中間部に立設しているので、耐震中
間柱4の最下階には、基礎1が設けられていない。
The above-mentioned earthquake-resistant building structure has excellent seismic performance because the number of the columns 2 including the earthquake-resistant intermediate columns 4 is increased and the span length of the beams 3 is shortened by arranging the earthquake-resistant intermediate columns 4. It becomes a short span ramen structure. Here, pillar 2
Is erected on the foundation 1 so that the column axial force can be supported by the foundation 1. However, since the aseismic middle column 4 is erected in the middle of the span of the beam 3 (foundation beam or beam), the foundation 1 is not provided on the lowest floor of the aseismic middle column 4.

【0006】したがって、各階の梁3に加わる床等の鉛
直荷重の基礎1への伝達経路は、当該階の梁3を介して
両端部の柱2に各階毎に伝達する経路と、当該階の梁3
に接合する下階の耐震中間柱4に柱軸力として累積的に
伝達し、最下階の梁3、すなわち基礎梁によってスパン
両端部の基礎1に伝達する経路とがあるが、特に、基礎
梁から基礎1に伝達する経路が支配的である。
Accordingly, the transmission path of the vertical load of the floor or the like applied to the beam 3 of each floor to the foundation 1 includes a path for transmitting the vertical load to the columns 2 at both ends via the beam 3 of the floor, and a transmission path of the floor of the floor. Beam 3
There is a path that accumulatively transmits as the column axial force to the lower aseismic intermediate column 4 joined to the lower floor and is transmitted to the foundation 1 at both ends of the span by the lowest beam, ie, the foundation beam. The route transmitted from the beam to the foundation 1 is dominant.

【0007】[0007]

【発明が解決しようとする課題】従来のRC造の短スパ
ンラーメン構造体は、中低層の集合住宅の桁行方向の構
造体としては優れている。しかし、10階から25階程
度の高層集合住宅では、骨組の水平耐力のみならず変形
性能に優れ、骨組の弾性域から終局耐力時に至るまで安
定した高度の耐震性能が要求される。特に、前述した各
階の梁3に加わる床等の鉛直荷重の基礎1への伝達経路
を、骨組の弾性域から終局耐力時に至るまで確保するこ
とが必要である。したがって、耐震中間柱4に降伏ヒン
ジを発生させる柱降伏型のメカニズムが重要な眼目とな
る。
The conventional RC short-span rigid frame structure is excellent as a structure in the girder direction of a low-rise apartment house. However, high-rise apartment buildings on the 10th to 25th floors require not only the horizontal strength of the frame but also excellent deformation performance, and a high level of seismic performance that is stable from the elastic range of the frame to the ultimate strength. In particular, it is necessary to secure a transmission path of the vertical load of the floor or the like applied to the beam 3 of each floor to the foundation 1 from the elastic region of the framework to the time of ultimate strength. Therefore, a column-yield type mechanism that generates a yield hinge in the quake-resistant intermediate column 4 is important.

【0008】また、耐震中間柱4をRC造とした短スパ
ンラーメン構造体では、骨組の終局耐力時において、耐
震中間柱4に降伏ヒンジを発生させる柱降伏型のメカニ
ズムを全階に亘って形成することが困難な場合がある。
そして、集合住宅では、図15および図16に示すよう
に、耐震中間柱4と梁3のコンクリート断面幅を同一に
する要請がある。これは、室内に柱形を露出させないと
いう建築計画上、施工上のためである。また、梁主筋を
柱主筋の内側に挿通して配筋するので、梁幅を大きくし
ても、梁主筋のかぶり厚さが必要以上に大きくなる。
In the short-span rigid frame structure in which the seismic intermediate column 4 is made of RC, a column yielding mechanism for generating a yield hinge on the seismic intermediate column 4 is formed over the entire floor at the time of ultimate strength of the frame. Can be difficult to do.
In an apartment house, as shown in FIGS. 15 and 16, there is a request to make the concrete section width of the aseismic intermediate column 4 and the beam 3 the same. This is due to architectural planning and construction not to expose the pillars in the room. In addition, since the beam main reinforcement is inserted and arranged inside the column main reinforcement, even if the beam width is increased, the cover thickness of the beam main reinforcement becomes unnecessarily large.

【0009】したがって、耐震中間柱4は横長の長方形
断面形となり、梁3のコンクリート断面幅は大きくなる
が、主筋のかぶり厚さが過大になるという難点がある。
また、梁コンクリート断面が大きくなっても重量が増え
るだけで、配筋可能な主筋の本数も制限され、コスト上
の難点になる。このように、耐震中間柱4は横長の長方
形断面であり、せん断破壊を設計上防止するために、断
面降伏曲げ耐力もそれに伴って大きくなってしまう。さ
らに、RC造の耐震中間柱4の断面降伏耐力の算定式は
理論式ではなく実験式であり、その計算値と実際の耐力
値とにバラツキがあることも設計上考慮すべき事項であ
る。
Accordingly, the quake-resistant intermediate column 4 has a horizontally long rectangular cross-sectional shape, and the concrete cross-section width of the beam 3 is large, but there is a disadvantage that the cover thickness of the main reinforcement becomes excessive.
In addition, even if the beam concrete section becomes large, only the weight increases, and the number of main bars that can be arranged is also limited, resulting in a cost problem. As described above, the quake-resistant intermediate column 4 has a horizontally long rectangular cross section, and in order to prevent the design of shear failure, the yield strength of the cross section increases accordingly. Further, the formula for calculating the yield strength of the section of the RC quake-resistant intermediate column 4 is not a theoretical formula but an empirical formula, and it is also a matter to be considered in design that the calculated value and the actual strength value vary.

【0010】これに対して、梁3の断面降伏耐力を耐震
中間柱4の断面降伏耐力より大きくすることに制約があ
る。なお、集合住宅では全階に亘って同一階高にするこ
とが多く、梁成(梁3の高さ)は全階で同一にするのが
望ましい。
On the other hand, there is a restriction on making the sectional yield strength of the beam 3 larger than the sectional yield strength of the aseismic intermediate column 4. In a multi-family house, the same floor height is often used over all floors, and it is desirable that the beam structure (height of the beam 3) be the same on all floors.

【0011】ここで、梁3は長期鉛直荷重の影響が大き
いので、長期鉛直荷重と地震力の応力とに対して断面降
伏耐力を検討する必要がある。さらに、梁3はせん断破
壊しないようにせん断補強を充分にしなければならない
が、柱2と耐震中間柱4との間の内法有効スパン長さが
小さい程、せん断補強用の設計せん断力は大きくなるの
が、短スパンラーメン構造体の特色の1つである。この
点で耐震中間柱4のスパン方向の幅(成)は小さい方が
望ましい。
Here, since the beam 3 is greatly affected by the long-term vertical load, it is necessary to examine the sectional yield strength against the long-term vertical load and the stress of seismic force. Further, the beam 3 must be sufficiently reinforced by shearing so as not to cause shear failure. However, as the effective span length between the column 2 and the aseismic intermediate column 4 is smaller, the design shear force for shear reinforcement is larger. This is one of the features of the short span rigid frame structure. In this regard, it is desirable that the width (composition) of the earthquake-resistant intermediate column 4 in the span direction is small.

【0012】また、骨組の終局耐力時において、耐震中
間柱4に降伏ヒンジが発生せず、各階の梁3の中間部に
梁降伏型の降伏ヒンジが発生した場合では、図17また
は図18に示すように、スパン内で両端の柱2と梁3と
の接合部端、梁3と耐震中間柱4との接合部端で、最大
4個のヒンジが形成される。なお、図17において、M
g1,Mg2は梁曲げモーメント、Mc1,Mc2は柱
曲げモーメント、Pn(n=1〜3)は各階における水
平力を示す。また、図18において、Nn(n=1〜
4)は耐震中間柱の各階の柱軸力を示す。
Further, in the event that the yield strength hinge does not occur on the aseismic intermediate column 4 at the time of the ultimate strength of the frame and the yield strength hinge of the beam yield type is generated in the middle part of the beam 3 on each floor, FIG. 17 or FIG. As shown, a maximum of four hinges are formed at the joint end between the column 2 and the beam 3 at both ends and the joint end between the beam 3 and the quake-resistant intermediate column 4 in the span. In FIG. 17, M
g1 and Mg2 indicate beam bending moments, Mc1 and Mc2 indicate column bending moments, and Pn (n = 1 to 3) indicates horizontal force at each floor. Also, in FIG. 18, Nn (n = 1 to
4) shows the column axial force of each floor of the earthquake-resistant intermediate column.

【0013】このようにスパン中間部に梁降伏ヒンジが
形成された階の梁3は、長期鉛直荷重、地震力に対して
利かない構造部材となり、耐震中間柱4の柱軸力を梁3
として支持することができないので、図18に点線で示
すように、柱軸力を支持し得る下階の梁3の長期鉛直荷
重が急激に増大することになる。一方、耐震中間柱4の
柱脚部、柱頭部に降伏ヒンジが形成される柱降伏型の骨
組は安定する。
The beam 3 on the floor where the beam yielding hinge is formed in the middle of the span as described above is a structural member that is ineffective against long-term vertical loads and seismic forces.
Therefore, as shown by the dotted line in FIG. 18, the long-term vertical load of the lower beam 3 capable of supporting the column axial force sharply increases. On the other hand, the column yielding type frame in which the yield hinge is formed on the column base and the column head of the aseismic intermediate column 4 is stable.

【0014】ところが、耐震中間柱4の柱降伏型であっ
ても、コンクリート圧縮破壊、せん断破壊の場合には、
耐震中間柱4は柱軸力機能を喪失することがある。ま
た、スパン中間部の梁降伏型、または、耐震中間柱の柱
降伏型であっても、コンクリート圧縮破壊、せん断破壊
の場合は、耐震中間柱4を立設している骨組の特殊性か
ら、梁3に加わる床等の鉛直荷重の基礎1への伝達経路
を骨組の弾性域から終局耐力時に至るまで維持するよう
に、骨組を構成することが必要である。
However, even in the case of the column yielding type of the earthquake-resistant intermediate column 4, in the case of concrete compression failure or shear failure,
The seismic column 4 may lose its axial force function. In addition, even if it is a beam yielding type of the middle part of the span or a column yielding type of the earthquake-resistant intermediate column, in the case of concrete compressive failure or shear failure, due to the specificity of the frame on which the earthquake-resistant intermediate column 4 is erected, It is necessary to configure the frame so that the transmission path of the vertical load such as the floor applied to the beam 3 to the foundation 1 is maintained from the elastic range of the frame to the time of ultimate strength.

【0015】この発明は、低層から高層までの鉄筋コン
クリート造の骨組に、スパン中間部に鉄骨造の耐震中間
柱を立設した混合構造体とすることにより、経済性を損
なうことなく、水平耐力や水平剛性あるいは靭性等の構
造的特性に富み、建築設計の融通性を大幅に向上させる
ことのできる耐震建築構造体を提供するものである。ま
た、耐震中間柱を梁に立設した短スパンラーメン構造体
の特徴を活かしながらも、骨組の終局耐力時において、
耐震中間柱に柱降伏型ヒンジが形成され、降伏後も柱軸
力機能を保持しうる優れた耐震性能を有する耐震建築構
造体を提供するものである。
The present invention provides a mixed structure in which a reinforced concrete frame from low to high is provided with a steel-framed quake-resistant intermediate column standing in the middle of the span, without impairing the economical efficiency. It is an object of the present invention to provide an earthquake-resistant building structure that is rich in structural characteristics such as horizontal rigidity or toughness and can greatly improve the flexibility of building design. In addition, while taking advantage of the characteristics of the short span rigid frame structure in which the seismic resistant intermediate columns are erected on the beams, at the time of ultimate strength of the frame,
An object of the present invention is to provide a seismic building structure having excellent seismic performance in which a column yielding type hinge is formed on an earthquake-resistant intermediate column and the column axial force function can be maintained even after yielding.

【0016】[0016]

【課題を解決するための手段】この発明の耐震建築構造
体は、柱、梁、耐震中間柱を備えた骨組で構成され、柱
を基礎に立設し、耐震中間柱を梁のスパン中間部に立設
し、柱および梁を鉄筋コンクリート造にするとともに、
耐震中間柱を鉄骨造にしたものである(請求項1)。そ
して、梁と耐震中間柱との接合部における耐震中間柱の
断面幅を梁のコンクリート断面幅よりも小さくし、耐震
中間柱を、梁のコンクリート断面内を貫通させて上下階
に亘って立設させたり(請求項2)、梁のコンクリート
支圧強度によって梁と耐震中間柱とが剛接合部を形成す
るようにしたり(請求項3)、さらに、耐震中間柱から
支圧補強部材を梁のコンクリート断面内に突出させたも
のである(請求項4)。
An earthquake-resistant building structure according to the present invention is composed of a frame having columns, beams, and earthquake-resistant intermediate columns. And reinforced concrete columns and beams,
The quake-resistant intermediate column is made of steel (Claim 1). Then, the cross-sectional width of the quake-resistant intermediate column at the joint between the beam and the quake-resistant intermediate column is made smaller than the concrete cross-section width of the beam, and the quake-resistant intermediate column is erected on the upper and lower floors through the concrete section of the beam. (Claim 2), the beam and the quake-resistant intermediate column form a rigid joint by the concrete bearing strength of the beam (Claim 3), and further, the bearing-reinforcement member is attached to the beam from the quake-resistant intermediate column. It is projected into the concrete section (claim 4).

【0017】また、請求項1の発明において、骨組の終
局耐力時に、梁と耐震中間柱との接合部近傍の位置で、
耐震中間柱の断面降伏耐力を梁の断面降伏耐力よりも小
さくすることによって柱降伏型の降伏ヒンジを形成した
り(請求項5)、耐震中間柱に生じている軸力よりも耐
震中間柱の断面圧縮座屈耐力を大きくすることにより、
耐震中間柱に生じている軸力を下階の梁に伝達させたも
のである(請求項6)。さらに、請求項1〜請求項6の
発明において、耐震中間柱を靭性に富む極低降伏点鋼に
よって構成したり(請求項7)、また、請求項1〜請求
項7の発明において、耐震中間柱の鉄骨部材を鉄筋コン
クリート部材で被覆し、この鉄筋コンクリート部材が梁
の鉄筋コンクリート部材と構造的に一体化しないよう
に、梁と耐震中間柱との接合部近傍で、耐震中間柱を被
覆する鉄筋コンクリート部材の柱頭部と柱脚部との少な
くとも一方に構造スリットを設けたものである(請求項
8)。
According to the first aspect of the present invention, at the time of ultimate strength of the frame, at the position near the joint between the beam and the seismic intermediate column,
By making the cross-sectional yield strength of the aseismic intermediate column smaller than the cross-sectional yield strength of the beam, a column yielding type yield hinge is formed (claim 5). By increasing the cross-section buckling strength,
The axial force generated in the quake-resistant intermediate column is transmitted to the lower beam (claim 6). Further, in the invention of claims 1 to 6, the quake-resistant intermediate column may be constituted by a very low yield point steel having a high toughness (claim 7). In the invention of claims 1 to 7, The steel members of the columns are covered with reinforced concrete members, and the reinforced concrete members that cover the reinforced concrete intermediate columns near the joints between the beams and the reinforced concrete intermediate columns so that the reinforced concrete members are not structurally integrated with the reinforced concrete members of the beams. A structural slit is provided in at least one of the column cap and the column base (claim 8).

【0018】[0018]

【発明の実施の形態】以下、この発明の実施形態を図に
基づいて説明する。図1はこの発明の耐震建築構造体を
示す正面図に相当する説明図である。図1において、耐
震建築構造体は、前述したように、柱2、梁3、耐震中
間柱4を備えた骨組で構成されている。そして、柱2は
基礎1に立設し、耐震中間柱4は梁3(基礎梁または通
常の梁)のスパン中間部に立設している。また、耐震建
築構造体は、柱2、梁3を鉄筋コンクリート造(RC
造)とし、耐震中間柱4を鉄骨造とした混合構造体であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view corresponding to a front view showing an earthquake-resistant building structure of the present invention. In FIG. 1, the earthquake-resistant building structure is composed of a skeleton including columns 2, beams 3, and earthquake-resistant intermediate columns 4 as described above. The column 2 is erected on the foundation 1, and the earthquake-resistant intermediate column 4 is erected on the middle of the span of the beam 3 (foundation beam or ordinary beam). Also, in the earthquake-resistant building structure, columns 2 and beams 3 are made of reinforced concrete (RC
), And the earthquake-resistant intermediate column 4 is a steel structure.

【0019】なお、骨組とは、柱2、梁3、耐震中間柱
4等の線材、並びに耐震壁、壁ブレース、制振壁等の面
部材を組み合わせた架構を言う。そして、柱2、梁3が
格子状に配置されたラーメン構造体が一般的であるが、
ラーメン構造体はこれに限定されず、任意正面形状の骨
組、一部にトラス構造を含む骨組等であってもよい。ま
た、梁3は、隣接する基礎1同士または柱2同士を各階
毎に横方向に連結する横架材で、最下階の梁(基礎
梁)、2階以上一般階の梁、上下階の梁の間に一体化し
た耐震壁等の面部材を含むものであり、床等の鉛直荷
重、地震力等の水平力に有効な構造部材である。
The frame means a frame in which wire members such as columns 2, beams 3, and quake-resistant intermediate columns 4 are combined with surface members such as quake-resistant walls, wall braces, and damping walls. And although the ramen structure in which the pillar 2 and the beam 3 are arranged in a lattice shape is common,
The ramen structure is not limited to this, and may be a frame having an arbitrary front shape, a frame partially including a truss structure, or the like. Further, the beam 3 is a horizontal member connecting the adjacent foundations 1 or the columns 2 to each other in a horizontal direction for each floor, and includes a beam on the lowest floor (foundation beam), a beam on two or more general floors, and a beam on the upper and lower floors. It includes a surface member such as an earthquake-resistant wall integrated between beams, and is a structural member effective for a vertical load such as a floor and a horizontal force such as a seismic force.

【0020】図2はこの発明の第1実施形態における
梁、耐震中間柱および支圧補強部材を示す正面図に相当
する説明図、図3はこの発明の第1実施形態における
梁、耐震中間柱および支圧補強部材を示す平面図に相当
する説明図、図4はこの発明の第1実施形態における
梁、耐震中間柱および支圧補強部材を示す側面図に相当
する説明図、図5はこの発明の第1実施形態における梁
と耐震中間柱との接合部である中間柱接合部を示す正面
図に相当する説明図、図6はこの発明の第1実施形態に
おける中間接合部を示す平面図に相当する説明図であ
る。なお、図2において、柱の配筋(主筋、せん断補強
筋)は省略されている。
FIG. 2 is an explanatory view corresponding to a front view showing a beam, an earthquake-resistant intermediate column and a bearing member in the first embodiment of the present invention. FIG. 3 is a beam and an earthquake-resistant intermediate column in the first embodiment of the present invention. FIG. 4 is an explanatory view corresponding to a plan view showing a bearing reinforcing member, FIG. 4 is an explanatory view corresponding to a side view showing a beam, an earthquake-resistant intermediate column and a bearing reinforcing member in the first embodiment of the present invention, and FIG. Explanatory view corresponding to a front view showing an intermediate column joint, which is a joint between a beam and an earthquake-resistant intermediate column in the first embodiment of the present invention, and FIG. 6 is a plan view showing an intermediate joint in the first embodiment of the present invention. FIG. Note that, in FIG. 2, the reinforcing bars (main bars, shear reinforcing bars) of the columns are omitted.

【0021】これらの図において、5は耐震中間柱4に
立設された支圧補強部材を示し、梁3のコンクリート断
面内に突出している。6は水平補強板を示す。Mg1,
Mg2は梁曲げモーメント、Mc1,Mc2は柱曲げモ
ーメント、Qvは鉛直せん断力、Qhは水平せん断力、
Dcは耐震中間柱成、Dgは梁成、Bcは耐震中間柱断
面幅、Bgは梁3のコンクリート断面幅を示す。
In these figures, reference numeral 5 denotes a bearing reinforcing member erected on the earthquake-resistant intermediate column 4 and projects into the concrete section of the beam 3. Reference numeral 6 denotes a horizontal reinforcing plate. Mg1,
Mg2 is the beam bending moment, Mc1 and Mc2 are the column bending moment, Qv is the vertical shear force, Qh is the horizontal shear force,
Dc indicates the seismic middle column, Dg indicates the beam, Bc indicates the cross-sectional width of the middle column, and Bg indicates the concrete cross-sectional width of the beam 3.

【0022】次に、耐震中間柱4の構成について説明す
る。図2〜図6に示すように、梁3と耐震中間柱4との
接合部(以下、「中間柱接合部」と記す。)における耐
震中間柱4の断面幅Bcは梁3のコンクリート断面幅B
gよりも小さいので、中間階では、梁3のコンクリート
断面内を耐震中間柱4が貫通して上下階に亘って梁3に
立設する状態となる。そして、耐震中間柱4としてH形
鋼を使用し、H形鋼の断面の強軸方向を梁3の材軸方向
に向けてある。
Next, the configuration of the earthquake-resistant intermediate column 4 will be described. As shown in FIGS. 2 to 6, the section width Bc of the aseismic intermediate column 4 at the joint between the beam 3 and the aseismic intermediate column 4 (hereinafter referred to as “intermediate column joint”) is the concrete section width of the beam 3. B
Since it is smaller than g, on the intermediate floor, the earthquake-resistant intermediate column 4 penetrates through the concrete section of the beam 3 and stands on the beam 3 over the upper and lower floors. An H-section steel is used as the earthquake-resistant intermediate column 4, and the strong axis direction of the cross section of the H-section steel is oriented in the direction of the material axis of the beam 3.

【0023】なお、H形鋼の鋼材種別として一般用鋼
材、例えばSN400B、SN490B等を用いること
ができ、H形鋼の変形性能を利用して構造物の靭性を高
めることができる。そして、耐震中間柱4の鉄骨部材同
士の現場における接合は、図示を省略したが、高力摩擦
ボルト接合、溶接等によって行われている。
Incidentally, general steel materials such as SN400B and SN490B can be used as the steel material type of the H-shaped steel, and the toughness of the structure can be enhanced by utilizing the deformation performance of the H-shaped steel. Although not shown in the drawings, the joining of the steel members of the aseismic intermediate column 4 at the site is performed by high-strength friction bolt joining, welding, or the like.

【0024】次に、耐震中間柱4の機能について説明す
る。各図に示すように、耐震中間柱4を配置することに
より、柱本数を増やし、梁3のスパン長さを短くできる
ので、耐震性能に優れた短スパンラーメン構造体を構成
することができる。したがって、耐震中間柱4は耐震建
築構造体の水平剛性、水平耐力を増大させる機能を有す
る。さらに、鉄骨造の耐震中間柱4は、靭性に富むの
で、地震時に端部が降伏しても変形性能を保持し、エネ
ルギーを吸収することができる制振部材として機能す
る。
Next, the function of the intermediate column 4 will be described. As shown in each drawing, the number of columns can be increased and the span length of the beam 3 can be shortened by arranging the quake-resistant intermediate columns 4, so that a short-span rigid frame structure excellent in quake resistance can be configured. Therefore, the earthquake-resistant intermediate column 4 has a function of increasing the horizontal rigidity and the horizontal strength of the earthquake-resistant building structure. Furthermore, since the steel-framed earthquake-resistant intermediate column 4 is rich in toughness, it functions as a vibration-damping member that retains deformation performance even if the end yields during an earthquake and can absorb energy.

【0025】また、耐震中間柱4は、梁3のスパン中間
部に立設しているので、各階の梁3を直接支持する柱軸
力機能を有するとともに、各階の梁3に加わる床等の鉛
直荷重を、当該階の梁3に接合する下階の耐震中間柱4
に柱軸力として累積的に伝達し、最下階の梁3(基礎
梁)によってスパン両端部の基礎1に伝達する柱軸力伝
達機能をも有する。しかし、耐震中間柱4の最下階には
基礎1が設けられていないので、鉛直荷重によって各階
の耐震中間柱4に生じる柱軸力は、スパン両端部の基礎
1に立設された柱2に生じる柱軸力よりも小さなもので
ある。すなわち、柱軸力に関すれば、耐震中間柱4は柱
2と梁3との中間的性質を有する。
Further, since the aseismic intermediate column 4 is erected in the middle of the span of the beam 3, it has a column axial force function for directly supporting the beam 3 of each floor, and also has a function such as a floor added to the beam 3 of each floor. Seismic intermediate column 4 on the lower floor that joins the vertical load to the beam 3 on the floor
Also has a column axial force transmitting function of transmitting the column axial force cumulatively to the base 1 at both ends of the span by the lowest beam 3 (foundation beam). However, since the foundation 1 is not provided on the lowest floor of the seismic intermediate column 4, the axial force generated on the seismic intermediate column 4 of each floor due to the vertical load is caused by the column 2 standing on the foundation 1 at both ends of the span. Is smaller than the column axial force generated at the time. That is, regarding the column axial force, the earthquake-resistant intermediate column 4 has intermediate properties between the column 2 and the beam 3.

【0026】次に、中間柱接合部の構成について説明す
る。図5および図6に示すように、耐震中間柱4のH形
鋼に上下一対で2組の水平補強板6が、梁3のコンクリ
ート断面の上下端の近傍にH形鋼のフランジとウェブと
を一体化するように固着され、中間接合部とされてい
る。そして、水平補強板6とH形鋼のフランジとで補強
されたシアーパネル部(仕口部)が形成される。
Next, the structure of the intermediate column joint will be described. As shown in FIG. 5 and FIG. 6, two pairs of horizontal reinforcing plates 6 are paired with the H-shaped steel of the quake-resistant intermediate column 4 in the upper and lower pairs near the upper and lower ends of the concrete section of the beam 3. Are fixed so as to be integrated into an intermediate joint. Then, a shear panel portion (joint portion) reinforced by the horizontal reinforcing plate 6 and the H-section steel flange is formed.

【0027】また、支圧補強部材5はH形鋼を使用し、
耐震中間柱4のフランジに溶接で固着されている。な
お、支圧補強部材5とは、耐震中間柱のフランジ面に立
体的に固着され、梁コンクリート内に突出している突起
部である。そして、中間柱接合部に生じる上下方向のせ
ん断力に対し、支圧補強部材5と梁コンクリートとの間
のせん断耐力で抵抗する。
Further, the bearing reinforcing member 5 uses an H-shaped steel,
It is fixed to the flange of the earthquake-resistant intermediate column 4 by welding. The bearing reinforcing member 5 is a projection that is three-dimensionally fixed to the flange surface of the earthquake-resistant intermediate column and protrudes into the beam concrete. Then, the shear strength between the bearing reinforcing member 5 and the beam concrete resists the vertical shear force generated at the intermediate column joint portion.

【0028】この支圧補強部材5のH形鋼の上下方向の
高さ、水平方向の長さは、梁3もしくは耐震中間柱4の
当該接合部に加わる曲げモーメントMg1,Mg2,M
c1,Mc2によって算定される。なお、支圧補強部材
5の水平方向の長さは、通常50mm〜150mm程度
で充分であるが、これに限定されるものではない。した
がって、この発明によると、耐震中間柱4に設ける支圧
補強部材5の突出長さが極端に小さくなるか、支圧補強
部材5を設けなくてよい場合には耐震中間柱4からの突
設部材がなくなるという利点がある。
The height in the vertical direction and the length in the horizontal direction of the H-section steel of the bearing reinforcing member 5 are determined by the bending moments Mg1, Mg2, M
It is calculated by c1 and Mc2. The horizontal length of the bearing reinforcing member 5 is usually about 50 mm to 150 mm, but is not limited thereto. Therefore, according to the present invention, the protruding length of the bearing reinforcing member 5 provided on the earthquake-resistant intermediate column 4 becomes extremely small, or if the bearing reinforcing member 5 does not need to be provided, it protrudes from the earthquake-resistant intermediate column 4. There is an advantage that members are eliminated.

【0029】なお、中間柱接合部においては、梁3の主
筋は耐震中間柱4のH形鋼のフランジを避けて配筋さ
れ、せん断補強筋(スターラップ)も耐震中間柱4のH
形鋼のウェブに貫通孔を設けて断面左右のせん断補強筋
を一体化している。また、梁3は1スパン全長にわたり
耐震中間柱4によって遮断されることのないコンクリー
ト断面および配筋上の構成になっている。これは耐震中
間柱4を補助的な構造部材として扱い、梁3の構造性能
を優先しているからである。
At the joint of the intermediate column, the main reinforcement of the beam 3 is arranged so as to avoid the H-shaped steel flange of the intermediate column 4, and the shear reinforcement (stirrup) is also provided at the H of the intermediate column 4.
Through-holes are provided in the web of the section steel to integrate the shear reinforcing bars on the right and left cross sections. Further, the beam 3 has a concrete cross section and a reinforcing bar arrangement which are not interrupted by the aseismic intermediate column 4 over the entire span. This is because the seismic intermediate column 4 is treated as an auxiliary structural member, and the structural performance of the beam 3 is given priority.

【0030】次に、剛接合部について説明する。図5に
示すように、中間柱接合部の左右の梁曲げモーメントM
g1,Mg2により、梁3の上下端部近傍に耐震中間柱
4のH形鋼との間に生じる圧縮力をコンクリート支圧強
度によって抵抗させる。このため、RC造の梁3と、梁
3を貫通する耐震中間柱4とが剛接合部を形成する。
Next, the rigid joint will be described. As shown in FIG. 5, the left and right beam bending moments M of the intermediate column joint are shown.
By g1 and Mg2, the compressive force generated between the upper and lower ends of the beam 3 and the H-shaped steel of the aseismic intermediate column 4 is resisted by the concrete bearing strength. For this reason, the RC beam 3 and the aseismic intermediate column 4 penetrating the beam 3 form a rigid joint.

【0031】ここで、コンクリート支圧強度とは、コン
クリートが局部的に圧縮荷重を受けたとき、耐えられる
最大圧縮荷重を荷重作用面積で除した値をいい、周辺コ
ンクリートの拘束作用によって全面圧縮の場合に比べて
大きな圧縮応力に耐えられる。そして、コンクリート支
圧強度Fnは、
Here, the concrete bearing strength is a value obtained by dividing the maximum compressible load that can be sustained when the concrete is locally subjected to a compressive load by the load acting area. It can withstand larger compressive stress than the case. And the concrete bearing strength Fn is

【0032】[0032]

【数1】 (Equation 1)

【0033】ただし、Fc:通常の圧縮強度 Ac:支圧端から離れて応力が一様分布となったところ
のコンクリートの支承面積 A1:局部圧縮を受ける支圧面積 と表すことができる。
However, Fc: normal compressive strength Ac: bearing area of concrete where stress is distributed uniformly away from the bearing end A1: bearing area under local compression

【0034】また、剛接合部とは、接合された梁3と耐
震中間柱4との相互の角度(変形後の各部材の節点にお
ける接線相互のなす角度)が外力を受けても変化しない
ようにした接合をいい、ラーメン構造体の接合部は剛接
合部である。しかし、この発明では、剛接合部に、角度
が同一な完全な剛接合部の他に、例えば中間柱接合部の
構成部材が降伏して角度が変化する不完全な剛接合部を
も含むものとする。
The rigid joint is such that the mutual angle between the joined beam 3 and the quake-resistant intermediate column 4 (the angle between the tangents at the nodes of each member after deformation) does not change even when an external force is applied. The joint of the ramen structure is a rigid joint. However, in the present invention, in addition to the complete rigid joint having the same angle, the rigid joint includes, for example, an imperfect rigid joint in which the component of the intermediate column joint yields and the angle changes. .

【0035】このように剛接合部を形成するとき、中間
柱接合部にせん断力が生じるが、耐震中間柱4のH形鋼
のウェブのせん断耐力、耐震中間柱4のH形鋼のフラン
ジと上下一対の水平補強板6とで囲まれたコンクリート
のせん断耐力、支圧補強部材5とコンクリートとの間の
せん断耐力の3要素によって抵抗する。なお、中間柱接
合部のせん断力が充分である場合は、支圧補強部材5を
省略することができる。
When the rigid joint is formed in this manner, a shear force is generated at the joint of the intermediate column, but the shear strength of the web of the H-section steel of the intermediate column 4 and the flange of the H-section steel of the intermediate column 4 are different from each other. It resists by three factors of the shear strength of concrete surrounded by a pair of upper and lower horizontal reinforcing plates 6, and the shear strength between the bearing reinforcing member 5 and the concrete. In addition, when the shearing force of the intermediate column joint is sufficient, the bearing reinforcing member 5 can be omitted.

【0036】次に、最上階または最下階の中間柱接合部
について説明する。まず、最下階では、図示を省略する
が、耐震中間柱4を最下階の梁3(基礎梁)のコンクリ
ート断面内に埋入するか、または、最下階の梁3(基礎
梁)の上端部に鉄骨ベースプレートを載置し、アンカー
ボルトを梁3(基礎梁)のコンクリート内に定着させて
もよい。次に、最上階では、図示を省略するが、耐震中
間柱4を梁3のコンクリート断面内に埋入する。
Next, a description will be given of the intermediate pillar joint on the top floor or the bottom floor. First, on the lowest floor, although not shown, the aseismic intermediate column 4 is embedded in the concrete section of the lowest floor beam 3 (foundation beam) or the lowest floor beam 3 (foundation beam). A steel base plate may be placed on the upper end of the beam and anchor bolts may be fixed in the concrete of the beam 3 (foundation beam). Next, on the top floor, although not shown, the earthquake-resistant intermediate column 4 is embedded in the concrete section of the beam 3.

【0037】図7はこの発明において骨組の終局耐力時
に各階の梁に梁降伏型の降伏ヒンジが発生し、各階の耐
震中間柱に柱降伏型の降伏ヒンジが発生した場合の説明
図、図8はこの発明において骨組の終局耐力時に各階の
梁に梁降伏型の降伏ヒンジが発生し、各階の耐震中間柱
に柱降伏型の降伏ヒンジが発生した場合の水平力による
曲げモーメントの詳細説明図、図9はこの発明において
骨組の終局耐力時に各階の梁に梁降伏型の降伏ヒンジが
発生し、各階の耐震中間柱に柱降伏型の降伏ヒンジが発
生した場合における長期荷重による下階の梁の曲げモー
メント、耐震中間柱の柱軸直の詳細説明図である。
FIG. 7 is an explanatory view showing a case where a beam yielding type yield hinge is generated on a beam on each floor and a column yielding type hinge is generated on an earthquake-resistant intermediate column on each floor when the frame is ultimately subjected to a proof stress according to the present invention. Detailed description of the bending moment by the horizontal force when the yield strength of the beam yielding type occurs in the beam of each floor at the ultimate strength of the frame in the present invention, and the yielding hinge of the column yield type occurs in the seismic intermediate column of each floor, FIG. 9 shows a case in which a beam yielding type yield hinge is generated on a beam on each floor at the time of ultimate strength of a frame according to the present invention, and a column yielding type hinge is generated on a seismic intermediate column on each floor. FIG. 3 is a detailed explanatory view of a bending moment and a column axis of an earthquake-resistant intermediate column.

【0038】これらの図において、Pn(n=1〜1
2)は各階における水平力、Mg1,Mg2は梁曲げモ
ーメント、Mc1,Mc2は柱曲げモーメント、Nn
(n=1〜4)は柱軸力を示す。
In these figures, Pn (n = 1 to 1)
2) is horizontal force at each floor, Mg1 and Mg2 are beam bending moments, Mc1 and Mc2 are column bending moments, Nn
(N = 1 to 4) indicates a column axial force.

【0039】次に、骨組の崩壊形式(メカニズム)につ
いて説明する。耐震建築構造体の耐震性能を評価する手
段として、骨組の終局耐力時の崩壊形式があり、一般の
ラーメン構造体では、中間階で梁降伏型、最下階で柱降
伏型が望ましいとされている。したがって、耐震建築構
造体において、スパン両端部の柱2と梁3との接合部で
は、中間階で梁降伏型、最下階で柱降伏型になるように
設計する。
Next, the form (mechanism) of collapse of the frame will be described. As a means to evaluate the seismic performance of an earthquake-resistant building structure, there is a collapse form at the time of ultimate strength of the frame. For general ramen structures, a beam yield type on the middle floor and a column yield type on the lowest floor are considered desirable. I have. Therefore, in the earthquake-resistant building structure, the joint between the column 2 and the beam 3 at both ends of the span is designed to be a beam yielding type on the middle floor and a column yielding type on the lowest floor.

【0040】ところが、耐震中間柱4を梁3のスパン中
間部に立設させている特徴から、中間柱接合部では、最
下階のみならず中間階でも耐震中間柱4の柱降伏型が望
ましい。ここで、骨組の終局耐力とは、これ以上の水平
力を受けると骨組が崩壊する最大限の水平耐力で、保有
水平耐力とも言う。
However, from the feature that the aseismic middle column 4 is erected at the middle of the span of the beam 3, it is preferable that the buckling type of the aseismic middle column 4 be used not only at the lowest floor but also at the middle floor at the middle column joint. . Here, the ultimate strength of the frame is the maximum horizontal strength at which the frame collapses when it receives more horizontal force, and is also referred to as possessed horizontal strength.

【0041】骨組の終局耐力時において、中間柱接合部
近傍の位置に、耐震中間柱4の断面降伏耐力を梁3の断
面降伏耐力よりも小さくするように設計することによっ
て柱降伏型の降伏ヒンジを形成する。この場合、耐震中
間柱4は、各階の柱頭部、柱脚部に降伏ヒンジが形成さ
れ、降伏後に一定の降伏曲げモーメントを保持した仮想
の両端ピン部材となり、制振部材として機能する。した
がって、梁3はスパン中間部で梁降伏ヒンジが形成され
ないので、骨組全体は弾性域から終局耐力時に至るまで
安定した構造体となる。
At the time of ultimate strength of the frame, a column yield yield hinge is designed at a position near the intermediate column joint so that the sectional yield strength of the aseismic intermediate column 4 is smaller than the sectional yield strength of the beam 3. To form In this case, the quake-resistant intermediate column 4 is a virtual double-ended pin member that has a yield hinge at a column head and a column base on each floor, and maintains a constant yield bending moment after yielding, and functions as a vibration damping member. Therefore, since the beam yield hinge is not formed in the middle of the span of the beam 3, the entire frame has a stable structure from the elastic region to the ultimate strength.

【0042】骨組の最終的な崩壊形式は、各階の耐震中
間柱4の柱頭部、柱脚部に柱降伏ヒンジ(図7〜図9に
おける黒丸印)が形成され、各階のスパン両端部で柱2
と梁3との接合部に梁降伏ヒンジ(図7〜図9における
白丸印)が形成されて安定したものになる。なお、図7
は各階の中間階の耐震中間柱4に柱降伏型の降伏ヒンジ
が発生した骨組の終局耐力時の崩壊形式を示している
が、この場合、耐震中間柱4を介して鉛直荷重が下階の
梁3に急激に伝達されることはない。
The final form of collapse of the frame is that a column yielding hinge (black circles in FIGS. 7 to 9) is formed on the column head and column base of the aseismic intermediate column 4 on each floor, and a column is formed at both ends of the span on each floor. 2
Yield hinges (white circles in FIGS. 7 to 9) are formed at the joint between the beam and the beam 3, and the beam 3 becomes stable. FIG.
Shows the collapse type at the time of ultimate strength of the frame in which a column yielding type hinge yields on the seismic intermediate column 4 on the middle floor of each floor. In this case, the vertical load through the seismic intermediate column 4 is It is not transmitted to the beam 3 suddenly.

【0043】しかし、この発明ではこれに限定されるも
のではなく、一部の階の梁3のスパン中間部に梁降伏ヒ
ンジが形成される場合であってもよく、この場合、当該
梁降伏ヒンジが形成された梁3に接合している下階の耐
震中間柱4は少なくとも柱軸力機能を保持することが必
要である。このためには、当該耐震中間柱4に生じてい
る軸力よりも当該耐震中間柱4の断面圧縮座屈耐力を大
きくすることにより、耐震中間柱4に生じている軸力を
下階の梁3に伝達することができるように形成する。
However, the present invention is not limited to this, and a beam yielding hinge may be formed in the middle of the span of the beam 3 on some floors. In this case, the beam yielding hinge may be used. It is necessary that the seismic middle column 4 on the lower floor, which is joined to the beam 3 having the ridges, has at least the column axial force function. For this purpose, by increasing the cross-sectional buckling strength of the quake-resistant intermediate column 4 to be greater than that of the quake-resistant intermediate column 4, the axial force generated in the quake-resistant intermediate column 4 is reduced to a lower beam. 3 is formed.

【0044】上述したように、中間柱接合部では最下階
のみならず中間階でも耐震中間柱4の柱降伏型になるよ
うになされ、各階の梁3のスパン中間部に梁降伏ヒンジ
が形成されないので、耐震中間柱4に柱軸力として下階
に流れていた荷重が、当該階の梁3の長期鉛直荷重を急
激に増大させることがなくなる。すなわち、当該階の梁
3を介して両端部の柱2に各階毎に伝達する経路と、当
該階の梁3に接合する下階の耐震中間柱4に柱軸力とし
て累積的に伝達し、最下階の梁3(基礎梁)によってス
パン両端部の基礎1に伝達する経路という、各階の梁3
に加わる床等の鉛直荷重の基礎1への伝達経路が、骨組
の弾性域から終局耐力時に至るまで安定して確保され
る。
As described above, at the joint of the intermediate columns, not only the lowermost floor but also the intermediate floor is of the column yielding type of the earthquake-resistant intermediate column 4, and the beam yielding hinge is formed at the middle of the span of the beam 3 on each floor. Therefore, the load flowing to the lower floor as the column axial force on the earthquake-resistant intermediate column 4 does not suddenly increase the long-term vertical load of the beam 3 on the floor. That is, the path transmitted to each pillar 2 at both ends via the beam 3 of the floor for each floor, and cumulatively transmitted as the column axial force to the seismic intermediate column 4 on the lower floor joined to the beam 3 of the floor, The beam 3 on each floor, which is the path transmitted to the foundation 1 at both ends of the span by the beam 3 (foundation beam) on the lowest floor
The transmission path of the vertical load of the floor or the like applied to the foundation to the foundation 1 is stably secured from the elastic range of the framework to the time of ultimate strength.

【0045】また、耐震中間柱4は、鉄骨部材であるの
で、曲げ降伏を許容するが、圧縮座屈、せん断破壊を防
止することが容易であり、柱降伏ヒンジが形成されても
柱軸力機能を喪失することがない。さらに、中間柱接合
部で耐震中間柱4の断面幅を梁3のコンクリート断面幅
よりも小さくしているので、耐震中間柱4の断面降伏曲
げ耐力を、コンクリート造の梁3の断面降伏曲げ耐力よ
りも小さくすることが容易である。そして、耐震中間柱
4は鉄骨造なので、断面降伏耐力をRC造よりも正確に
計算することができる。
Further, since the quake-resistant intermediate column 4 is a steel frame member, it allows bending yield, but it is easy to prevent compression buckling and shear failure. No loss of function. Further, since the sectional width of the aseismic intermediate column 4 is made smaller than the concrete sectional width of the beam 3 at the joint of the intermediate column, the sectional yield strength of the aseismic intermediate column 4 is reduced by the sectional yield strength of the concrete beam 3. It is easy to make smaller. And since the aseismic middle column 4 is a steel frame structure, the sectional yield strength can be calculated more accurately than the RC structure.

【0046】また、耐震中間柱4は高い靭性を有してい
るので、変形能力がRC造の柱、梁からなるラーメン構
造体よりも格段に優れている。したがって、RC造ラー
メン構造体が降伏しても、鉄骨造である耐震中間柱4は
優れた変形追従能力を発揮する。また、耐震中間柱4の
断面幅を梁3のコンクリート断面幅よりも小さくし、中
間階で耐震中間柱4が梁3のコンクリート断面内を貫通
して上下階に亘って立設しているので、梁3は1スパン
全長にわたり耐震中間柱4によって遮断されることのな
いコンクリート断面および配筋になり、梁幅は耐震中間
柱4の鉄骨部材を避けて梁主筋を配筋することに必要な
幅であればよく、梁主筋のかぶり厚さも適正に保持され
る。
Further, since the quake-resistant intermediate column 4 has high toughness, its deformability is much better than the rigid frame structure composed of RC columns and beams. Therefore, even if the RC frame structure yields, the steel-made aseismic intermediate column 4 exhibits excellent deformation following ability. In addition, the cross-sectional width of the aseismic intermediate column 4 is made smaller than the concrete cross-sectional width of the beam 3, and the quake-resistant intermediate column 4 penetrates through the concrete cross section of the beam 3 and stands upright on the intermediate floor. The beam 3 has a concrete section and reinforcing bars that are not interrupted by the aseismic intermediate column 4 over the entire span, and the beam width is necessary to arrange the main reinforcing bars of the aseismic intermediate column 4 avoiding the steel members. The width may be sufficient, and the cover thickness of the beam main reinforcement is appropriately maintained.

【0047】そして、中間柱接合部は、梁3のコンクリ
ート支圧強度によって梁3と耐震中間柱4とが剛接合部
を形成するので、耐震中間柱4に設ける支圧補強部材5
の突出長さは極端に小さくなるか、支圧補強部材5を設
けなくてよい場合には耐震中間柱4からの突設部材がな
くなるという利点がある。また、中間柱接合部の構成が
簡単になるので、梁コンクリート打設の施工性向上、R
C造梁がスパン全長に亘って耐震中間柱4で遮断されな
い構造部材としての一体化、耐震中間柱4の鉄骨部材を
組立材ではなく単一材とする設計上の融通性、コストダ
ウン等の利点がある。そして、耐震中間柱4のスパン方
向の幅は小さいので、柱2と耐震中間柱4との内法有効
スパン長が小さくなり、RC造の梁3のせん断補強が容
易になる。
Since the beam 3 and the aseismic intermediate column 4 form a rigid joint with the concrete bearing strength of the beam 3 at the intermediate column joint, the bearing reinforcing member 5 provided on the aseismic intermediate column 4
There is an advantage that the projecting length from the quake-resistant intermediate column 4 is eliminated if the projecting length becomes extremely small or if the bearing reinforcing member 5 does not need to be provided. In addition, since the structure of the intermediate column joint is simplified, the workability of concrete casting is improved.
Integration of the C-beam as a structural member that is not interrupted by the seismic intermediate column 4 over the entire span, design flexibility, cost reduction, etc., in which the steel member of the seismic intermediate column 4 is not an assembly material but a single material. There are advantages. Since the width of the aseismic intermediate column 4 in the span direction is small, the effective inner span length between the column 2 and the aseismic intermediate column 4 is reduced, and shear reinforcement of the RC beam 3 is facilitated.

【0048】図10はこの発明の第2実施形態である耐
震建築構造体の中間柱接合部を示す正面図に相当する説
明図、図11はこの発明の第2実施形態である耐震建築
構造体の中間柱接合部を示す平面図に相当する説明図で
ある。この第2実施形態は、耐震中間柱4をH形鋼と
し、支圧補強部材5を山形鋼とし、水平補強板6の1組
を3枚にするとともに、耐震中間柱4のH形鋼のウェブ
の両面にシアーパネル補強板7を取り付けたものであ
る。
FIG. 10 is an explanatory view corresponding to a front view showing an intermediate column joint of a seismic building structure according to a second embodiment of the present invention, and FIG. 11 is a seismic building structure according to the second embodiment of the present invention. It is explanatory drawing equivalent to the top view which shows the intermediate | middle pillar joint part. In the second embodiment, the aseismic intermediate column 4 is made of H-shaped steel, the bearing reinforcing member 5 is made of angle steel, and one set of horizontal reinforcing plates 6 is made of three pieces. A shear panel reinforcing plate 7 is attached to both sides of the web.

【0049】このように構成することにより、第1実施
形態と同様な効果を得ることができる。
With this configuration, the same effect as in the first embodiment can be obtained.

【0050】次に、この発明の第3実施形態である耐震
建築構造体について説明する。この発明の第3実施形態
は、靭性に富む極低降伏点鋼によって耐震中間柱を形成
したものである。このように、耐震中間柱を靭性鋼材に
よる鉄骨造とする場合、靭性性能に優れた極低降伏点鋼
とするのがよい。これは、一般用鋼材の伸び性能が破断
時で20%であるのに対し、靭性鋼材の伸び性能は破断
時で40%以上であり、しかも、靭性鋼材の降伏点強度
は一般用鋼材よりも小さい値を示すからである。
Next, an earthquake-resistant building structure according to a third embodiment of the present invention will be described. In the third embodiment of the present invention, an earthquake-resistant intermediate column is formed of a very low yield point steel having a high toughness. As described above, when the earthquake-resistant intermediate column is made of a steel frame made of a tough steel material, it is preferable to use an extremely low yield point steel having excellent toughness performance. This is because, while the elongation performance of a general steel is 20% at break, the elongation of a tough steel is 40% or more at break, and the yield point strength of the tough steel is higher than that of general steel. This is because it shows a small value.

【0051】すなわち、靭性鋼材は低い強度で降伏する
が、降伏後破断まで靭性に富んだ性能を発揮する。そし
て、耐震中間柱にH形鋼を使用する場合、フランジとウ
エブとのいずれか一方が靭性鋼材で、他方が一般鋼材で
あってもよい。また、靭性鋼材はH形鋼に限定されるも
のではなく、他の形状の部材断面であってもよい。
That is, the tough steel material yields with a low strength, but exhibits high toughness until the fracture after the yield. When an H-section steel is used for the earthquake-resistant intermediate column, one of the flange and the web may be a tough steel material, and the other may be a general steel material. Further, the toughness steel material is not limited to the H-section steel, and may be a member cross section of another shape.

【0052】図12はこの発明の第4実施形態である耐
震建築構造体の要部を示す正面図に相当する説明図、図
13はこの発明の第4実施形態である耐震建築構造体の
要部を示す平面図に相当する説明図である。図12また
は図13において、8は耐震中間柱4の鉄骨部材を被覆
する鉄筋コンクリート部材、9は鉄筋コンクリート部材
8の柱頭部および柱脚部の少なくとも一方(望ましくは
両方)に所定の幅および所定の深さで周設された構造ス
リットを示す。
FIG. 12 is an explanatory view corresponding to a front view showing a main part of an earthquake-resistant building structure according to a fourth embodiment of the present invention, and FIG. 13 is a view illustrating a main part of the earthquake-resistant building structure according to the fourth embodiment of the present invention. It is explanatory drawing corresponding to the top view which shows a part. 12 or 13, reference numeral 8 denotes a reinforced concrete member covering the steel frame member of the earthquake-resistant intermediate column 4, 9 denotes a predetermined width and a predetermined depth on at least one (preferably both) of the column head and the column base of the reinforced concrete member 8. FIG.

【0053】このように構造スリット9を設けると、耐
震中間柱4の鉄筋コンクリート部材8の主筋は構造スリ
ット9の直前で停止し、構造スリット9を通過して梁3
の鉄筋コンクリート部材内に連結されないので、耐震中
間柱4の鉄筋コンクリート部材8が梁3の鉄筋コンクリ
ート部材と構造的に一体化せず、耐震中間柱4を鉄骨造
部材として機能させることができる。
When the structural slit 9 is provided in this way, the main reinforcement of the reinforced concrete member 8 of the aseismic intermediate column 4 stops immediately before the structural slit 9 and passes through the structural slit 9 to make the beam 3.
The reinforced concrete member 8 of the aseismic intermediate column 4 is not structurally integrated with the reinforced concrete member of the beam 3, and the aseismic intermediate column 4 can function as a steel frame member.

【0054】また、梁3と耐震中間柱4とのコンクリー
トを現場で同時に打設することにより、耐震中間柱4の
鉄骨部材の耐火被覆、乾式の仕上げ材工事を省略するこ
とができる。なお、耐震中間柱4の鉄骨部材を鉄筋コン
クリート部材8で被覆する代わりに、鉄骨部材をプレキ
ャストコンクリート板、ALC板等の乾式の仕上げ材と
して被覆してもよい。
Further, by simultaneously casting the concrete of the beam 3 and the quake-resistant intermediate column 4 on site, it is possible to omit the fire-resistant coating of the steel members of the quake-resistant intermediate column 4 and the dry finishing work. Instead of covering the steel member of the earthquake-resistant intermediate column 4 with the reinforced concrete member 8, the steel member may be covered as a dry finish such as a precast concrete plate or an ALC plate.

【0055】図14はこの発明の第5実施形態である耐
震建築構造体を示す正面図に相当する説明図である。図
14において、10はラーメン構造体の内部に組み込ま
れた耐震壁、11はラーメン構造体の内部に組み込まれ
たブレース(筋違)を示す。
FIG. 14 is an explanatory view corresponding to a front view showing an earthquake-resistant building structure according to a fifth embodiment of the present invention. In FIG. 14, reference numeral 10 denotes an earthquake-resistant wall incorporated inside the ramen structure, and reference numeral 11 denotes a brace incorporated inside the ramen structure.

【0056】図14に示すように、耐震中間柱4は、必
ずしも最下階の梁3(基礎梁)から立設させる必要はな
く、任意の中間階の梁3から任意の階数に亘って立設し
てもよく、さらに、スパン方向に立設してもよいので、
建物の平面計画上の融通性を担保することができる。ま
た、ラーメン構造体の内部に耐震壁10またはブレース
11を組み込むこともできる。
As shown in FIG. 14, the earthquake-resistant intermediate column 4 does not necessarily have to be erected from the lowest beam 3 (foundation beam), but extends from an arbitrary intermediate floor beam 3 to an arbitrary number of floors. May be installed, and furthermore, it may be erected in the span direction.
Flexibility in the floor plan of the building can be secured. Further, the earthquake-resistant wall 10 or the brace 11 can be incorporated into the ramen structure.

【0057】上記した実施形態は、いずれもこの発明を
集合住宅の桁行方向に適用した例で説明したが、これに
限定されるものではなく、集合住宅の桁行方向以外にも
適用することができる。また、集合住宅の基準階の平面
形式は片廊下方式、中廊下方式に限定されず、中空コア
ー方式、雁行方式等であってもよい。さらに、建物の用
途も集合住宅に限定されず、事務所、ホテル等の他の用
途の建物の構造物にも幅広く適用することができるとと
もに、低層から高層に亘る広範囲な建物に適用すること
ができる。
In each of the above embodiments, the present invention has been described as an example in which the present invention is applied to the girder direction of an apartment house. However, the present invention is not limited to this, and can be applied to other than the girder direction of an apartment house. . In addition, the flat form of the reference floor of the apartment house is not limited to the one-way corridor method or the middle-corridor method, but may be a hollow core method, a goose method, or the like. Further, the use of the building is not limited to the multi-family housing, and it can be widely applied to structures of buildings for other uses such as offices and hotels, and can be applied to a wide range of buildings from low-rise to high-rise. it can.

【0058】そして、基礎構造体を杭基礎にした例で説
明したが、これに限定されるものではなく、直接基礎で
あってもよい。また、RC造は、コンクリート現場打ち
でも、プレキャストコンクリート部材にしてもよい。さ
らに、耐震中間柱4の鉄骨部材の断面形状は、H形鋼の
他に、鋼管、箱形鋼管等の単一部材、または十字状組立
材、またはその他の形状であってもよい。そして、梁3
の最下階のもの、すなわち基礎梁は鉄筋コンクリート造
とするのが一般的であるが、これに限定されず、例えば
鉄骨鉄筋コンクリート造、鉄骨造、プレストレスト鉄筋
コンクリート造であってもよい。
Although the example in which the foundation structure is a pile foundation has been described, the invention is not limited to this, and a direct foundation may be used. In addition, the RC structure may be cast in place of concrete or may be a precast concrete member. Further, the cross-sectional shape of the steel frame member of the earthquake-resistant intermediate column 4 may be a single member such as a steel pipe, a box-shaped steel pipe, or a cross-shaped assembly, or another shape, in addition to the H-section steel. And beam 3
In general, the lowermost floor, that is, the foundation beam is made of reinforced concrete, but is not limited to this, and may be, for example, steel-framed reinforced concrete, steel-framed, or prestressed reinforced concrete.

【0059】また、耐震中間柱4を1スパンの梁3に1
本立設させた例で説明したが、1スパンの梁3に複数本
の耐震中間柱4を立設させてもよい。そして、通常、梁
3のコンクリートと、梁鉄骨のブラケットのH形鋼との
付着強度による中間柱接合部の場合、耐震中間柱4に一
体化される梁鉄骨のブラケットの長さは1000mm程
度になるのが一般的であり、コンクリートの支圧強度に
よる剛接合部の支圧補強部材の突設長よりも大きくな
る。したがって、梁3のスパン長さが短い短スパンラー
メン構造体では、梁3のスパン長さに占める梁鉄骨のブ
ラケットの長さが大きくなるが、これでもよい。このよ
うに梁鉄骨のブラケットの長さが長くする場合、図14
に示すように、任意の中間階の梁3から耐震中間柱4を
立設させるとき等に好適である。
The quake-resistant intermediate column 4 is attached to the beam 3 having one span.
Although the example in which this is erected is described, a plurality of earthquake-resistant intermediate columns 4 may be erected on the beam 3 of one span. And, in the case of the intermediate column joint part due to the adhesive strength between the concrete of the beam 3 and the H-shaped steel of the beam steel frame bracket, the length of the beam steel frame bracket integrated with the earthquake-resistant intermediate column 4 is about 1000 mm. This is generally larger than the protruding length of the bearing reinforcing member at the rigid joint due to the bearing strength of concrete. Therefore, in the short-span rigid frame structure in which the span length of the beam 3 is short, the length of the bracket of the beam steel frame occupying the span length of the beam 3 is increased. When the length of the beam steel frame bracket is increased as shown in FIG.
As shown in (1), it is suitable when the earthquake-resistant intermediate pillar 4 is erected from a beam 3 on an arbitrary intermediate floor.

【0060】[0060]

【発明の効果】以上のように、この発明によれば、低層
から高層までの鉄筋コンクリート造の骨組に、スパン中
間部に鉄骨造の耐震中間柱を立設した混合構造体とする
ことにより、経済性を損なうことなく、水平耐力や水平
剛性あるいは靭性等の構造的特性に富み、建築設計の融
通性を大幅に向上させることのできる耐震建築構造体を
提供できる。また、耐震中間柱を梁に立設した短スパン
ラーメン構造体の特徴を活かしながらも、骨組の終局耐
力時において、耐震中間柱に柱降伏型ヒンジが形成さ
れ、降伏後も柱軸力機能を保持しうる優れた耐震性能を
有する耐震建築構造体を提供できる。
As described above, according to the present invention, a mixed structure in which a steel-framed quake-resistant intermediate column is erected in the middle of a span on a reinforced concrete frame from a low-rise to a high-rise is provided. It is possible to provide an earthquake-resistant building structure that is rich in structural characteristics such as horizontal strength, horizontal rigidity, and toughness, and can greatly improve the flexibility of architectural design, without impairing flexibility. In addition, while utilizing the features of the short span rigid frame structure in which the seismic middle columns are erected on the beams, a column yielding hinge is formed on the seismic middle columns at the time of ultimate strength of the frame, and the column axial force function is maintained even after yielding. An earthquake-resistant building structure having excellent seismic performance that can be held can be provided.

【0061】請求項1の発明によれば、柱および梁を鉄
筋コンクリート造にするとともに、耐震中間柱を鉄骨造
にしたので、耐震中間柱は曲げ降伏を許容するが、圧縮
座屈、せん断破壊を防止することが容易であり、柱降伏
ヒンジが形成されても柱軸力機能を喪失することがな
い。また、耐震中間柱は高い靭性を有しているので、変
形能力がRC造の柱、梁からなるラーメン構造体よりも
格段に優れている。したがって、RC造ラーメン構造体
が降伏しても、鉄骨造である耐震中間柱は優れた変形追
従能力を発揮する。
According to the first aspect of the present invention, the columns and beams are made of reinforced concrete and the aseismic intermediate columns are made of steel. Therefore, the aseismic intermediate columns allow bending and yielding, but suffer from compression buckling and shear failure. It is easy to prevent, and the column axial force function is not lost even if the column yield hinge is formed. In addition, since the quake-resistant intermediate column has high toughness, its deformability is much better than that of a rigid frame structure composed of RC columns and beams. Therefore, even if the RC frame structure yields, the steel-made aseismic intermediate column exhibits excellent deformation follow-up ability.

【0062】請求項2の発明によれば、梁と耐震中間柱
との接合部における耐震中間柱の断面幅を梁のコンクリ
ート断面幅よりも小さくし、耐震中間柱を、梁のコンク
リート断面内を貫通させて上下階に亘って立設させたの
で、耐震中間柱の断面降伏曲げ耐力を、コンクリート造
の梁の断面降伏曲げ耐力よりも小さくすることが容易で
ある。また、梁は1スパン全長にわたり耐震中間柱によ
って遮断されることのないコンクリート断面および配筋
になり、梁幅は耐震中間柱の鉄骨部材を避けて梁主筋を
配筋することに必要な幅であればよく、梁主筋のかぶり
厚さも適正に保持される。
According to the second aspect of the present invention, the sectional width of the quake-resistant intermediate column at the joint between the beam and the quake-resistant intermediate column is made smaller than the concrete sectional width of the beam, and the quake-resistant intermediate column is moved in the concrete section of the beam. Since it penetrated and was erected over the upper and lower floors, it is easy to make the cross-sectional yield strength of the aseismic intermediate column smaller than that of the concrete beam. In addition, the beam has a concrete section and reinforcing bars that are not interrupted by the aseismic intermediate column over the entire span, and the beam width is the width necessary to arrange the main reinforcing bars of the aseismic intermediate column avoiding the steel members. It is sufficient that the cover thickness of the main beam is properly maintained.

【0063】請求項3の発明によれば、梁のコンクリー
ト支圧強度によって梁と耐震中間柱とが剛接合部を形成
するようにしたので、中間柱接合部の構成が簡単にな
り、梁コンクリート打設の施工性向上、RC造梁がスパ
ン全長に亘って耐震中間柱で遮断されない構造部材とし
ての一体化、耐震中間柱の鉄骨部材を組立材ではなく単
一材とする設計上の融通性、コストダウン等の利点があ
る。そして、耐震中間柱のスパン方向の幅は小さいの
で、柱と耐震中間柱との内法有効スパン長が小さくな
り、RC造梁のせん断補強が容易になる。請求項4の発
明によれば、耐震中間柱から支圧補強部材を梁のコンク
リート断面内に突出させたので、中間柱接合部に生ずる
せん断力を、支圧補強部材とコンクリートとの間のせん
断耐力で抵抗することができ、さらに、梁と耐震中間柱
の剛接合部の耐力を向上させることができる。
According to the third aspect of the present invention, since the beam and the quake-resistant intermediate column form a rigid joint according to the concrete bearing strength of the beam, the structure of the intermediate column joint can be simplified, and the beam concrete can be simplified. Improves the workability of casting, integration of RC beams as structural members that are not interrupted by seismic intermediate columns over the entire span, design flexibility to make the steel members of seismic intermediate columns a single material instead of assembling material There are advantages such as cost reduction. Since the width of the aseismic intermediate column in the span direction is small, the effective inner span length between the column and the aseismic intermediate column is reduced, and shear reinforcement of the RC beam is facilitated. According to the invention of claim 4, since the bearing member is projected from the seismic intermediate column into the concrete section of the beam, the shear force generated at the joint of the intermediate column is reduced by the shear force between the bearing member and concrete. Strength can be resisted, and the strength of the rigid joint between the beam and the quake-resistant intermediate column can be improved.

【0064】請求項5の発明によれば、骨組の終局耐力
時に、梁と耐震中間柱との接合部近傍の位置で、耐震中
間柱の断面降伏耐力を梁の断面降伏耐力よりも小さくす
ることによって柱降伏型の降伏ヒンジを形成させるの
で、耐震中間柱が降伏後に一定の降伏曲げモーメントを
保持した仮想の両端ピン部材となり、制振部材として機
能する。したがって、梁はスパン中間部で梁降伏ヒンジ
が形成されないので、骨組全体は弾性域から終局耐力時
に至るまで安定した構造体となる。請求項6の発明によ
れば、耐震中間柱に生じている軸力よりも耐震中間柱の
断面圧縮座屈耐力を大きくすることにより、耐震中間柱
に生じている軸力を下階の梁に伝達させるようにしたの
で、耐震中間柱に柱軸力機能を保持させることができ
る。
According to the fifth aspect of the present invention, at the time of ultimate strength of the frame, the sectional yield strength of the seismic intermediate column is made smaller than the sectional yield strength of the beam at a position near the joint between the beam and the seismic intermediate column. As a result, a yielding hinge of a column yielding type is formed, so that the quake-resistant intermediate column becomes a virtual double-ended pin member holding a constant yielding bending moment after yielding, and functions as a vibration damping member. Therefore, since the beam does not have a beam yielding hinge at the middle of the span, the entire frame has a stable structure from the elastic range to the ultimate strength. According to the invention of claim 6, by increasing the sectional compressive buckling strength of the aseismic intermediate column than the axial force generated in the aseismic intermediate column, the axial force generated in the aseismic intermediate column is applied to the lower floor beam. Since the transmission is performed, the seismic intermediate column can maintain the column axial force function.

【0065】請求項7の発明によれば、耐震中間柱を靭
性に富む極低降伏点鋼によって構成したので、靭性鋼材
は低い強度で降伏するが、降伏後破断まで靭性に富んだ
性能を発揮する。請求項8の発明によれば、耐震中間柱
の鉄骨部材を鉄筋コンクリート部材で被覆し、この鉄筋
コンクリート部材が梁の鉄筋コンクリート部材と構造的
に一体化しないように、梁と耐震中間柱との接合部近傍
で、耐震中間柱を被覆する鉄筋コンクリート部材の柱頭
部と柱脚部との少なくとも一方に構造スリットを設ける
ことにより、耐震中間柱の鉄筋コンクリート部材の主筋
は構造スリットの直前で停止し、構造スリットを通過し
て梁の鉄筋コンクリート部材内に連結されなくなるの
で、耐震中間柱の鉄筋コンクリート部材が梁の鉄筋コン
クリート部材と構造的に一体化せず、耐震中間柱を鉄骨
造部材として機能させることができる。また、梁と耐震
中間柱とのコンクリートを現場で同時に打設することに
より、耐震中間柱の鉄骨部材の耐火被覆、乾式の仕上げ
材工事を省略することができる。
According to the seventh aspect of the present invention, since the quake-resistant intermediate column is made of a very low yield point steel having a high toughness, the tough steel material yields with a low strength, but exhibits a high toughness performance until the fracture after the yield. I do. According to the invention of claim 8, the steel frame member of the earthquake-resistant intermediate column is covered with the reinforced concrete member, and the vicinity of the joint between the beam and the earthquake-resistant intermediate column so that this reinforced concrete member is not structurally integrated with the reinforced concrete member of the beam. By providing a structural slit in at least one of the column head and column base of the reinforced concrete member covering the aseismic intermediate column, the main reinforcement of the reinforced concrete member of the aseismic intermediate column stops immediately before the structural slit and passes through the structural slit As a result, the reinforced concrete member of the aseismic intermediate column is not structurally integrated with the reinforced concrete member of the beam, so that the aseismic intermediate column can function as a steel frame member. In addition, by simultaneously casting the concrete of the beam and the quake-resistant intermediate column at the site, it is possible to omit the fire-resistant coating of the steel members of the quake-resistant intermediate column and dry-type finishing work.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はこの発明の耐震建築構造体を示す正面図
に相当する説明図である。
FIG. 1 is an explanatory view corresponding to a front view showing an earthquake-resistant building structure of the present invention.

【図2】この発明の第1実施形態における梁、耐震中間
柱および支圧補強部材を示す正面図に相当する説明図で
ある。
FIG. 2 is an explanatory view corresponding to a front view showing a beam, an earthquake-resistant intermediate column, and a bearing reinforcing member in the first embodiment of the present invention.

【図3】この発明の第1実施形態における梁、耐震中間
柱および支圧補強部材を示す平面図に相当する説明図で
ある。
FIG. 3 is an explanatory view corresponding to a plan view showing a beam, an earthquake-resistant intermediate column, and a bearing reinforcing member in the first embodiment of the present invention.

【図4】この発明の第1実施形態における梁、耐震中間
柱および支圧補強部材を示す側面図に相当する説明図で
ある。
FIG. 4 is an explanatory view corresponding to a side view showing a beam, an earthquake-resistant intermediate column, and a bearing reinforcing member in the first embodiment of the present invention.

【図5】この発明の第1実施形態における中間柱接合部
を示す正面図に相当する説明図である。
FIG. 5 is an explanatory view corresponding to a front view showing an intermediate pillar joint in the first embodiment of the present invention.

【図6】この発明の第1実施形態における中間接合部を
示す平面図に相当する説明図である。
FIG. 6 is an explanatory view corresponding to a plan view showing an intermediate joining portion in the first embodiment of the present invention.

【図7】この発明において骨組の終局耐力時に各階の梁
に梁降伏型の降伏ヒンジが発生し、各階の耐震中間柱に
柱降伏型の降伏ヒンジが発生した場合の説明図である。
FIG. 7 is an explanatory view showing a case where a beam yielding type yield hinge is generated on a beam on each floor and a column yielding type yield hinge is generated on an earthquake-resistant intermediate column on each floor when the frame is ultimately subjected to a proof stress according to the present invention.

【図8】この発明において骨組の終局耐力時に各階の梁
に梁降伏型の降伏ヒンジが発生し、各階の耐震中間柱に
柱降伏型の降伏ヒンジが発生した場合の水平力による曲
げモーメントの詳細説明図である。
FIG. 8 shows details of the bending moment due to the horizontal force when a beam yielding type yield hinge is generated on a beam on each floor at the time of ultimate strength of the frame and a column yielding type hinge is generated on an earthquake-resistant intermediate column on each floor. FIG.

【図9】この発明において骨組の終局耐力時に各階の梁
に梁降伏型の降伏ヒンジが発生し、各階の耐震中間柱に
柱降伏型の降伏ヒンジが発生した場合における長期鉛直
荷重による下階の梁の曲げモーメント、耐震中間柱の柱
軸力の詳細説明図である。
FIG. 9 is a view showing a case where a beam yielding type yield hinge is generated on a beam on each floor at the time of ultimate strength of a frame according to the present invention, and a column yielding type hinge is generated on a seismic intermediate column on each floor. It is a detailed explanatory view of a bending moment of a beam and a column axial force of an earthquake-resistant intermediate column.

【図10】この発明の第2実施形態である耐震建築構造
体の中間柱接合部を示す正面図に相当する説明図であ
る。
FIG. 10 is an explanatory view corresponding to a front view showing an intermediate column joint portion of an earthquake-resistant building structure according to a second embodiment of the present invention.

【図11】この発明の第2実施形態である耐震建築構造
体の中間柱接合部を示す平面図に相当する説明図であ
る。
FIG. 11 is an explanatory view corresponding to a plan view showing an intermediate column joint of an earthquake-resistant building structure according to a second embodiment of the present invention.

【図12】この発明の第4実施形態である耐震建築構造
体の要部を示す正面図に相当する説明図である。
FIG. 12 is an explanatory view corresponding to a front view showing a main part of an earthquake-resistant building structure according to a fourth embodiment of the present invention.

【図13】この発明の第4実施形態である耐震建築構造
体の要部を示す平面図に相当する説明図である。
FIG. 13 is an explanatory view corresponding to a plan view showing a main part of an earthquake-resistant building structure according to a fourth embodiment of the present invention.

【図14】この発明の第5実施形態である耐震建築構造
体を示す正面図に相当する説明図である。
FIG. 14 is an explanatory view corresponding to a front view showing an earthquake-resistant building structure according to a fifth embodiment of the present invention.

【図15】従来例における梁および耐震中間柱を示す正
面図に相当する説明図である。
FIG. 15 is an explanatory view corresponding to a front view showing a beam and an earthquake-resistant intermediate column in a conventional example.

【図16】従来例における梁および耐震中間柱を示す平
面図に相当する説明図である。
FIG. 16 is an explanatory view corresponding to a plan view showing a beam and an earthquake-resistant intermediate column in a conventional example.

【図17】従来例において骨組の終局耐力時に各階の梁
に梁降伏型の降伏ヒンジが発生した場合の詳細説明図で
ある。
FIG. 17 is a detailed explanatory view showing a case where a beam yielding type yielding hinge is generated on a beam on each floor at the time of ultimate strength of a frame in a conventional example.

【図18】従来例において骨組の終局耐力時に各階の梁
に梁降伏型の降伏ヒンジが発生した場合における下階の
梁の長期鉛直荷重による曲げモーメント変化の詳細説明
図である。
FIG. 18 is a detailed explanatory view of a change in bending moment due to a long-term vertical load of a beam on a lower floor when a beam yielding type hinge yields on a beam on each floor at the time of ultimate strength of a frame in a conventional example.

【符号の説明】[Explanation of symbols]

1 基礎 2 柱 3 梁 4 耐震中間柱 5 支圧補強部材 6 水平補強板 7 シアーパネル補強板 8 鉄筋コンクリート部材 9 構造スリット 10 耐震壁 11 ブレース DESCRIPTION OF SYMBOLS 1 Foundation 2 Column 3 Beam 4 Earthquake-resistant intermediate column 5 Bearing reinforcing member 6 Horizontal reinforcing plate 7 Shear panel reinforcing plate 8 Reinforced concrete member 9 Structural slit 10 Earthquake-resistant wall 11 Brace

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 柱、梁、耐震中間柱を備えた骨組で構成
され、 前記柱を基礎に立設し、 前記耐震中間柱を前記梁のスパン中間部に立設し、 前記柱および前記梁を鉄筋コンクリート造にするととも
に、 前記耐震中間柱を鉄骨造にした、 ことを特徴とする耐震建築構造体。
1. A pillar, a beam, and a skeleton provided with an earthquake-resistant intermediate column, the column is erected on a foundation, the earthquake-resistant intermediate column is erected on an intermediate portion of the span of the beam, and the column and the beam are provided. A reinforced concrete structure, and the quake-resistant intermediate pillar is made of a steel frame.
【請求項2】 請求項1に記載の耐震建築構造体におい
て、 前記梁と前記耐震中間柱との接合部における前記耐震中
間柱の断面幅を前記梁のコンクリート断面幅よりも小さ
くし、 前記耐震中間柱が前記梁のコンクリート断面内を貫通し
て上下階に亘って立設している、 ことを特徴とする耐震建築構造体。
2. The earthquake-resistant building structure according to claim 1, wherein a cross-sectional width of the seismic intermediate column at a joint between the beam and the seismic intermediate column is smaller than a concrete cross-sectional width of the beam. An earthquake-resistant building structure, characterized in that an intermediate column extends up and down the floor through the concrete section of the beam.
【請求項3】 請求項1または請求項2に記載の耐震建
築構造体において、 前記梁のコンクリート支圧強度によって前記梁と前記耐
震中間柱とが剛接合部を形成する、 ことを特徴とする耐震建築構造体。
3. The aseismic building structure according to claim 1, wherein the beam and the aseismic intermediate column form a rigid joint by the concrete bearing strength of the beam. Earthquake-resistant building structure.
【請求項4】 請求項3に記載の耐震建築構造体におい
て、 前記耐震中間柱から支圧補強部材が前記梁のコンクリー
ト断面内に突出している、 ことを特徴とする耐震建築構造体。
4. The earthquake-resistant building structure according to claim 3, wherein a bearing reinforcing member protrudes into the concrete cross section of the beam from the earthquake-resistant intermediate column.
【請求項5】 請求項1に記載の耐震建築構造体におい
て、 前記骨組の終局耐力時に、前記梁と前記耐震中間柱との
接合部近傍の位置に、前記耐震中間柱の断面降伏耐力を
前記梁の断面降伏耐力よりも小さくすることによって柱
降伏型の降伏ヒンジを形成する、 ことを特徴とする耐震建築構造体。
5. The aseismic building structure according to claim 1, wherein the cross-section yield strength of the aseismic intermediate column is set at a position near a joint between the beam and the aseismic intermediate column at the time of ultimate strength of the frame. An earthquake-resistant building structure, wherein a column yielding type yield hinge is formed by making the sectional yield strength smaller than a beam.
【請求項6】 請求項1に記載の耐震建築構造体におい
て、 前記耐震中間柱に生じている軸力よりも前記耐震中間柱
の断面圧縮座屈耐力を大きくすることにより、前記耐震
中間柱に生じている軸力を下階の前記梁に伝達する、 ことを特徴とする耐震建築構造体。
6. The aseismic intermediate column according to claim 1, wherein a section compressive buckling strength of the aseismic intermediate column is made larger than an axial force generated in the aseismic intermediate column. The generated axial force is transmitted to the beam on the lower floor, wherein the building is an earthquake-resistant building structure.
【請求項7】 請求項1から請求項6のいずれか1項に
記載の耐震建築構造において、 前記耐震中間柱が靭性に富む極低降伏点鋼によって構成
されている、 ことを特徴とする耐震建築構造体。
7. The earthquake-resistant building structure according to any one of claims 1 to 6, wherein the intermediate columns are made of a very low yield point steel with high toughness. Building structure.
【請求項8】 請求項1から請求項7のいずれか1項に
記載の耐震建築構造において、 前記耐震中間柱の鉄骨部材を鉄筋コンクリート部材で被
覆し、この鉄筋コンクリート部材が前記梁の鉄筋コンク
リート部材と構造的に一体化しないように、前記梁と前
記耐震中間柱との接合部近傍で、前記耐震中間柱を被覆
する鉄筋コンクリート部材の柱頭部と柱脚部との少なく
とも一方に構造スリットを設けた、 ことを特徴とする耐震建築構造体。
8. The aseismic building structure according to claim 1, wherein a steel member of the quake-resistant intermediate column is covered with a reinforced concrete member, and the reinforced concrete member and the reinforced concrete member of the beam are structured. A structural slit is provided in at least one of a column head and a column base of a reinforced concrete member covering the earthquake-resistant intermediate column in the vicinity of a joint between the beam and the earthquake-resistant intermediate column so as not to be integrally integrated. An earthquake-resistant building structure characterized by the following.
JP01619999A 1999-01-25 1999-01-25 Seismic building structure Expired - Lifetime JP3211164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01619999A JP3211164B2 (en) 1999-01-25 1999-01-25 Seismic building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01619999A JP3211164B2 (en) 1999-01-25 1999-01-25 Seismic building structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001026149A Division JP3357352B2 (en) 2001-02-01 2001-02-01 Seismic building structure

Publications (2)

Publication Number Publication Date
JP2000213062A true JP2000213062A (en) 2000-08-02
JP3211164B2 JP3211164B2 (en) 2001-09-25

Family

ID=11909850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01619999A Expired - Lifetime JP3211164B2 (en) 1999-01-25 1999-01-25 Seismic building structure

Country Status (1)

Country Link
JP (1) JP3211164B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197641A (en) * 2011-03-23 2012-10-18 Taisei Corp Frame structure
JP2015132166A (en) * 2015-04-24 2015-07-23 大成建設株式会社 Frame structure
JP2017025507A (en) * 2015-07-17 2017-02-02 株式会社淺沼組 Column base installation structure for stud of steel structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177171A (en) * 1995-12-26 1997-07-08 Fudo Kenken Kk Earthquake resisting improvement method of reinforced concrete construction
JPH1113302A (en) * 1997-06-23 1999-01-19 Kajima Corp Elastoplastic damper
JPH11270178A (en) * 1998-03-26 1999-10-05 Taisei Corp Vibration-damping intercollumniation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177171A (en) * 1995-12-26 1997-07-08 Fudo Kenken Kk Earthquake resisting improvement method of reinforced concrete construction
JPH1113302A (en) * 1997-06-23 1999-01-19 Kajima Corp Elastoplastic damper
JPH11270178A (en) * 1998-03-26 1999-10-05 Taisei Corp Vibration-damping intercollumniation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197641A (en) * 2011-03-23 2012-10-18 Taisei Corp Frame structure
JP2015132166A (en) * 2015-04-24 2015-07-23 大成建設株式会社 Frame structure
JP2017025507A (en) * 2015-07-17 2017-02-02 株式会社淺沼組 Column base installation structure for stud of steel structure

Also Published As

Publication number Publication date
JP3211164B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
US5271197A (en) Earthquake resistant multi-story building
JP4247496B2 (en) Seismic reinforcement structure
JP2004169504A (en) Brace-less earthquake resistant reinforcement method for rc construction
JPH09235890A (en) Vibration damping reinforcing structure for existing building
JPH10331477A (en) Vibration control frame
JP2988470B2 (en) Reinforcement structure of existing structure and reinforcement structure
JP2000160683A (en) Aseismatic reinforcing structure of wooden house
JP4873981B2 (en) Seismic reinforcement structure for existing buildings
JPH11293945A (en) Base isolation structure of highrise building
JP5827804B2 (en) Structure
JP3211164B2 (en) Seismic building structure
JP3809536B2 (en) Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings
JP3170535B2 (en) Damping structure
JP3357352B2 (en) Seismic building structure
JP3104679U (en) Braceless reinforced concrete construction
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP3871427B2 (en) Seismic retrofitting method for existing building shell
JP3677703B2 (en) Damping building
JP2000310044A (en) Vibration controlling reinforcement method for outer shell of existing building
JP4837145B1 (en) Seismic retrofitting structure
JP2002161580A (en) Multiple dwelling house structure
JP3517352B2 (en) Apartment house
JPH09264050A (en) Building structure
JPH02128035A (en) Method for earthquake-resistant reinforcement for opening of reinforced concrete structure
JPH1162304A (en) Damping reinforcement structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term