JP2000211172A - Thermal print head and its manufacture - Google Patents

Thermal print head and its manufacture

Info

Publication number
JP2000211172A
JP2000211172A JP1745899A JP1745899A JP2000211172A JP 2000211172 A JP2000211172 A JP 2000211172A JP 1745899 A JP1745899 A JP 1745899A JP 1745899 A JP1745899 A JP 1745899A JP 2000211172 A JP2000211172 A JP 2000211172A
Authority
JP
Japan
Prior art keywords
heat
adhesive material
substrate
radiating member
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1745899A
Other languages
Japanese (ja)
Inventor
Akihiro Usuda
章博 薄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1745899A priority Critical patent/JP2000211172A/en
Publication of JP2000211172A publication Critical patent/JP2000211172A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a print head holding a good adhesion between a substrate with a heating resistance element array and a heat-radiating member and good thermal conduction properties by making an adhesive material thicker than a thermal conductive non-adhesive material. SOLUTION: An aluminum heat-radiating member 1 of a breadth of approximately 380 mm is used and an alumina ceramics R substrate 4 is fixed to the center of the aluminum heat-radiating member 1. A step between an area of the heat-radiating member 1 including immediately under a heating part of the R substrate 4 and an area other than the area is approximately 0.3 mm. A gel 2 of heat-radiating properties is applied by a thickness of approximately 0.1 mm to the part immediately under the heating part. A double-sided tape 3a of a thickness of approximately 0.4 mm is set to the remaining area to fix the R substrate 4 and the heat-radiating member 1. Moreover, a PCB substrate 5 and the heat-radiating member 1 are secured by a double-sided tape of a thickness of approximately 0.1 mm. The fixed substrate is left in an over of approximately 120 deg.C for about two hours to set the-gel 2. A groove of a depth of approximately 1 mm is formed as a gel reservoir to the heat-radiating member 1 between the gel 2 and the double-sided tape 3a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速駆動に伴う熱
の発生が多い場合にも良質な画像を得ることが可能なサ
ーマルプリントヘッドおよびその製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a thermal print head capable of obtaining a high-quality image even when a large amount of heat is generated due to high-speed driving, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】サーマルプリントヘッドを使用した画像
記録方式は、ランニングコストが安価である点、メンテ
ナンスが容易な点、画像記録が静かな点等の利点からビ
デオプリンタ等のOA機器、ファクシミリ等の情報通信
機器、計測器等の出力用印刷機器に様々に組み込まれて
多用されている。
2. Description of the Related Art An image recording system using a thermal print head has advantages such as low running cost, easy maintenance, and quiet image recording. It is widely used by being incorporated in various output printing devices such as information communication devices and measuring instruments.

【0003】一般に、サーマルヘッドは、発熱抵抗素子
アレイの形成された抵抗基板と、駆動回路基板が放熱部
材に貼り付けられた構成からなっている。すなわち、抵
抗基板においては、アルミナのような支持基体上に表面
円滑性と蓄熱性の向上を主目的とするグレーズガラス層
が任意で形成され、グレーズガラス層上に発熱抵抗体層
及びアルミニウム等の導電層を形成した後、フォトエン
グレービングプロセスにより複数の発熱抵抗体及び電極
パターンを形成する。さらに、この複数の発熱抵抗体お
よび電極パターンを保護する為の保護膜をスパッタ法等
の薄膜形成方法により形成される。
In general, a thermal head has a configuration in which a resistance substrate on which a heating resistance element array is formed and a drive circuit substrate are attached to a heat dissipation member. That is, in the resistance substrate, a glaze glass layer mainly for improving the surface smoothness and heat storage property is arbitrarily formed on a support base such as alumina, and a heating resistor layer and aluminum or the like are formed on the glaze glass layer. After forming the conductive layer, a plurality of heating resistors and electrode patterns are formed by a photoengraving process. Further, a protective film for protecting the plurality of heating resistors and the electrode patterns is formed by a thin film forming method such as a sputtering method.

【0004】図5は、ビデオプリンタ等に用いられる従
来のサーマルプリントヘッドの構成を模式的に示した側
面図である。すなわち、発熱抵抗素子アレイ(図示せ
ず)の形成されたセラミックスからなる抵抗基板である
R基板4およびガラスエポキシ基板からなる駆動回路基
板であるPCB(Print Circuit Board )基板5は、両
面テープ3aおよび3bを用いてアルミニウム製の放熱
部材1とそれぞれ接着されている。R基体4より生じる
熱を外部に効率的に放出するために発熱素子アレイの直
下に相当する位置である領域は熱伝導性の高いシリコー
ンゲル材2を配置してある。それ以外の領域には両面粘
着テープが配置されている。放熱部材1が平坦(ただ
し、ゲルと両面粘着テープにはゲル溜りとして浅くて狭
い溝を設けてある)であるため、シリコーンゲルと両面
粘着テープの厚さはほぼ同じとなる。
FIG. 5 is a side view schematically showing a configuration of a conventional thermal print head used for a video printer or the like. That is, an R board 4 which is a resistance board made of ceramics on which a heating resistor element array (not shown) is formed and a PCB (Print Circuit Board) board 5 which is a driving circuit board made of a glass epoxy board are made of a double-sided tape 3a and 3b are bonded to the heat dissipating member 1 made of aluminum. In order to efficiently release the heat generated from the R base 4 to the outside, a silicone gel material 2 having a high thermal conductivity is disposed in a region corresponding to a position directly below the heating element array. In other areas, a double-sided adhesive tape is arranged. Since the heat dissipating member 1 is flat (however, the gel and the double-sided adhesive tape are provided with a shallow and narrow groove as a gel reservoir), the thicknesses of the silicone gel and the double-sided adhesive tape are almost the same.

【0005】さて、このようなサーマルヘッドにおいて
は、発熱抵抗素子アレイがICにより選択的に駆動され
て発熱し、感熱紙などと接触させたときに印画がなされ
るが、現在、より高精細な印刷画像、そしてより高速の
印字速度が求められている。
In such a thermal head, the heating resistor element array is selectively driven by an IC to generate heat, and printing is performed when the heating resistor element is brought into contact with heat-sensitive paper or the like. There is a need for printed images and higher printing speeds.

【0006】ところで、R基板に用いられているアルミ
ナセラミックの熱膨張率と、放熱部材であるアルミニウ
ムの熱膨張率には開きがある。このため、図5に示され
る従来の構造のサーマルプリントヘッドを駆動すると、
R基板4で発生した熱を放熱部材1から充分に放出する
ことができず、サーマルプリントヘッド内部に熱が蓄積
されてしまい、その結果、放熱部材1はR基板4よりも
大きく伸長してしまう。
The coefficient of thermal expansion of alumina ceramic used for the R substrate and the coefficient of thermal expansion of aluminum, which is a heat dissipating member, vary. Therefore, when the conventional thermal print head shown in FIG. 5 is driven,
The heat generated in the R board 4 cannot be sufficiently released from the heat radiating member 1, and heat is accumulated inside the thermal print head. As a result, the heat radiating member 1 extends more than the R board 4. .

【0007】このようにして熱により生じた熱膨張差
は、両面テープで吸収しきれない。その結果、R基板と
放熱部材の端部で剥がれが生じたり、熱が蓄積すること
により、剥がれが生じた部位と生じていない部位との印
字における濃度差が生じる恐れがある。これはサーマル
プリントヘッドが大型化すると無視できない問題であ
る。
[0007] The difference in thermal expansion caused by heat in this way cannot be completely absorbed by the double-sided tape. As a result, peeling may occur at the end of the R substrate and the end portion of the heat dissipating member, or heat may accumulate, resulting in a density difference in printing between a part where the peeling has occurred and a part where the peeling has not occurred. This is a problem that cannot be ignored when the size of the thermal print head is increased.

【0008】R基板と放熱部材の熱膨張差が大きいこと
による破損を防ぐために、両面粘着テープの厚さを厚く
すると、今度は、両面粘着テープと同じ厚さに形成され
るシリコーンゲルのために熱伝導性が悪くなって、蓄熱
が生じて、印画濃度の制御が困難になり、画質が低下す
るという問題が発生してしまう。
When the thickness of the double-sided pressure-sensitive adhesive tape is increased in order to prevent damage due to a large difference in thermal expansion between the R substrate and the heat radiating member, the silicone gel formed to the same thickness as the double-sided pressure-sensitive adhesive tape is required. The thermal conductivity deteriorates, heat is generated, and it becomes difficult to control the print density, which causes a problem that the image quality is deteriorated.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記の問題
に鑑みてなされたものであり、特に大型化したサーマル
ヘッドにおいて、発熱抵抗素子アレイを有する基板と放
熱部材との良好な密着性を保つと同時に良好な熱伝導性
を備えたサーマルプリントヘッドおよびその製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and particularly, in a large-sized thermal head, it is necessary to improve the adhesion between a substrate having a heating resistor element array and a heat radiation member. It is an object of the present invention to provide a thermal print head that has good thermal conductivity while maintaining the thermal print head, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明のサーマルプリン
トヘッドは、放熱部材と前記放熱部材に密着される発熱
部を有する抵抗素子アレイを配置した抵抗基板とを具備
し、前記抵抗基板の前記発熱部近傍は熱伝導性の非接着
性材料を介して前記放熱部材に密着され、前記抵抗基板
の前記発熱部近傍以外の少なくとも一部の領域は粘着性
材料を介して前記放熱部材に密着されており、前記粘着
性材料の厚さが前記熱伝導性の非接着性材料の厚さより
厚いことを特徴としている。
A thermal print head according to the present invention includes a heat radiating member and a resistor substrate on which a resistor element array having a heat generating portion closely attached to the heat radiating member is disposed. The vicinity of the portion is closely adhered to the heat radiating member via a thermally conductive non-adhesive material, and at least a part of the resistance substrate other than the vicinity of the heat generating portion is closely adhered to the heat radiating member via an adhesive material. And wherein the thickness of the adhesive material is greater than the thickness of the thermally conductive non-adhesive material.

【0011】本発明においては、前記粘着性材料が密着
される前記放熱部材の部位は凹部形状である。すなわ
ち、粘着性材料を熱伝導性の非接着性材料より厚く形成
するために、削り出し等機械的加工によって放熱部材に
溝部または段差を作成しておく。
In the present invention, the portion of the heat dissipating member to which the adhesive material is adhered has a concave shape. That is, in order to form the adhesive material thicker than the thermally conductive non-adhesive material, a groove or a step is formed in the heat dissipating member by mechanical processing such as shaving.

【0012】本発明のサーマルプリントヘッドにおい
て、前記粘着性材料の厚さ対前記熱伝導性の非接着性材
料の厚さの比は2〜8である。また、本発明において、
前記放熱部材には、前記熱伝導性の非接着性材料の溜ま
る溝状部が形成されている。この溝状部は、熱伝導性の
非接着性材料が硬化する前に粘着性材料を濡らさないよ
うにするために形成されるものである。この溝状部は、
粘着性材料と熱伝導性の非接着性材料の配置位置の間に
あたる位置に形成されている。もしくは、熱伝導性の非
接着性材料の形成両端部に溝状部を形成してもよい。
In the thermal print head according to the present invention, the ratio of the thickness of the adhesive material to the thickness of the thermally conductive non-adhesive material is 2 to 8. In the present invention,
The heat dissipating member is formed with a groove portion in which the heat conductive non-adhesive material is stored. The groove is formed to prevent the adhesive material from wetting before the thermally conductive non-adhesive material is cured. This groove is
It is formed at a position corresponding to the position between the adhesive material and the thermally conductive non-adhesive material. Alternatively, grooves may be formed at both ends of the thermally conductive non-adhesive material.

【0013】本発明のサーマルプリントヘッドは、さら
に駆動回路基板を具備している。
[0013] The thermal printhead of the present invention further includes a drive circuit board.

【0014】サーマルプリントヘッドにおいては、発熱
抵抗素子アレイが形成された抵抗基板と駆動回路基板と
の所定の位置関係に保ち、サーマルプリントヘッドの冷
却効率を高めるために、抵抗基板と駆動回路基板とはそ
れぞれ間を空けて放熱部材に固定されている。
In the thermal print head, the resistive substrate and the drive circuit board are connected to each other in order to maintain a predetermined positional relationship between the resistive substrate on which the heating resistor element array is formed and the drive circuit board and to increase the cooling efficiency of the thermal print head. Are fixed to the heat radiating member with a space therebetween.

【0015】また、本発明のサーマルプリントヘッドの
製造方法は、発熱部を有する抵抗素子アレイを配置した
抵抗基板を、前記抵抗基板の前記発熱部近傍は熱伝導性
の非接着性材料を介して、そして前記抵抗基板の前記発
熱部近傍以外の少なくとも一部は粘着性材料を介して放
熱部材に密着させるに際し、前記粘着性材料の厚さが前
記熱伝導性の非接着性材料の厚さより厚くなるように密
着させることを特徴としている。
Further, according to the method of manufacturing a thermal print head of the present invention, a resistance substrate having a resistance element array having a heat generating portion is disposed on a portion of the resistance substrate near the heat generating portion via a thermally conductive non-adhesive material. And, when at least a part other than the vicinity of the heat generating portion of the resistance substrate is brought into close contact with the heat dissipation member through the adhesive material, the thickness of the adhesive material is larger than the thickness of the thermally conductive non-adhesive material. It is characterized by being closely adhered.

【0016】本発明のサーマルプリントヘッドおよびそ
の製造方法によれば、抵抗基板の発熱抵抗素子から発生
する熱による抵抗基板と放熱部材の膨張を吸収して、こ
の熱を放熱部材へ効率よく放熱することができる。これ
により、大型化したサーマルプリントヘッドにおいて高
速印字を行う場合でも、抵抗基板における熱の残留を制
御して、印画品質を向上させることができる。
According to the thermal print head and the method of manufacturing the same of the present invention, the expansion of the resistance substrate and the heat radiating member due to the heat generated from the heat generating resistance element of the resistance substrate is absorbed, and this heat is efficiently radiated to the heat radiating member. be able to. As a result, even when high-speed printing is performed with a large-sized thermal print head, it is possible to control the residual heat on the resistive substrate and improve the printing quality.

【0017】また、本発明において用いる熱伝導性で非
接着性の材料、例えばシリコーンゲルは、抵抗基板と放
熱部材に接触しているだけであって、接着していないた
め、本発明の粘着性材料である両面粘着テープのように
抵抗基板と放熱部材の線膨張差によって厚さを決定する
必要がない。
Further, the heat conductive and non-adhesive material used in the present invention, for example, silicone gel, is only in contact with the resistance substrate and the heat radiating member, but is not adhered. Unlike the double-sided pressure-sensitive adhesive tape, which is a material, there is no need to determine the thickness by the linear expansion difference between the resistance substrate and the heat dissipation member.

【0018】[0018]

【発明の実施の形態】図1は本発明のサーマルプリント
ヘッドの側面図、図2は平面図である。
FIG. 1 is a side view of a thermal print head according to the present invention, and FIG. 2 is a plan view.

【0019】幅bが380mmのアルミニウム製放熱部
材1を用い、アルミナセラミックス製R基板4を放熱部
材1の中央に固定している。放熱部材1とR基板4の表
面温度が、例えば、25℃から150℃に変化すると、
アルミニウムの線膨張係数が23.1×10-6、アルミ
ナの線膨張係数が6×10-6であることから、放熱部材
1とR基板4との幅方向の寸法差aは0.4mm程度と
なる。
An aluminum heat dissipating member 1 having a width b of 380 mm is used, and an alumina ceramic R substrate 4 is fixed to the center of the heat dissipating member 1. When the surface temperature of the heat radiating member 1 and the surface of the R board 4 change from, for example, 25 ° C to 150 ° C,
Since the linear expansion coefficient of aluminum is 23.1 × 10 −6 and the linear expansion coefficient of alumina is 6 × 10 −6 , the dimension difference a in the width direction between the heat radiating member 1 and the R substrate 4 is about 0.4 mm. Becomes

【0020】このような場合、使用する材料の特性によ
っても異なるが、両面テープの厚さは0.4mm程度必
要であり、ゲルの厚さは0.05〜0.2mmが望まし
い。
In such a case, the thickness of the double-sided tape is required to be about 0.4 mm, and the thickness of the gel is desirably 0.05 to 0.2 mm, depending on the characteristics of the material used.

【0021】図1において、放熱部材1におけるR基板
4の発熱部分の直下を含む領域と、その領域以外の領域
との段差を0.3mmとし、発熱部分の直下部分に放熱
性ゲル2を0.1mmの厚さで塗布し、残る領域に厚さ
0.4mmの両面テープ3aをつけてR基板4と放熱部
材1を固定した。また、PCB基板5と放熱部材1は、
厚さ0.1mmの両面テープ3bで固定した。これを1
20℃のオーブンに2時間放置して、ゲル2を硬化させ
た。放熱部材1には、ゲル2と両面テープ3aとの間に
ゲル溜りとして深さ1mmの溝が形成されている。
In FIG. 1, a step between a region of the heat dissipating member 1 including a region immediately below the heat generating portion of the R substrate 4 and a region other than the region is 0.3 mm, and the heat dissipating gel 2 is placed under the heat generating portion. The R substrate 4 and the heat radiating member 1 were fixed by applying a 0.4 mm thick double-sided tape 3a to the remaining area. In addition, the PCB substrate 5 and the heat radiation member 1
It was fixed with a double-sided tape 3b having a thickness of 0.1 mm. This one
The gel 2 was cured by leaving it in an oven at 20 ° C. for 2 hours. A groove having a depth of 1 mm is formed in the heat dissipating member 1 as a gel reservoir between the gel 2 and the double-sided tape 3a.

【0022】本発明に用いる抵抗基板としては、通常、
アルミナセラミックス等が挙げられるがこれに限られる
ものではない。サーマルプリントヘッドの蓄熱性を高
め、基板の表面を円滑にして発熱素子アレイを均質に形
成するために基板上にグレーズ層を任意で形成すること
が望ましい。グレーズ層の材料としては、SiO2 ある
いはSiO2 にCa、Ba、Al、Si等を混合したも
のが挙げられる。ただし、サーマルプリントヘッドの抵
抗値の上昇を防止することから、グレーズガラス層のガ
ラス転移点は、670℃以上であることが望ましい。ま
た、グレーズガラス層の膜厚は、通常、40〜200μ
m程度とする。さらに、グレーズ層の形成方法として
は、印刷法あるいはスプレー法が挙げられる。
As the resistance substrate used in the present invention, usually,
Examples include alumina ceramics, but are not limited thereto. It is desirable to optionally form a glaze layer on the substrate in order to enhance the heat storage property of the thermal print head, smooth the surface of the substrate, and uniformly form the heating element array. Examples of the material for the glaze layer include SiO 2 or a mixture of SiO 2 and Ca, Ba, Al, Si, or the like. However, the glass transition point of the glaze glass layer is desirably 670 ° C. or higher in order to prevent the resistance value of the thermal print head from increasing. The thickness of the glaze glass layer is usually 40 to 200 μm.
m. Further, as a method of forming the glaze layer, a printing method or a spray method is used.

【0023】発熱抵抗素子アレイの材料としては、N
i、Cr、Ta等の安定性の高い金属材料の窒化物や、
Ta−SiO2 、Nb−SiO2 、Ti−SiO2 等の
各種サーメット材料を適宜用いることができる。また、
発熱抵抗素子アレイと接続される各電極としては、A
l、Al−Si、Al−Si−Cu等が用いられるがこ
れに限定されるものではない。発熱抵抗素子アレイの膜
厚は、0.1〜1μm、電極の膜厚は3〜5μm程度と
する。発熱抵抗素子アレイおよび各電極は、スパッタリ
ング法など各種成膜方法を用いたフォトエングレービン
グプロセスにより形成される。
The material of the heating resistance element array is N
nitrides of highly stable metal materials such as i, Cr, Ta,
The Ta-SiO 2, Nb-SiO 2, Ti-SiO 2 or the like of various cermet materials can be used as appropriate. Also,
Each electrode connected to the heating resistance element array
1, Al-Si, Al-Si-Cu or the like is used, but is not limited thereto. The thickness of the heating resistance element array is 0.1 to 1 μm, and the thickness of the electrodes is about 3 to 5 μm. The heating resistor element array and each electrode are formed by a photoengraving process using various film forming methods such as a sputtering method.

【0024】さらに、発熱抵抗素子アレイと各電極を保
護するためにSi−O−N系の膜をスパッタリング法な
ど各種成膜方法を用いて保護膜を形成する。
Further, in order to protect the heating resistor element array and each electrode, a protective film is formed by using an Si-ON-based film by various film forming methods such as a sputtering method.

【0025】一方、駆動回路基板としては、通常、PC
BやFPC(Flexible Print Circuit)等が使用される
が、コネクタ等が実装できるものであれば特に限定され
ない。
On the other hand, as a drive circuit board, a PC
B or FPC (Flexible Print Circuit) is used, but is not particularly limited as long as a connector or the like can be mounted.

【0026】駆動回路基板にドライバICが、通常、C
OB(Chip On Board )の形態で実装される。
A driver IC is usually provided on a drive circuit board.
It is implemented in the form of OB (Chip On Board).

【0027】各発熱抵抗素子アレイと接続された共通電
極にドライバICを接続する必要があるが、ドライバI
Cを各共通電極にワイヤボンディング、フリップチッ
プ、TAB(Tape Automated Bonding)等いずれの接続
方法によって接続、実装してもよい。さらに、駆動回路
基板に信号線を形成する場合には、Al、Cu等を用い
て通常の薄膜形成方法により形成される。
It is necessary to connect a driver IC to a common electrode connected to each heating resistor element array.
C may be connected and mounted to each common electrode by any connection method such as wire bonding, flip chip, TAB (Tape Automated Bonding). Further, when signal lines are formed on the drive circuit board, they are formed by a normal thin film forming method using Al, Cu, or the like.

【0028】図3および図4に本発明の変形実施形態を
示す。図3においてはPCB基板5もゲル2より厚い両
面テープ3bで固定してある。図4においては、R基板
が放熱部材1に形成された段差を越えて伸びている。
FIGS. 3 and 4 show a modified embodiment of the present invention. In FIG. 3, the PCB substrate 5 is also fixed with a double-sided tape 3b thicker than the gel 2. In FIG. 4, the R substrate extends beyond the step formed on the heat radiation member 1.

【0029】[0029]

【発明の効果】本発明のサーマルプリントヘッドおよび
その製造方法によれば、特に大型化したサーマルプリン
トヘッドにおいて、発熱抵抗素子アレイを有する抵抗基
板と放熱部材とを良好に密着すると同時に良好な熱伝導
性を得ることができる。
According to the thermal print head and the method of manufacturing the same according to the present invention, especially in a large-sized thermal print head, the resistance substrate having the heating resistance element array and the heat radiating member are brought into good contact with each other while at the same time having good heat conduction. Sex can be obtained.

【0030】また、本発明のサーマルプリントヘッドお
よびその製造方法によれば、抵抗基板の発熱抵抗素子か
ら発生する熱による抵抗基板と放熱部材の膨張を吸収し
て、この熱を放熱部材へ効率よく放熱することができ
る。これにより、大型化したサーマルプリントヘッドに
おいて高速印字を行う場合に、抵抗基板における熱の残
留を制御して、印画品質を向上させることができる。
Further, according to the thermal print head and the method of manufacturing the same of the present invention, the expansion of the resistance board and the heat radiating member due to the heat generated from the heating resistor element of the resistance board is absorbed, and this heat is efficiently transmitted to the heat radiating member. Heat can be dissipated. Thus, when high-speed printing is performed with a large-sized thermal print head, the remaining heat on the resistive substrate can be controlled to improve the printing quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によるサーマルプリントヘッ
ドの側面図。
FIG. 1 is a side view of a thermal print head according to an embodiment of the present invention.

【図2】本発明のサーマルプリントヘッドの平面図。FIG. 2 is a plan view of the thermal print head of the present invention.

【図3】本発明の他の実施例によるサーマルプリントヘ
ッドの側面図。
FIG. 3 is a side view of a thermal print head according to another embodiment of the present invention.

【図4】本発明の他の実施例によるサーマルプリントヘ
ッドの側面図。
FIG. 4 is a side view of a thermal print head according to another embodiment of the present invention.

【図5】従来のサーマルプリントヘッドの側面図。FIG. 5 is a side view of a conventional thermal print head.

【符号の説明】[Explanation of symbols]

1…放熱部材、2…ゲル、3a、3b…両面テープ、4
…R基板、5…PCB基板
DESCRIPTION OF SYMBOLS 1 ... Heat dissipation member, 2 ... Gel, 3a, 3b ... Double-sided tape, 4
... R board, 5 ... PCB board

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 放熱部材と前記放熱部材に密着される発
熱部を有する抵抗素子アレイを配置した抵抗基板とを具
備するサーマルプリントヘッドにおいて、 前記抵抗基板の前記発熱部近傍は熱伝導性の非接着性材
料を介して前記放熱部材に密着され、前記抵抗基板の前
記発熱部近傍以外の少なくとも一部の領域は粘着性材料
を介して前記放熱部材に密着されており、前記粘着性材
料の厚さが前記熱伝導性の非接着性材料の厚さより厚い
ことを特徴とするサーマルプリントヘッド。
1. A thermal printhead comprising: a heat radiating member; and a resistance substrate on which a resistance element array having a heat generating portion closely attached to the heat radiating member is disposed. The heat-dissipating member is adhered through an adhesive material, and at least a part of the resistance substrate other than the vicinity of the heat-generating portion is adhered to the heat-dissipating member through an adhesive material. Is thicker than the thickness of the thermally conductive non-adhesive material.
【請求項2】 前記粘着性材料の厚さ対前記熱伝導性の
非接着性材料の厚さの比が2〜8であることを特徴とす
る請求項1記載のサーマルプリントヘッド。
2. The thermal printhead according to claim 1, wherein the ratio of the thickness of the adhesive material to the thickness of the thermally conductive non-adhesive material is 2-8.
【請求項3】 前記粘着性材料が密着される前記放熱部
材の部位は凹部形状であることを特徴とする請求項1記
載のサーマルプリントヘッド。
3. The thermal printhead according to claim 1, wherein a portion of the heat radiating member to which the adhesive material is adhered has a concave shape.
【請求項4】 前記放熱部材には、前記熱伝導性の非接
着性材料の溜まる溝状部が形成されていることを特徴と
する請求項1記載のサーマルプリントヘッド。
4. The thermal printhead according to claim 1, wherein the heat dissipating member is formed with a groove portion in which the heat conductive non-adhesive material is stored.
【請求項5】 前記溝状部は、前記粘着性材料と前記熱
伝導性の非接着性材料の配置位置の間にあたる位置に形
成されていることを特徴とする請求項4記載のサーマル
プリントヘッド。
5. The thermal printhead according to claim 4, wherein the groove-shaped portion is formed at a position between the adhesive material and the thermally conductive non-adhesive material. .
【請求項6】 駆動回路基板をさらに具備することを特
徴とする請求項1記載のサーマルプリントヘッド。
6. The thermal printhead according to claim 1, further comprising a drive circuit board.
【請求項7】 発熱部を有する抵抗素子アレイを配置し
た抵抗基板を、前記抵抗基板の前記発熱部近傍は熱伝導
性の非接着性材料を介して、前記抵抗基板の前記発熱部
近傍以外の少なくとも一部は粘着性材料を介して放熱部
材に密着させるに際し、前記粘着性材料の厚さが前記熱
伝導性の非接着性材料の厚さより厚くなるように密着さ
せることを特徴とするサーマルプリントヘッドの製造方
法。
7. A resistive substrate on which a resistive element array having a heat generating portion is arranged, wherein a portion of the resistive substrate near the heat generating portion is connected to a portion other than near the heat generating portion of the resistive substrate via a thermally conductive non-adhesive material. A thermal print, wherein at least a part of the thermal print is brought into close contact with the heat radiating member via the adhesive material such that the thickness of the adhesive material is larger than the thickness of the thermally conductive non-adhesive material. Head manufacturing method.
JP1745899A 1999-01-26 1999-01-26 Thermal print head and its manufacture Withdrawn JP2000211172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1745899A JP2000211172A (en) 1999-01-26 1999-01-26 Thermal print head and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1745899A JP2000211172A (en) 1999-01-26 1999-01-26 Thermal print head and its manufacture

Publications (1)

Publication Number Publication Date
JP2000211172A true JP2000211172A (en) 2000-08-02

Family

ID=11944588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1745899A Withdrawn JP2000211172A (en) 1999-01-26 1999-01-26 Thermal print head and its manufacture

Country Status (1)

Country Link
JP (1) JP2000211172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074131A (en) * 2013-10-08 2015-04-20 東芝ホクト電子株式会社 Thermal print head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074131A (en) * 2013-10-08 2015-04-20 東芝ホクト電子株式会社 Thermal print head

Similar Documents

Publication Publication Date Title
JP2009226868A (en) Thermal printing head
JP2009184272A (en) Thermal head, thermal printer and manufacturing method of thermal head
JP5670132B2 (en) Thermal print head and thermal printer
JP2019031058A (en) Thermal print head and thermal printer
JP3103551B2 (en) Thermal print head
JP2000211172A (en) Thermal print head and its manufacture
JP3764771B2 (en) Thermal recording element and manufacturing method thereof
JPH0994991A (en) Thermal print head
JP4493174B2 (en) Thermal head
JPH1148513A (en) Thermal print head
JP2002036615A (en) Thermal head
JPH11129513A (en) Thermal head
JP4544729B2 (en) Thermal head and thermal printer using the same
JPH07148961A (en) Thermal head
JP2003054020A (en) Thermal head and its producing method
JP2606646Y2 (en) Thermal head
JPH10166634A (en) Thermal print head and manufacture of thermal print head
JP2879801B2 (en) Thermal head
JP3462076B2 (en) Thermal head
JP3439961B2 (en) Thermal head
JPH06171129A (en) Thermal head
JP2963250B2 (en) Thermal head and electronic device having the same
JP2009166339A (en) Thermal printing head
JPH08310027A (en) Thermal print head
JP2000103107A (en) Thermal head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404