JP2000209007A - Signal composing circuit - Google Patents

Signal composing circuit

Info

Publication number
JP2000209007A
JP2000209007A JP11006183A JP618399A JP2000209007A JP 2000209007 A JP2000209007 A JP 2000209007A JP 11006183 A JP11006183 A JP 11006183A JP 618399 A JP618399 A JP 618399A JP 2000209007 A JP2000209007 A JP 2000209007A
Authority
JP
Japan
Prior art keywords
circuit
input
lines
line
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11006183A
Other languages
Japanese (ja)
Inventor
Tomoyuki Iida
知之 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11006183A priority Critical patent/JP2000209007A/en
Publication of JP2000209007A publication Critical patent/JP2000209007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a signal composing circuit wide in band by connecting an extension line, which has the length of a prescribed wavelength in intra-medium wavelength conversion at the time of a frequency to be a center within an operating frequency band, to the input/output terminal of a main line, further, parallel connecting an inductor and a capacitor and adding an LC parallel circuit grounding one terminal. SOLUTION: Extension lines 8a, 8b, 8c and 8d are connected between main lines 2a and 2b and input/output lines 5a, 5b, 5c and 5d of a directional coupler 1. The extension lines 8a-8d have the same impedance value as two main lines and the length thereof is 1/4 wavelength in the intra-medium wavelength conversion at the time of the frequency to be the center within the operating frequency band. An inductor 9 is formed from a microstrip line on a dielectric substrate 7. An LC parallel circuit 12 is constituted by connecting the inductor 9 and a capacitor 10. The LC parallel circuit is added from a gap between the extension lines 8a-8d and the input/output lines 5a-5d to a ground terminal 11. The number of components is reduced by a signal synthesizing circuit and the circuit is miniaturized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は高周波給電回路の
構成要素として用いられる方向性結合器を構成要素とす
る信号合成回路の広帯域化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a broadband signal synthesizing circuit having a directional coupler used as a component of a high-frequency power supply circuit.

【0002】[0002]

【従来の技術】図13は従来の信号合成回路の構成を示
す図であり、誘電体基板上に構成された方向性結合器と
入出力線路を構成要素とするものの例である。図13に
おいて、1は方向性結合器、2a,2bは所定の特性イ
ンピーダンス値を有し、動作周波数帯域内の中心となる
周波数のときに媒質内波長換算で4分の1波長の長さを
有し、かつ平行に配置された2本の主線路、3a,3
b,3c,3dは上記2本の主線路2a,2bの4つの
入出力端子、4a,4bは上記入出力端子3aと3c間
及び3bと3d間に2本の主線路2aと2bと直交し、
かつ上記2本の主線路2aと2bと異なる特性インピー
ダンス値を有し、動作周波数帯域内の中心となる周波数
のときに媒質内波長換算で4分の1波長の長さを有する
2本の結合線路である。また5a,5b,5c,5dは
上記の方向性結合器1の入出力端子3a,3b,3c,
3dに接続され、所定の特性インピーダンス値を有する
入出力線路、6a,6b,6c,6dは上記の構成要素
から成る信号合成回路の4つの入出力端子、7は上記の
構成要素1,5a,5b,6a,6cがその上に形成さ
れる誘電体基板である。また、方向性結合器の広帯域化
の一例として、「特許出願公告 昭52−10344
号」をあげることができる。
2. Description of the Related Art FIG. 13 is a diagram showing the configuration of a conventional signal synthesis circuit, which is an example in which a directional coupler and an input / output line formed on a dielectric substrate are constituent elements. In FIG. 13, reference numeral 1 denotes a directional coupler, 2a and 2b each have a predetermined characteristic impedance value, and the length of a quarter wavelength in terms of the wavelength in the medium at the center frequency in the operating frequency band. And two main lines 3a, 3 arranged in parallel
b, 3c and 3d are four input / output terminals of the two main lines 2a and 2b, and 4a and 4b are orthogonal to the two main lines 2a and 2b between the input / output terminals 3a and 3c and between 3b and 3d. And
Further, two couplings having characteristic impedance values different from those of the two main lines 2a and 2b and having a length of a quarter wavelength in terms of the wavelength in the medium at the center frequency in the operating frequency band. It is a track. 5a, 5b, 5c, 5d are input / output terminals 3a, 3b, 3c,
3d, an input / output line having a predetermined characteristic impedance value, 6a, 6b, 6c, 6d are four input / output terminals of a signal combining circuit composed of the above components, and 7 is the above components 1, 5a, 5b, 6a and 6c are dielectric substrates formed thereon. Further, as an example of widening the bandwidth of the directional coupler, “Patent Application Publication No. 52-10344”
No.).

【0003】次に動作について説明する。尚、説明の便
宜上周波数は動作周波数帯域内の中心となる周波数に限
定する。上記のように構成された信号合成回路の動作
は、構成要素である方向性結合器の動作に依存する。そ
こで、図14を用いて方向性結合器の動作概念を説明す
る。第1の入出力端子6aに入力された高周波信号が第
2の入出力端子6bに到達するまでの経路は図示の経路
A、経路Bに分けて考えられる。また第1の入出力端子
6aに入力された高周波信号が第3の入出力端子6cに
到達するまでの経路は図示の経路C、経路Dに分けて考
えられる。主線路2及び結合線路4の長さは動作周波数
帯域内の中心となる周波数のときに媒質内波長換算で4
分の1波長であるから主線路2、結合線路4、入出力線
路5の接続分岐点である端子3a,3b,3c,3dの
間の距離は4分の1波長である。経路Cと経路Dとの間
には経路長差はなく、両方の経路を経て端子6cに到達
する信号は等位相で合成される。一方経路Aと経路Bと
の間には半波長の経路長差が生じ、両方の経路を経て端
子6に到達する信号は逆位相で合成される。したがって
主線路2aと2b及び結合線路4aと4bの特性インピ
ーダンス比を適当な値に設定すれば入出力端子6aから
経路Aを経て入出力端子6bに到達する信号の振幅と経
路Bを経て入出力端子6bに到達する信号の振幅及び入
出力端子6aから経路Cを経て入出力端子6cに到達す
る信号の振幅と経路Dを経て入出力端子6cに到達する
信号の振幅をそれぞれ等しくすることができる。よって
入出力端子6aから信号を入力した場合、入出力端子6
cには信号が出力されるが入出力端子6bには信号が出
力されない。一方入出力端子6aから入出力端子6dに
出力される信号は入力された信号のうち入出力端子6c
に出力された残りであり、概念的には経路Eを経て伝送
されると考えてよい。経路C、経路Dと経路Eとの間に
は4分の1波長分の経路長差があるから、入出力端子6
aから入力されて入出力端子6cに出力される信号と、
入出力端子6dに出力される信号との間には90°の位
相差が生じる。
Next, the operation will be described. For convenience of explanation, the frequency is limited to the center frequency in the operating frequency band. The operation of the signal synthesizing circuit configured as described above depends on the operation of the directional coupler as a component. The operation concept of the directional coupler will be described with reference to FIG. The path until the high-frequency signal input to the first input / output terminal 6a reaches the second input / output terminal 6b can be considered as divided into path A and path B as shown. Further, a path until the high-frequency signal input to the first input / output terminal 6a reaches the third input / output terminal 6c can be considered as divided into a path C and a path D as shown. The lengths of the main line 2 and the coupling line 4 are 4 when converted to the wavelength in the medium at the center frequency in the operating frequency band.
Since the wavelength is a quarter wavelength, the distance between the terminals 3a, 3b, 3c, and 3d, which are the connection branch points of the main line 2, the coupling line 4, and the input / output line 5, is a quarter wavelength. There is no path length difference between the path C and the path D, and signals reaching the terminal 6c via both paths are combined with the same phase. On the other hand, a half-wavelength path length difference occurs between the path A and the path B, and signals reaching the terminal 6 via both paths are combined in opposite phases. Therefore, if the characteristic impedance ratio of the main lines 2a and 2b and the coupling lines 4a and 4b is set to an appropriate value, the amplitude of the signal reaching the input / output terminal 6b from the input / output terminal 6a via the path A and the input / output via the path B The amplitude of the signal reaching the terminal 6b, the amplitude of the signal reaching the input / output terminal 6c via the path C from the input / output terminal 6a, and the amplitude of the signal reaching the input / output terminal 6c via the path D can be equalized. . Therefore, when a signal is input from the input / output terminal 6a,
A signal is output to c, but no signal is output to the input / output terminal 6b. On the other hand, the signal output from the input / output terminal 6a to the input / output terminal 6d is the input / output terminal 6c of the input signals.
, And may be conceptually considered to be transmitted via the path E. Since there is a path length difference of a quarter wavelength between the paths C, D and E, the input / output terminals 6
a that is input from a and output to the input / output terminal 6c;
There is a 90 ° phase difference between the signal output to the input / output terminal 6d.

【0004】以上が動作周波数帯域内の中心となる周波
数における信号合成回路の動作原理の概要であるが、動
作周波数帯域内の中心となる周波数以外の周波数も含む
周波数特性については回路応答を伝送線路パラメータに
より表現することで説明できる。図14に示す信号合成
回路を4端子対回路網と考えると図15のような表現が
可能である。この信号合成回路の散乱行列[S]は以下
のようにして求まる。図14において、2本の主線路2
a,2b及び結合線路4a,4bの特性インピーダンス
値をそれぞれZ2,Z1、長さをl2,l1、その伝搬定数
をγ2,γ1とすると方向性結合器1の等価回路は図16
で表わせる。図示のようにこの回路は面A−Aに関して
対称であるので、この面が開放状態となることに相当す
る偶モード励振に対する散乱行列[Se]及びこの面が
短絡状態となることに相当する奇モード励振に対する散
乱行列[So]を用いてその散乱行列[S]を求めるこ
とができる。方向性結合器を偶モード励振した場合の等
価回路は図17であるが、この回路は図18に示すよう
な3つの回路要素に分解して考えることができる。図1
8における回路要素IのF行列を[FeI]、回路要素II
のF行列を[FII]とすると方向性結合器1のF行列
[Fe]は上記回路要素のF行列の従属接続として数1
で表わされる。
The above is an outline of the principle of operation of the signal synthesis circuit at the center frequency in the operating frequency band. The circuit response for the frequency characteristics including frequencies other than the center frequency in the operating frequency band is represented by the transmission line. It can be explained by expressing by parameters. If the signal combining circuit shown in FIG. 14 is considered as a four-port network, the expression as shown in FIG. 15 can be obtained. The scattering matrix [S] of this signal synthesis circuit is obtained as follows. In FIG. 14, two main lines 2
If the characteristic impedance values of a and 2b and the coupling lines 4a and 4b are Z 2 and Z 1 , the lengths are l 2 and l 1 and their propagation constants are γ 2 and γ 1 , the equivalent circuit of the directional coupler 1 is FIG.
Can be represented by As shown, this circuit is symmetrical with respect to the plane AA, so that the scattering matrix [S e ] for even-mode excitation corresponding to this plane being open and this plane being short-circuited. The scattering matrix [S o ] can be obtained using the scattering matrix [S o ] for the odd mode excitation. FIG. 17 shows an equivalent circuit when the directional coupler is excited in the even mode, and this circuit can be considered by being divided into three circuit elements as shown in FIG. FIG.
The F matrix circuit elements I in the 8 [F eI], circuitry II
If the F matrix of the directional coupler 1 is [F II ], the F matrix [F e ] of the directional coupler 1 becomes
Is represented by

【0005】[0005]

【数1】 (Equation 1)

【0006】回路要素IのF行列[FeI]は数2で、回
路要素IIのF行列[FII]は数3で表わされるから数
1、数2、数3を用いて偶モード励振時の方向性結合器
1のF行列[Fe]は数4で表わされる。
The F matrix [F eI ] of the circuit element I is expressed by equation (2), and the F matrix [F II ] of the circuit element II is expressed by equation (3). The F matrix [F e ] of the directional coupler 1 is expressed by Expression 4.

【0007】[0007]

【数2】 (Equation 2)

【0008】[0008]

【数3】 (Equation 3)

【0009】[0009]

【数4】 (Equation 4)

【0010】また方向性結合器1を奇モード励振した場
合の等価回路は図19、この回路を3つの回路要素に分
解した図が図20である。偶モード励振の場合と同様こ
のF行列[Fo]は数5で表わされる回路要素IのF行
列[FoI]、偶モード励振の場合と同様な回路要素IIの
F行列[FII]の従属接続として数6で表わされるから
数6、数3、数5を用いて奇モード励振時の方向性結合
器1のF行列[Fo]は数7で表わされる。
FIG. 19 shows an equivalent circuit when the directional coupler 1 is excited in the odd mode, and FIG. 20 is a diagram in which this circuit is disassembled into three circuit elements. As in the case of the even mode excitation, the F matrix [F o ] is obtained by calculating the F matrix [F oI ] of the circuit element I expressed by Formula 5 and the F matrix [F II ] of the circuit element II similar to the case of the even mode excitation. Since the cascade connection is represented by Equation 6, the F matrix [F o ] of the directional coupler 1 at the time of the odd mode excitation is represented by Equation 7 using Equations 6, 3, and 5.

【0011】[0011]

【数5】 (Equation 5)

【0012】[0012]

【数6】 (Equation 6)

【0013】[0013]

【数7】 (Equation 7)

【0014】次に信号合成回路の入出力線路5a,5d
の特性インピーダンス値をZ01、入出力線路5b,5c
の特性インピーダンス値をZ02とすると、方向性結合器
1をそれぞれの励振モードで励振した場合に対応する散
乱行列[Se],[So]は方向性結合器1のF行列[F
e],[Fo]を用いて数8、数9、数10、数11で表
わされる。
Next, the input / output lines 5a, 5d of the signal synthesis circuit
Is the characteristic impedance value of Z 01 , and the input / output lines 5b, 5c
Is assumed to be Z 02 , the scattering matrices [S e ] and [S o ] corresponding to the case where the directional coupler 1 is excited in the respective excitation modes are the F matrix [F
e ], [F o ], and are represented by Expression 8, Expression 9, Expression 10, and Expression 11.

【0015】[0015]

【数8】 (Equation 8)

【0016】[0016]

【数9】 (Equation 9)

【0017】[0017]

【数10】 (Equation 10)

【0018】[0018]

【数11】 [Equation 11]

【0019】図15においてポート1にのみ信号を入力
した場合の回路の応答S11,S21,S31,S41は回路の
対称性からS11e,S21e,S11o,S21oのみを用いて数
12で表わすことができる。
The response S 11 of the circuit in the case of inputting the signal only to the port 1 in FIG. 15, S 21, S 31, S 41 is S 11e from the symmetry of the circuit, S 21e, S 11o, using only S 21o Can be expressed by Equation 12.

【0020】[0020]

【数12】 (Equation 12)

【0021】数12により図14で表わされる信号合成
回路の第1の入出力端子6aから信号を入力した場合の
第1の入出力端子6aへの反射出力であるS11、第3の
入出力端子6c及び第4の入出力端子6dへの結合出力
であるS31とS41、第2の入出力端子6bへの減結合出
力であるS21が求められる。ここで例として図21に示
すような伝送線路パラメータを有する信号合成回路に対
しその入出力端子6aから相対振幅1の信号を入力した
場合の各入出力端子への出力信号の相対振幅を計算す
る。計算した周波数は動作周波数帯域内の中心となる周
波数であり、方向性結合器1の主線路2a,2bの長
さ、結合線路4a,4bの長さはこの動作周波数帯域内
の中心となる周波数における媒質内波長換算で4分の1
波長となるようにし、入出力線路5a,5cの特性イン
ピーダンス値と入出力線路5b,5dの特性インピーダ
ンス値、さらに方向性結合器1の主線路2a,2bの特
性インピーダンス値は等しくなるよう設定している。計
算結果を図22に示す。信号合成回路の広帯域性の評価
項目としては|S31|と|S41|の比である分配振幅比
が所定の範囲となる周波数帯域幅BW1、反射出力の振
幅|S11|が所定の値以下となる周波数帯域幅BW2、
減結合出力の振幅|S21|が所定の値以下となる周波数
帯域幅BW3がある。例えば分配振幅比に対する要求値
を0.3dB以下、反射出力に対する要求値を−20d
B以下、減結合出力に対する要求を−20dB以下とす
ると計算結果の図22からBW1は比帯域で約12%、
BW2及びBW3は比帯域で約11%であることがわか
る。
[0021] The number 12 is a reflected output to the first output terminal 6a in the case of inputting the signal from the first output terminal 6a of the signal combining circuit represented in Figure 14 S 11, the third input and output S 31 and S 41 are coupled output to the terminal 6c and fourth input terminals 6d, S 21 are obtained a decoupling output to the second input terminal 6b. Here, as an example, when a signal having a relative amplitude of 1 is input from the input / output terminal 6a to a signal combining circuit having transmission line parameters as shown in FIG. 21, the relative amplitude of the output signal to each input / output terminal is calculated. . The calculated frequency is the center frequency in the operating frequency band. The lengths of the main lines 2a and 2b and the lengths of the coupling lines 4a and 4b of the directional coupler 1 are the center frequencies in the operating frequency band. At a wavelength conversion in the medium
The wavelength is set so that the characteristic impedance values of the input / output lines 5a and 5c and the characteristic impedance values of the input / output lines 5b and 5d and the characteristic impedance values of the main lines 2a and 2b of the directional coupler 1 are set to be equal. ing. FIG. 22 shows the calculation results. The evaluation items of the wide bandwidth of the signal combining circuit | S 31 | and | S 41 | ratio at which the distribution ratio of amplitudes frequency bandwidth BW1 a predetermined range, the reflected output amplitudes | S 11 | a predetermined value The following frequency bandwidth BW2,
There is a frequency bandwidth BW3 in which the amplitude | S 21 | of the decoupling output is equal to or smaller than a predetermined value. For example, the required value for the distribution amplitude ratio is 0.3 dB or less, and the required value for the reflection output is -20d.
B and below, if the requirement for decoupling output is -20 dB or less, BW1 is about 12% in fractional bandwidth from FIG.
It can be seen that BW2 and BW3 are about 11% in the fractional band.

【0022】[0022]

【発明が解決しようとする課題】従来の信号合成回路は
以上のような構成、動作を示すものであった。信号合成
回路がレーダ、通信機器等に用いられる高周波給電回路
の構成要素として実用性を発揮するには、その動作周波
数帯域が広いことが望まれる。この観点から見ると上記
した従来の信号合成回路は動作周波数帯域が狭いという
課題があった。
The conventional signal synthesizing circuit has the above configuration and operation. In order for a signal synthesizing circuit to be practical as a component of a high-frequency power supply circuit used for radar, communication equipment, and the like, it is desired that the operating frequency band be wide. From this viewpoint, the above-described conventional signal synthesis circuit has a problem that the operating frequency band is narrow.

【0023】この発明は上記のような課題を解消するた
めになされたもので、方向性結合器を構成要素とする信
号合成回路を広帯域化することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to widen the bandwidth of a signal combining circuit including a directional coupler as a component.

【0024】[0024]

【課題を解決するための手段】第1の発明による信号合
成回路は、主線路と同様な特性インピーダンス値を有
し、動作周波数帯域内の中心となる周波数のときに媒質
内波長換算で4分の1波長の長さを有する4本の延長線
路を2本の主線路の入出力端子に接続し、さらに上記4
本の延長線路の入出力端にインダクタとキャパシタを並
列に接続し、一端を接地したLC並列回路を付加した方
向性結合器をその構成要素とするものである。
The signal synthesizing circuit according to the first invention has a characteristic impedance value similar to that of the main line, and when the frequency is the center frequency in the operating frequency band, it is 4 minutes in terms of the wavelength in the medium. Are connected to the input / output terminals of the two main lines.
A directional coupler, in which an inductor and a capacitor are connected in parallel to input / output terminals of the extension line and an LC parallel circuit having one end grounded, is added as a component.

【0025】また、第2の発明による信号合成回路は、
主線路と同様な特性インピーダンス値を有し、動作周波
数帯域内の中心となる周波数のときに媒質内波長換算で
4分の1波長の長さを有する4本の延長線路を2本の主
線路の入出力端子に接続し、上記2本の主線路及び結合
線路の有する特性インピーダンス値に対して低い特性イ
ンピーダンス値を有し、かつ一端を接地した付加線路
を、上記延長線路の入出力端に並列に付加した方向性結
合器をその構成要素とするものである。
Further, the signal synthesizing circuit according to the second invention has
Two extension lines having a characteristic impedance value similar to that of the main line and four extension lines having a length of a quarter wavelength in terms of the wavelength in the medium at the center frequency in the operating frequency band. An additional line having a characteristic impedance value lower than the characteristic impedance values of the two main lines and the coupling line and having one end grounded is connected to the input / output terminal of the extension line. The directional coupler added in parallel is a constituent element.

【0026】[0026]

【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1を示す信号合成回路の構成図である。図に
おいて8a,8b,8c,8dは従来の方向性結合器1
の主線路2a,2bと入出力線路5a,5b,5c,5
dとの間に接続された延長線路であり、延長線路8は2
本の主線路2と同様な特性インピーダンス値を有し、そ
の長さは動作周波数帯域内の中心となる周波数のときに
媒質内波長換算で約4分の1波長である。図において9
は誘電体基板7上にマイクロストリップラインで形成さ
れたインダクタ、10はキャパシタ、11は接地端子で
ある。インダクタ9とキャパシタ10の接続によりLC
並列回路12が構成され、LC並列回路12は延長線路
8a,8b,8c,8dと入出力線路5a,5b,5
c,5dの間から接地端子11に付加される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram of a signal synthesis circuit according to Embodiment 1 of the present invention. In the figure, 8a, 8b, 8c and 8d are conventional directional couplers 1
Main lines 2a, 2b and input / output lines 5a, 5b, 5c, 5
d, and the extension line 8 is 2
It has a characteristic impedance value similar to that of the main line 2, and its length is about a quarter wavelength in terms of the wavelength in the medium at the center frequency in the operating frequency band. 9 in the figure
Is an inductor formed by a microstrip line on the dielectric substrate 7, 10 is a capacitor, and 11 is a ground terminal. LC by connecting inductor 9 and capacitor 10
A parallel circuit 12 is configured, and the LC parallel circuit 12 includes extension lines 8a, 8b, 8c, 8d and input / output lines 5a, 5b, 5
It is added to the ground terminal 11 from between c and 5d.

【0027】次に上記のように構成された信号合成回路
の動作原理を説明する。従来の信号合成回路の説明と同
じく方向性結合器1の2本の主線路2a,2b及び結合
線路4a,4bの特性インピーダンス値をそれぞれ
2,Z1、長さをl2,l1、伝搬定数をγ2,γ1とし、
上記延長線路8a,8b,8c,8dの特性インピーダ
ンス値をZ3、長さをl3、その伝搬定数をγ3とする。
さらに上記LC並列回路12のインダクタ9のインダク
タンスをL、キャパシタ10のキャパシタンスをCとす
ると等価回路表示は図2となる。従来例の等価回路図で
ある図16におけるのと同じくこの回路も面A−Aに関
して対称であり、方向性結合器1を偶モード励振した場
合の散乱行列[Se]と奇モード励振した場合の散乱行
列[So]を用いて数12から散乱行列[S]の値を求
めることができる。図2の等価回路は7つの回路要素の
従属接続で表わすことができる。偶モード励振の場合の
等価回路が図3、奇モード励振の場合の等価回路が図4
である。偶モード励振の場合、図3における回路要素I
のF行列を[FeI]、回路要素IIのF行列を[FII]、
回路要素IIIのF行列を[FIII]、回路要素IVのF行列
を[FIV]とすると方向性結合器1のF行列[Fe]は
上記回路要素のF行列の従属接続として数13で表わさ
れる。
Next, the operation principle of the signal synthesizing circuit configured as described above will be described. Two main line 2a of the same directional coupler 1 and description of the conventional signal synthesizing circuit, 2b and the coupling line 4a, 4b of the characteristic impedance value of each Z 2, Z 1, the length l 2, l 1, Let γ 2 and γ 1 be the propagation constants,
The characteristic impedance value of the extension lines 8a, 8b, 8c, 8d is Z 3 , the length is l 3 , and the propagation constant is γ 3 .
Further, assuming that the inductance of the inductor 9 of the LC parallel circuit 12 is L and the capacitance of the capacitor 10 is C, an equivalent circuit display is shown in FIG. This circuit is also symmetric with respect to the plane AA, as in FIG. 16 which is an equivalent circuit diagram of the conventional example, and the scattering matrix [S e ] when the directional coupler 1 is excited in even mode and the odd mode is excited. The value of the scattering matrix [S] can be obtained from Equation 12 by using the scattering matrix [S o ]. The equivalent circuit of FIG. 2 can be represented by a cascade connection of seven circuit elements. FIG. 3 shows an equivalent circuit in the case of even mode excitation, and FIG. 4 shows an equivalent circuit in the case of odd mode excitation.
It is. In the case of even mode excitation, the circuit element I in FIG.
Is the [F eI ], the F matrix of the circuit element II is [F II ],
Assuming that the F matrix of the circuit element III is [F III ] and the F matrix of the circuit element IV is [F IV ], the F matrix [F e ] of the directional coupler 1 is expressed by the following equation 13 as a cascade connection of the F matrix of the circuit element. Is represented by

【0028】[0028]

【数13】 (Equation 13)

【0029】従来例と同様に回路要素IのF行列
[FeI]は数2で、回路要素IIのF行列[FII]は数3
で表わされる。延長線路8である回路要素IIIのF行列
[FIII]を示す式は数14であり、LC並列回路12
である回路要素IVのF行列を示す式は数15である。
As in the conventional example, the F matrix [F eI ] of the circuit element I is given by equation (2), and the F matrix [F II ] of the circuit element II is given by equation (3).
Is represented by The expression indicating the F matrix [F III ] of the circuit element III that is the extension line 8 is expressed by Expression 14, and the LC parallel circuit 12
The equation indicating the F matrix of the circuit element IV is

【0030】[0030]

【数14】 [Equation 14]

【0031】[0031]

【数15】 (Equation 15)

【0032】数15においてωは角速度であり周波数f
との間には数16の関係がある。
In Equation 15, ω is the angular velocity and the frequency f
There is a relationship of Equation 16 between

【0033】[0033]

【数16】 (Equation 16)

【0034】奇モード励振の場合、図4における回路要
素IのF行列を[FoI]、回路要素IIのF行列を
[FII]、回路要素IIIのF行列を[FIII]とすると方
向性結合器1のF行列[Fo]は上記回路要素のF行列
の従属接続として数17で表わされる。
In the case of the odd mode excitation, if the F matrix of the circuit element I in FIG. 4 is [F oI ], the F matrix of the circuit element II is [F II ], and the F matrix of the circuit element III is [F III ], The F matrix [F o ] of the sexual coupler 1 is expressed by Expression 17 as a cascade connection of the F matrix of the circuit element.

【0035】[0035]

【数17】 [Equation 17]

【0036】従来例と同様に回路要素IのF行列
[FoI]は数5で、回路要素IIのF行列[FII]は数3
で表わされる。延長線路8である回路要素IIIのF行列
[FIII]を示す式及びLC並列回路12である回路要
素IVのF行列を示す式はそれぞれ偶モード励振の場合と
共通で数14及び数15である。
As in the conventional example, the F matrix [F oI ] of the circuit element I is given by equation (5), and the F matrix [F II ] of the circuit element II is given by equation (3).
Is represented by An equation indicating the F matrix [F III ] of the circuit element III which is the extension line 8 and an equation indicating the F matrix of the circuit element IV which is the LC parallel circuit 12 are the same as those in the case of even mode excitation, respectively. is there.

【0037】従来の信号合成回路の周波数応答計算の例
である図22の回路に延長線路8及びLC並列回路12
を回路要素III及び回路要素IVとして追加した、図5に
示す伝送線路パラメータを有する信号合成回路の周波数
応答を数13、数14、数15、数16、数17、数
2、数3、数5、数8、数9、数10、数11、数12
により求めた結果を図6に示す。分配振幅比が0.3d
B以下となる周波数帯域幅BW1は比帯域で約20%、
反射出力振幅が−20dB以下となる周波数帯域幅BW
2は比帯域で約19%、減結合出力振幅が−20dB以
下となる周波数帯域幅BW3は比帯域で約19%であ
り、いずれも従来の信号合成回路における例に比べ大幅
に広帯域化されていることがわかる。
The circuit shown in FIG. 22, which is an example of the frequency response calculation of the conventional signal synthesizing circuit, includes an extension line 8 and an LC parallel circuit 12.
13 is added as a circuit element III and a circuit element IV, and the frequency response of the signal synthesis circuit having the transmission line parameters shown in FIG. 5 is expressed by Expressions 13, 14, 15, 15, 16, 17, 2, 3, 5, Formula 8, Formula 9, Formula 10, Formula 11, Formula 12
FIG. 6 shows the results obtained by the above. 0.3d distribution amplitude ratio
B is less than or equal to about 20% in a bandwidth BW1,
Frequency bandwidth BW at which the reflected output amplitude is -20 dB or less
2 is about 19% in the fractional band, and the frequency bandwidth BW3 in which the decoupling output amplitude is -20 dB or less is about 19% in the fractional band, and both are greatly widened as compared with the example in the conventional signal synthesis circuit. You can see that there is.

【0038】実施の形態2.図7はこの発明の実施の形
態2を示す信号合成回路の構成図である。図において8
a,8b,8c,8dは従来の方向性結合器1の主線路
2a,2bと入出力線路5a,5b,5c,5dとの間
に接続された延長線路であり、延長線路8は2本の主線
路2と同様な特性インピーダンス値を有し、その長さは
動作周波数帯域内の中心となる周波数のときに媒質内波
長換算で約4分の1波長である。図において13は延長
線路8a,8b,8c,8dと入出力線路5a,5b,
5c,5dの間から接地端子11に接地した付加線路で
ある。付加線路13は動作周波数帯域内の中心となる周
波数のときに媒質内波長換算で約4分の1波長前後の適
切な長さを有し、さらに方向性結合器1の2本の主線路
2及び結合線路4に対して低い特性インピーダンス値を
有する。
Embodiment 2 FIG. 7 is a configuration diagram of a signal synthesis circuit according to Embodiment 2 of the present invention. 8 in the figure
Reference numerals a, 8b, 8c and 8d denote extension lines connected between the main lines 2a and 2b of the conventional directional coupler 1 and the input / output lines 5a, 5b, 5c and 5d. And has a characteristic impedance value similar to that of the main line 2, and its length is about a quarter wavelength in terms of the wavelength in the medium at the center frequency in the operating frequency band. In the figure, reference numeral 13 denotes extension lines 8a, 8b, 8c, 8d and input / output lines 5a, 5b,
This is an additional line grounded to the ground terminal 11 from between 5c and 5d. The additional line 13 has an appropriate length of about a quarter wavelength in terms of the wavelength in the medium when the frequency is the center in the operating frequency band, and furthermore, the two main lines 2 of the directional coupler 1. And has a low characteristic impedance value with respect to the coupling line 4.

【0039】次に上記のように構成された信号合成回路
の動作原理を説明する。実施の形態1の説明と同じく方
向性結合器1の2本の主線路2a,2b、結合線路4
a,4b及び延長線路8a,8b,8c,8dの特性イ
ンピーダンス値をそれぞれZ2,Z1,Z3、長さをl2
1,l3、伝搬定数をγ2,γ1,γ3とし、上記付加線
路13の特性インピーダンス値をZ4、長さをl4、その
伝搬定数をγ4とすると等価回路表示は図8となる。従
来例の等価回路図である図16、実施の形態1の等価回
路図である図2におけるのと同じくこの回路も面A−A
に関して対称であり、方向性結合器1を偶モード励振し
た場合の散乱行列[Se]と奇モード励振した場合の散
乱行列[So]を用いて数12から散乱行列[S]の値
を求めることができる。図2の等価回路は7つの回路要
素の従属接続で表わすことができる。偶モード励振の場
合の等価回路が図9、奇モード励振の場合の等価回路が
図10である。偶モード励振の場合、図9における回路
要素IのF行列を[FeI]、回路要素IIのF行列を[F
II]、回路要素IIIのF行列を[FIII]、回路要素Vの
F行列を[FV]とすると方向性結合器1のF行列
[Fe]は上記回路要素のF行列の従属接続として数1
8で表わされる。
Next, the operation principle of the signal synthesizing circuit configured as described above will be described. As in the description of the first embodiment, the two main lines 2a and 2b and the coupling line 4 of the directional coupler 1
a, 4b and the extension lines 8a, 8b, 8c, 8d are Z 2 , Z 1 , Z 3 , the length is l 2 , respectively.
Assuming that l 1 , l 3 and the propagation constants are γ 2 , γ 1 , and γ 3 , the characteristic impedance value of the additional line 13 is Z 4 , the length is l 4 , and the propagation constant is γ 4 , the equivalent circuit is shown in FIG. It becomes 8. This circuit is also a plane AA as in FIG. 16 which is an equivalent circuit diagram of a conventional example and FIG. 2 which is an equivalent circuit diagram of the first embodiment.
And using the scattering matrix [S e ] when the directional coupler 1 is excited in the even mode and the scattering matrix [S o ] when the directional coupler 1 is excited in the odd mode, the value of the scattering matrix [S] is calculated from Expression 12. You can ask. The equivalent circuit of FIG. 2 can be represented by a cascade connection of seven circuit elements. FIG. 9 shows an equivalent circuit in the case of even mode excitation, and FIG. 10 shows an equivalent circuit in the case of odd mode excitation. In the case of even mode excitation, the F matrix of the circuit element I in FIG. 9 is [F eI ] and the F matrix of the circuit element II is [F eI ].
II ], the F matrix of the circuit element III is [F III ], and the F matrix of the circuit element V is [F V ], the F matrix [F e ] of the directional coupler 1 is a cascade connection of the F matrix of the above circuit element. Equation 1
It is represented by 8.

【0040】[0040]

【数18】 (Equation 18)

【0041】従来例と同様に回路要素IのF行列
[FeI]は数2で、回路要素IIのF行列[FII]は数3
で、また実施の形態1と同様に回路要素IIIのF行列
[FIII]は数14で表わされる。付加線路13である
回路要素VのF行列を示す式は数19である。
As in the conventional example, the F matrix [F eI ] of the circuit element I is represented by the following equation (2), and the F matrix [F II ] of the circuit element II is represented by the following equation (3).
Further, similarly to the first embodiment, the F matrix [F III ] of the circuit element III is represented by Expression 14. The expression indicating the F matrix of the circuit element V that is the additional line 13 is represented by Expression 19.

【0042】[0042]

【数19】 [Equation 19]

【0043】奇モード励振の場合、図4における回路要
素IのF行列を[FoI]、回路要素IIのF行列を
[FII]、回路要素IIIのF行列を[FIII]、回路要素
VのF行列を[FV]とすると方向性結合器1のF行列
[Fo]は上記回路要素のF行列の従属接続として数2
0で表わされる。
In the case of the odd mode excitation, the F matrix of the circuit element I in FIG. 4 is [F oI ], the F matrix of the circuit element II is [F II ], the F matrix of the circuit element III is [F III ], and the circuit element is Assuming that the F matrix of V is [F V ], the F matrix [F o ] of the directional coupler 1 is expressed by the following equation 2 as a cascade connection of the F matrix of the above circuit element.
It is represented by 0.

【0044】[0044]

【数20】 (Equation 20)

【0045】従来例と同様に回路要素IのF行列
[FoI]は数5で、回路要素IIのF行列[FII]は数3
で、また実施の形態1と同様に回路要素IIIのF行列
[FIII]は数14で、付加線路13である回路要素V
のF行列[FV]は数19で表わされる。
As in the conventional example, the F matrix [F oI ] of the circuit element I is given by equation (5), and the F matrix [F II ] of the circuit element II is given by equation (3).
Further, similarly to the first embodiment, the F matrix [F III ] of the circuit element III is represented by the following equation (14), and the circuit element V
The F matrix [F V ] is represented by Expression 19.

【0046】実施の形態1の周波数応答計算の例である
図5の回路からLC並列回路12の回路要素IVを取り外
し、その回路要素IVに代わり付加線路13を回路要素V
として追加した、図11に示す伝送線路パラメータを有
する信号合成回路の周波数応答を数18、数19、数2
0、数2、数3、数5、数8、数9、数10、数11、
数12、数14により求めた結果を図12に示す。分配
振幅比が0.3dB以下となる周波数帯域幅BW1は比
帯域で約24%、反射出力振幅が−20dB以下となる
周波数帯域幅BW2は比帯域で約16%、減結合出力振
幅が−20dB以下となる周波数帯域幅BW3は比帯域
で約16%であり、いずれも従来の信号合成回路におけ
る例に比べ大幅に広帯域化されていることがわかる。
The circuit element IV of the LC parallel circuit 12 is removed from the circuit of FIG. 5, which is an example of the frequency response calculation of the first embodiment, and the additional line 13 is replaced with the circuit element V in place of the circuit element IV.
The frequency response of the signal synthesis circuit having the transmission line parameters shown in FIG.
0, Equation 2, Equation 3, Equation 5, Equation 8, Equation 9, Equation 10, Equation 11,
FIG. 12 shows the results obtained from Equations 12 and 14. The frequency bandwidth BW1 in which the distribution amplitude ratio is 0.3 dB or less is about 24% in the fractional band, the frequency bandwidth BW2 in which the reflection output amplitude is -20 dB or less is about 16% in the fractional band, and the decoupling output amplitude is -20 dB. The following frequency bandwidth BW3 is about 16% in the fractional band, and it can be seen that the bandwidth is significantly widened as compared with the example of the conventional signal synthesis circuit.

【0047】さらに実施の形態1、2においては誘電体
基板7上に構成された信号合成回路の場合について示し
たが、2本の主線路と2本の結合線路及び長さが約4分
の1波長の低いインピーダンス線路等の付加線路を構成
できれば、誘電体基板を使用しない、例えば矩形同軸線
路等の伝送線路形態を取るものであってもよい。
Further, in the first and second embodiments, the case of the signal synthesizing circuit formed on the dielectric substrate 7 has been described. However, the two main lines, the two coupling lines, and the length are approximately four quarters. If an additional line such as an impedance line having a low wavelength of one wavelength can be formed, a transmission line form such as a rectangular coaxial line that does not use a dielectric substrate may be used.

【0048】[0048]

【発明の効果】第1の発明によれば、方向性結合器の主
線路と同様な特性インピーダンス値を有し、かつ長さが
約4分の1波長の延長線路と、分布定数回路素子として
構成できるインダクタとキャパシタを並列に接続したL
C並列回路を方向性結合器の各端子に付加したことによ
り方向性結合器を広帯域化することができるという効果
がある。
According to the first aspect, an extended line having a characteristic impedance value similar to that of the main line of the directional coupler and having a length of about a quarter wavelength and a distributed constant circuit element are provided. L that connects a configurable inductor and capacitor in parallel
By adding the C parallel circuit to each terminal of the directional coupler, there is an effect that the bandwidth of the directional coupler can be widened.

【0049】また、第2の発明によれば、方向性結合器
の主線路と同様な特性インピーダンス値を有し、かつ長
さが約4分の1波長の延長線路と、約4分の1波長前後
の適切な長さの低いインピーダンス値を有する付加線路
を方向性結合器の各端子に付加したことにより、第1の
発明と同様な効果が得られ、さらに第1の発明による信
号合成回路より部品点数を削減し、小型化できるという
効果がある。
According to the second invention, an extension line having a characteristic impedance value similar to that of the main line of the directional coupler and having a length of about a quarter wavelength, and The same effect as that of the first invention is obtained by adding an additional line having an appropriate length and a low impedance value around the wavelength to each terminal of the directional coupler, and furthermore, a signal combining circuit according to the first invention There is an effect that the number of parts can be further reduced and the size can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明による信号合成回路の実施の形態1
を示す図である。
FIG. 1 is a first embodiment of a signal synthesis circuit according to the present invention;
FIG.

【図2】 この発明による信号合成回路の実施の形態1
の構成要素である方向性結合器の等価回路を示す図であ
る。
FIG. 2 is a first embodiment of a signal synthesis circuit according to the present invention;
FIG. 3 is a diagram showing an equivalent circuit of a directional coupler which is a component of FIG.

【図3】 この発明による信号合成回路の実施の形態1
の構成要素である方向性結合器を偶モード励振した場合
の等価回路を示す図である。
FIG. 3 is a first embodiment of a signal synthesis circuit according to the present invention;
FIG. 6 is a diagram showing an equivalent circuit when a directional coupler, which is a component of the above, is excited in even mode.

【図4】 この発明による信号合成回路の実施の形態1
の構成要素である方向性結合器を奇モード励振した場合
の等価回路を示す図である。
FIG. 4 is a first embodiment of a signal synthesis circuit according to the present invention;
FIG. 5 is a diagram showing an equivalent circuit when a directional coupler, which is a component of the above, is excited in an odd mode.

【図5】 この発明による信号合成回路の実施の形態1
の周波数応答計算例に用いる伝送線路パラメータを示す
図である。
FIG. 5 is a first embodiment of a signal synthesis circuit according to the present invention;
FIG. 6 is a diagram showing transmission line parameters used in the example of frequency response calculation of FIG.

【図6】 この発明による信号合成回路の実施の形態1
の周波数応答計算例を示す図である。
FIG. 6 is a first embodiment of a signal synthesis circuit according to the present invention;
FIG. 5 is a diagram showing an example of frequency response calculation of FIG.

【図7】 この発明による信号合成回路の実施の形態2
を示す図である。
FIG. 7 is a second embodiment of a signal synthesis circuit according to the present invention;
FIG.

【図8】 この発明による信号合成回路の実施の形態2
の構成要素である方向性結合器の等価回路を示す図であ
る。
FIG. 8 is a second embodiment of a signal synthesis circuit according to the present invention;
FIG. 3 is a diagram showing an equivalent circuit of a directional coupler which is a component of FIG.

【図9】 この発明による信号合成回路の実施の形態2
の構成要素である方向性結合器を偶モード励振した場合
の等価回路を示す図である。
FIG. 9 is a second embodiment of a signal synthesis circuit according to the present invention;
FIG. 6 is a diagram showing an equivalent circuit when a directional coupler, which is a component of the above, is excited in even mode.

【図10】 この発明による信号合成回路の実施の形態
2の構成要素である方向性結合器を奇モード励振した場
合の等価回路を示す図である。
FIG. 10 is a diagram showing an equivalent circuit when a directional coupler, which is a component of the signal combining circuit according to the second embodiment of the present invention, is excited in an odd mode.

【図11】 この発明による信号合成回路の実施の形態
2の周波数応答計算例に用いる伝送線路パラメータを示
す図である。
FIG. 11 is a diagram illustrating transmission line parameters used in a frequency response calculation example of the signal synthesis circuit according to the second embodiment of the present invention;

【図12】 この発明による信号合成回路の実施の形態
2の周波数応答計算例を示す図である。
FIG. 12 is a diagram showing a frequency response calculation example of the second embodiment of the signal synthesis circuit according to the present invention;

【図13】 従来の信号合成回路を示す構成図である。FIG. 13 is a configuration diagram showing a conventional signal synthesis circuit.

【図14】 従来の信号合成回路の構成要素である方向
性結合器の動作原理を示す図である。
FIG. 14 is a diagram illustrating the operation principle of a directional coupler that is a component of a conventional signal synthesis circuit.

【図15】 従来の信号合成回路を4端子対回路網とし
て表現した図である。
FIG. 15 is a diagram illustrating a conventional signal combining circuit as a four-port network.

【図16】 従来の信号合成回路の構成要素である方向
性結合器の等価回路を示す図である。
FIG. 16 is a diagram showing an equivalent circuit of a directional coupler that is a component of a conventional signal synthesis circuit.

【図17】 従来の信号合成回路の構成要素である方向
性結合器を偶モード励振した場合の等価回路を示す図で
ある。
FIG. 17 is a diagram showing an equivalent circuit when a directional coupler, which is a component of a conventional signal synthesis circuit, is excited in even mode.

【図18】 従来の信号合成回路の構成要素である方向
性結合器を偶モード励振した場合の等価回路を示す図で
ある。
FIG. 18 is a diagram showing an equivalent circuit when a directional coupler, which is a component of a conventional signal synthesis circuit, is excited in even mode.

【図19】 従来の信号合成回路の構成要素である方向
性結合器を奇モード励振した場合の等価回路を示す図で
ある。
FIG. 19 is a diagram showing an equivalent circuit when a directional coupler, which is a component of a conventional signal synthesis circuit, is excited in an odd mode.

【図20】 従来の信号合成回路の構成要素である方向
性結合器を奇モード励振した場合の等価回路を示す図で
ある。
FIG. 20 is a diagram illustrating an equivalent circuit when a directional coupler, which is a component of a conventional signal synthesis circuit, is excited in an odd mode.

【図21】 従来の信号合成回路の周波数応答計算例に
用いる伝送線路パラメータを示す図である。
FIG. 21 is a diagram illustrating transmission line parameters used in a frequency response calculation example of a conventional signal synthesis circuit.

【図22】 従来の信号合成回路の周波数応答計算例を
示す図である。
FIG. 22 is a diagram illustrating a frequency response calculation example of a conventional signal synthesis circuit.

【符号の説明】[Explanation of symbols]

1 方向性結合器、2 方向性結合器の主線路、3 方
向性結合器の主線路の入出力端子、4 方向性結合器の
結合線路、5 入出力線路、6 入出力端子、7 誘電
体基板、8 延長線路、9 インダクタ、10 キャパ
シタ、11 接地端子、12 LC並列回路、13 付
加線路。
Reference Signs List 1 directional coupler, 2 directional coupler main line, 3 directional coupler main line input / output terminal, 4 directional coupler coupling line, 5 input / output line, 6 input / output terminal, 7 dielectric Substrate, 8 extension line, 9 inductor, 10 capacitor, 11 ground terminal, 12 LC parallel circuit, 13 additional line.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定の特性インピーダンス値を有し、動
作周波数帯域内の中心となる周波数のときに4分の1波
長の奇数倍の長さを有する2本の主線路と、上記2本の
主線路の4つの入出力端に接続され、かつ上記2本の主
線路と同様な特性インピーダンス値を有する4本の入出
力線路と、上記2本の主線路と直交し、かつ上記2本の
主線路と異なる特性インピーダンス値を有し、動作周波
数帯域内の中心となる周波数のときに4分の1波長の奇
数倍の長さを有する2本の結合線路から構成される信号
合成回路において、上記2本の主線路と同様な特性イン
ピーダンス値を有し、動作周波数帯域内の中心となる周
波数のときに4分の1波長の長さを有する延長線路を上
記2本の主線路の4つの入出力端に各々付加するととも
に、インダクタとキャパシタを並列に接続したLC並列
回路の一端を接地し、他端を上記延長線路の入出力端に
各々付加したことを特徴とする信号合成回路。
1. Two main lines having a predetermined characteristic impedance value and having a length that is an odd multiple of a quarter wavelength at a center frequency in an operating frequency band; Four input / output lines connected to the four input / output terminals of the main line and having the same characteristic impedance values as the two main lines, and two input / output lines orthogonal to the two main lines and In a signal combining circuit having two characteristic lines having characteristic impedance values different from those of the main line and having a length of an odd multiple of a quarter wavelength at the center frequency in the operating frequency band, An extension line having a characteristic impedance value similar to those of the two main lines and having a length of a quarter wavelength at the center frequency in the operating frequency band is used for the four main lines. In addition to the input and output terminals, A signal synthesizing circuit, wherein one end of an LC parallel circuit in which capacitors are connected in parallel is grounded, and the other end is added to each of the input / output terminals of the extension line.
【請求項2】 所定の特性インピーダンス値を有し、動
作周波数帯域内の中心となる周波数のときに4分の1波
長の奇数倍の長さを有する2本の主線路と、上記2本の
主線路の4つの入出力端に接続され、かつ上記2本の主
線路と同様な特性インピーダンス値を有する4本の入出
力線路と、上記2本の主線路と直交し、かつ上記2本の
主線路と異なる特性インピーダンス値を有し、動作周波
数帯域内の中心となる周波数のときに4分の1波長の奇
数倍の長さを有する2本の結合線路から構成される信号
合成回路において、上記2本の主線路と同様な特性イン
ピーダンス値を有し、動作周波数帯域内の中心となる周
波数のときに4分の1波長の長さを有する延長線路を上
記2本の主線路の4つの入出力端に各々付加するととも
に、上記2本の主線路及び結合線路の有する特性インピ
ーダンス値に対して低い特性インピーダンス値を有し、
一端を接地した線路を上記延長線路の入出力端に並列に
各々付加したことを特徴とする信号合成回路。
2. A main line having a predetermined characteristic impedance value and having a length of an odd multiple of a quarter wavelength at a center frequency in an operating frequency band; Four input / output lines connected to the four input / output terminals of the main line and having the same characteristic impedance values as the two main lines, and two input / output lines orthogonal to the two main lines and In a signal combining circuit having two characteristic lines having characteristic impedance values different from those of the main line and having a length of an odd multiple of a quarter wavelength at the center frequency in the operating frequency band, An extension line having a characteristic impedance value similar to those of the two main lines and having a length of a quarter wavelength at the center frequency in the operating frequency band is used for the four main lines. In addition to the input and output terminals, the two main lines Having a lower characteristic impedance value than the characteristic impedance value of the circuit and the coupling line,
A signal synthesizing circuit, wherein a line whose one end is grounded is added in parallel to an input / output end of the extension line.
JP11006183A 1999-01-13 1999-01-13 Signal composing circuit Pending JP2000209007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11006183A JP2000209007A (en) 1999-01-13 1999-01-13 Signal composing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11006183A JP2000209007A (en) 1999-01-13 1999-01-13 Signal composing circuit

Publications (1)

Publication Number Publication Date
JP2000209007A true JP2000209007A (en) 2000-07-28

Family

ID=11631448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11006183A Pending JP2000209007A (en) 1999-01-13 1999-01-13 Signal composing circuit

Country Status (1)

Country Link
JP (1) JP2000209007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538635B2 (en) 2005-04-11 2009-05-26 Ntt Docomo, Inc. Quadrature hybrid circuit having variable reactances at the four ports thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7538635B2 (en) 2005-04-11 2009-05-26 Ntt Docomo, Inc. Quadrature hybrid circuit having variable reactances at the four ports thereof

Similar Documents

Publication Publication Date Title
US8305283B2 (en) Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
CN110085959B (en) Miniaturized harmonic suppression equal power divider based on H-shaped defected ground artificial transmission line
US11201381B1 (en) Corporate power splitter with integrated filtering
US20070075802A1 (en) Wide-bandwidth balanced transformer
CN104953225A (en) Balance-type branch line coupler with filter function
CN111786068B (en) Broadband directional coupler with harmonic suppression function
US7541887B2 (en) Balun
Ahn et al. Three-port 3-dB power divider terminated by different impedances and its application to MMICs
US6292070B1 (en) Balun formed from symmetrical couplers and method for making same
CN112073023A (en) Novel broadband high-balance balun
CN110247145B (en) Bandwidth-adjustable broadband filtering balun with in-band good matching and isolation
US9947984B2 (en) Power divider and power combiner
US20070120622A1 (en) Integrated power combiner/splitter
JP3766791B2 (en) High frequency filter circuit and high frequency communication device
US6121853A (en) Broadband coupled-line power combiner/divider
US5570069A (en) Broadband directional coupler
JP3823390B2 (en) Signal synthesis circuit
US20150137907A1 (en) Directional coupler having high isolation
JP2000209007A (en) Signal composing circuit
JP2008054174A (en) 90-degree hybrid circuit
JPH08265048A (en) Mixer circuit
JP2005101946A (en) Power divider/combiner
JP3430416B2 (en) Power distributor
US11563261B2 (en) Four-port directional coupler having a main line and two secondary lines, where the two secondary lines are coupled to compensation circuits with attenuation regulator circuits
WO2023216666A1 (en) Balun and differential amplifier