JP2000208411A - Exposure device and exposure method wherein it is used - Google Patents

Exposure device and exposure method wherein it is used

Info

Publication number
JP2000208411A
JP2000208411A JP2000000163A JP2000000163A JP2000208411A JP 2000208411 A JP2000208411 A JP 2000208411A JP 2000000163 A JP2000000163 A JP 2000000163A JP 2000000163 A JP2000000163 A JP 2000000163A JP 2000208411 A JP2000208411 A JP 2000208411A
Authority
JP
Japan
Prior art keywords
wafer
exposure
reflected light
film
reflection light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000000163A
Other languages
Japanese (ja)
Inventor
Taek-Soo Son
澤 洙 孫
Taishin Boku
泰 信 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2000208411A publication Critical patent/JP2000208411A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70583Speckle reduction, e.g. coherence control or amplitude/wavefront splitting

Abstract

PROBLEM TO BE SOLVED: To make a line width of a photoresist pattern uniform regardless of a thickness of a lower film by adjusting an exposure amount by an analyzed reflection light distribution map by a reflection light analyzer wherein a reflection light distribution map can be obtained by analyzing reflection light emitted from a reflection light detector. SOLUTION: The device has a reflection light detector 13 which can detect reflection light (b) which is formed by reflection of light cast on a wafer 3 from a lower film formed in a lower part of a photoresist film through a lens 11 and a mask 9 and reflection light detected by the reflection light detector 13 is analyzed by a reflection light analyzer 15. An exposure adjuster 17 which is connected to the reflection light analyzer 15 and adjusts exposure energy by using a shutter 19 by reflection light analyzed by the reflection light analyzer 15 is provided. The shutter 19 is connected to an exposure adjuster 7. Thereby, exposure energy can be adjusted according to reflectance from each section of a wafer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子の製造装
置及びその利用方法に係り、より詳しくは半導体素子の
写真工程に用いられる露光装置及びこれを用いた露光方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing a semiconductor device and a method of using the same, and more particularly, to an exposure apparatus used in a photographic process of a semiconductor element and an exposure method using the same.

【0002】[0002]

【従来の技術】一般に、半導体素子は薄膜形成工程、拡
散工程、イオン注入工程、写真工程及び食刻工程を反復
して作られる。前記薄膜形成工程はウェハ上に薄膜を形
成する工程であり、拡散工程はウェハ表面に注入された
不純物イオンをウェハ内部へ拡散させる工程であり、前
記イオン注入工程はウェハ表面に不純物イオンを注入す
る工程である。そして、前記写真工程はフォトレジスト
膜が形成されたウェハ上に露光装置及びマスクを用いて
光をフォトレジスト膜に選択的に照射した後現像してウ
ェハ上に微細なフォトレジストパターンを作る工程であ
り、前記食刻工程は前記微細なフォトレジストパターン
により下部膜を食刻する工程である。
2. Description of the Related Art In general, a semiconductor device is manufactured by repeating a thin film forming process, a diffusion process, an ion implantation process, a photographing process and an etching process. The thin film forming step is a step of forming a thin film on the wafer, the diffusion step is a step of diffusing impurity ions implanted into the wafer surface into the inside of the wafer, and the ion implanting step is a step of implanting impurity ions into the wafer surface. It is a process. Then, the photographic process is a process of selectively irradiating the photoresist film with light using an exposure device and a mask on the wafer on which the photoresist film is formed, and developing the photoresist film to form a fine photoresist pattern on the wafer. The etching process is a process of etching a lower film using the fine photoresist pattern.

【0003】この中で前記写真工程に用いられる露光装
置は半導体素子が高集積化されることによりフォトレジ
ストパターンの線幅を狭く作ることが要求されてその重
要性が日増しに増加しつつある。前記フォトレジストパ
ターン線幅を決定する要因には露光装置の露光エネルギ
(露光量)、露光時のウェハとレンズとの距離、マスク線
幅、レンズの開口率、フォトレジスト膜下部に形成され
た下部膜の厚さ、フォトレジスト膜の厚さ等が挙げられ
る。
Among these, the exposure apparatus used in the photographic process is required to make the line width of the photoresist pattern narrower due to the higher integration of semiconductor elements, and the importance thereof is increasing day by day. . Factors that determine the photoresist pattern line width include the exposure energy of the exposure apparatus.
(Exposure amount), the distance between the wafer and the lens at the time of exposure, the mask line width, the aperture ratio of the lens, the thickness of the lower film formed below the photoresist film, the thickness of the photoresist film, and the like.

【0004】[0004]

【発明が解決しようとする課題】このような要因の中で
下部膜の厚さを除外した全ての要因は露光装置を用いる
写真工程に起因するものであり変化がほとんどない定数
と見られる。しかし、下部膜の厚さは写真工程に依らず
に薄膜形成工程に依存するので下部膜の厚さはウェハ内
で及びウェハ別に大きな偏差を有している。これによ
り、同一の露光装置及び露光条件で写真工程を実施して
もフォトレジスト膜下部に形成された下部膜の厚さが異
なるのでフォトレジストパターンの線幅を均一にできな
い。
Among these factors, all factors except the thickness of the lower film are caused by a photographic process using an exposure apparatus, and are considered to be constants with almost no change. However, since the thickness of the lower film depends on the thin film forming process without depending on the photographic process, the thickness of the lower film has a large deviation within a wafer and for each wafer. As a result, even if a photographic process is performed under the same exposure apparatus and exposure conditions, the thickness of the lower film formed under the photoresist film is different, so that the line width of the photoresist pattern cannot be made uniform.

【0005】本発明の目的は下部膜の厚さと関係なしに
フォトレジストパターンの線幅を均一にできる露光装置
を提供することにある。又、本発明の他の目的は前記露
光装置を用いた露光方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an exposure apparatus which can make the line width of a photoresist pattern uniform regardless of the thickness of a lower film. Another object of the present invention is to provide an exposure method using the exposure apparatus.

【0006】[0006]

【課題を解決するための手段】本発明の露光装置は、フ
ォトレジスト膜が形成されたウェハをX軸及びY軸へ動か
せる支持台と、前記ウェハに選択的に光を透過させるマ
スクと、光がマスクに伝達できる光伝達ユニットとを備
える。さらに、本発明の露光装置は、前記フォトレジス
ト膜の下部に形成された下部膜により反射された反射光
を検出できる反射光検出器と、この反射光検出器から出
る反射光を分析して反射光分布マップを得られる反射光
分析装置と、この反射光分析装置により分析された反射
光分布マップにより露光量を調節する露光調節器とを含
む。前記下部膜は窒化膜又は酸化膜と窒化膜との複合膜
で構成でき、前記支持台はモータを用いてX軸及びY軸へ
移動できるように構成できる。
According to the present invention, there is provided an exposure apparatus comprising: a support for moving a wafer on which a photoresist film is formed in X and Y axes; a mask for selectively transmitting light to the wafer; And a light transmission unit capable of transmitting the light to the mask. The exposure apparatus of the present invention further includes a reflected light detector capable of detecting reflected light reflected by a lower film formed below the photoresist film, and analyzing reflected light emitted from the reflected light detector to reflect light. The apparatus includes a reflected light analyzer that can obtain a light distribution map, and an exposure controller that adjusts an exposure amount based on the reflected light distribution map analyzed by the reflected light analyzer. The lower film may be formed of a nitride film or a composite film of an oxide film and a nitride film, and the support may be configured to move in the X axis and the Y axis using a motor.

【0007】本発明の露光方法は、所望のマスクを反射
光検出器が含まれた露光装置に設けた後、前記露光装置
の支持台にウェハロット中のフォトレジストが形成され
たテストウェハをローディングする段階を含む。その
後、前記テストウェハをX軸及びY軸に区画露光して露光
時前記フォトレジスト下部に形成された下部膜により反
射された反射光を反射光検出器で検出した後、前記反射
光検出器で検出された反射光を反射光分析装置で分析し
て前記テストウェハの反射光分布マップを得る。続い
て、前記テストウェハをアンローディングした後、前記
支持台にウェハロット中の一番目のウェハをローディン
グする。その後、前記テストウェハで分析された反射光
分布マップにより露光量を調節しながら前記一番目のウ
ェハをX軸及びY軸に区画露光する。その後、前記一番目
のウェハをアンローディングさせた後、前記ウェハロッ
ト中の二番目のウェハから最後のウェハまでに対して前
記一番目のウェハと同一に露光を実施する。前記下部膜
は窒化膜又は酸化膜と窒化膜との複合膜で形成でき、前
記露光量の調節は前記反射光分析装置に連結された露光
調節器とシャッタを用いて遂行できる。
According to the exposure method of the present invention, after a desired mask is provided in an exposure apparatus including a reflected light detector, a test wafer on which a photoresist in a wafer lot is formed is loaded on a support of the exposure apparatus. Including stages. Thereafter, the test wafer is subjected to section exposure on the X axis and the Y axis, and at the time of exposure, light reflected by a lower film formed under the photoresist is detected by a reflected light detector, and thereafter, the reflected light is detected by the reflected light detector. The detected reflected light is analyzed by a reflected light analyzer to obtain a reflected light distribution map of the test wafer. Subsequently, after unloading the test wafer, the first wafer in the wafer lot is loaded on the support. Then, the first wafer is sectioned on the X-axis and the Y-axis while adjusting the exposure amount according to the reflected light distribution map analyzed on the test wafer. Then, after unloading the first wafer, the same exposure as that of the first wafer is performed on the second wafer to the last wafer in the wafer lot. The lower layer may be formed of a nitride layer or a composite layer of an oxide layer and a nitride layer, and the exposure amount may be controlled using an exposure controller and a shutter connected to the reflection light analyzer.

【0008】本発明の露光装置および露光方法は、下部
膜で反射された反射光を検出してこれに基づき露光量を
調節することにより下部膜により臨界寸法(critical d
imension)が変わる現象を改善できる。
The exposure apparatus and the exposure method according to the present invention detect the light reflected by the lower film and adjust the amount of exposure based on the detected light, thereby allowing the lower film to have a critical dimension.
imension) can be improved.

【0009】[0009]

【発明の実施の形態】以下、添付した図面を参照して本
発明の望ましい実施の形態を詳細に説明する。図1は反
射光検出器を含む本発明の露光装置の実施の形態を示し
た概略図であり、図2は前記図1の露光装置の反射光分
析装置で分析した反射光分布マップ(map)を示した図面
である。本発明の露光装置はその上にフォトレジスト膜
が形成されたウェハ3を支える支持台1を備える。モー
タ2は前記支持台1をX軸及びY軸へ動かす。前記支持台
1の上部には光源5から出た光を反射及び透過させ得る
ハーフミラー7が設けられており、このハーフミラー7
の下部には該ハーフミラー7で反射される光を選択的に
通過させるマスク9が設けられており、このマスク9の
下部には該マスク9から選択的に通過された光を前記ウ
ェハ3に照射するレンズ11を備える。図1で、ハーフ
ミラー7及びレンズ11等は光をマスク9を介して伝達
する光伝達ユニット(optical delivery unit)の役割
を果たし、参照番号aは入射光を示し、参照番号bは反射
光を示す。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic view showing an embodiment of an exposure apparatus of the present invention including a reflected light detector. FIG. 2 is a reflected light distribution map analyzed by a reflected light analyzer of the exposure apparatus of FIG. FIG. The exposure apparatus of the present invention includes a support 1 for supporting a wafer 3 on which a photoresist film is formed. The motor 2 moves the support 1 in the X and Y axes. A half mirror 7 capable of reflecting and transmitting the light emitted from the light source 5 is provided above the support base 1.
A mask 9 for selectively transmitting the light reflected by the half mirror 7 is provided below the mask 9, and the light selectively transmitted from the mask 9 is provided below the mask 9 to the wafer 3. A lens 11 for irradiation is provided. In FIG. 1, the half mirror 7 and the lens 11 and the like serve as an optical delivery unit for transmitting light through the mask 9, reference numeral a indicates incident light, and reference numeral b indicates reflected light. Show.

【0010】また、本発明の露光装置は前記ハーフミラ
ー7の上部に位置して反射光b、すなわち前記ウェハ3
に照射された光が前記フォトレジスト膜の下部に形成さ
れた下部膜より反射した反射光bを前記レンズ11及び
前記マスク9を通じて検出できる反射光検出器13と、
この反射光検出器13で検出された反射光を分析できる
反射光分析装置15と、この反射光分析装置15に連結
され、前記反射光分析装置15で分析された反射光によ
りシャッタ19を用いて露光エネルギを調節する露光調
節器17とを備える。前記シャッタ19は露光調節器1
7に連結されている。これにより、本発明の露光装置を
用いる場合、図2に示すウェハの各区画からの反射率に
従って露光エネルギを調節できる。
Further, the exposure apparatus of the present invention is located above the half mirror 7 so that the reflected light b, ie, the wafer 3
A reflected light detector 13 that can detect, through the lens 11 and the mask 9, reflected light b in which light applied to the substrate is reflected from a lower film formed below the photoresist film;
A reflected light analyzer 15 that can analyze the reflected light detected by the reflected light detector 13; and a shutter 19 that is coupled to the reflected light analyzer 15 and that uses the reflected light analyzed by the reflected light analyzer 15 to use a shutter 19. And an exposure controller 17 for adjusting the exposure energy. The shutter 19 is an exposure controller 1
7. Thus, when the exposure apparatus of the present invention is used, the exposure energy can be adjusted according to the reflectance from each section of the wafer shown in FIG.

【0011】結局、本発明の露光装置は図2に示したよ
うな下部膜による光の反射率を考慮して前記露光調節器
17で前記ウェハ3に照射される光エネルギを調節して
露光が実施できる。即ち、図2に示した反射率が0.5%
の場合より反射率が0.6%の場合の露光エネルギを大き
くして露光を実施してフォトレジスト膜に入射される光
量を同一にする。その結果、下部膜の厚さに関係なくウ
ェハ上に形成されるフォトレジストパターンの線幅を均
一にできる。
After all, the exposure apparatus of the present invention adjusts the light energy applied to the wafer 3 by the exposure controller 17 in consideration of the light reflectance of the lower film as shown in FIG. Can be implemented. That is, the reflectance shown in FIG.
Exposure is performed by increasing the exposure energy when the reflectivity is 0.6% as compared with the case (1), and the amount of light incident on the photoresist film is made the same. As a result, the line width of the photoresist pattern formed on the wafer can be made uniform regardless of the thickness of the lower film.

【0012】図3は本発明に係る露光装置で露光を実施
するために準備したウェハを示した図面であり、図4は
図3の窒化膜23の厚さによる反射率を示した図面であ
り、図5は図3の窒化膜23の厚さによる臨界寸法を示
したグラフである。具体的に、本発明の露光装置に適用
されたウェハは図3に示されるようにシリコン基板21
上に下部膜として窒化膜23が形成されており、この窒
化膜23上にはフォトレジスト膜25が形成されてい
る。このように準備されたウェハに対して露光を遂行し
た時は図4に示すように窒化膜23の厚さにより反射率
が異なって示され、図5に示すように窒化膜の厚さ(□
(四角形)で表示)により臨界寸法(○(円形)で表示)が変
化する。即ち、下部膜の窒化膜23の厚さにより臨界寸
法が一定した関係を有して多様に変化する。したがっ
て、図1に示した本発明の露光装置を用いて前記図4に
示した反射率により露光エネルギ(露光量)を調整すると
ウェハ上に均一にフォトレジストパターンが得られる。
FIG. 3 is a view showing a wafer prepared for performing exposure by the exposure apparatus according to the present invention, and FIG. 4 is a view showing the reflectance depending on the thickness of the nitride film 23 in FIG. FIG. 5 is a graph showing critical dimensions depending on the thickness of the nitride film 23 of FIG. Specifically, the wafer applied to the exposure apparatus of the present invention is a silicon substrate 21 as shown in FIG.
A nitride film 23 is formed thereon as a lower film, and a photoresist film 25 is formed on the nitride film 23. When exposure is performed on the wafer prepared as described above, the reflectivity varies depending on the thickness of the nitride film 23 as shown in FIG. 4, and as shown in FIG.
(Represented by a square) changes the critical dimension (represented by a circle). That is, the critical dimension varies variously with a constant relationship depending on the thickness of the lower nitride film 23. Therefore, when the exposure energy (exposure amount) is adjusted by the reflectance shown in FIG. 4 using the exposure apparatus of the present invention shown in FIG. 1, a photoresist pattern can be uniformly obtained on the wafer.

【0013】図6は本発明に係る露光装置で露光を実施
するために準備した他のウェハを示した図面であり、図
7は図6の酸化膜35及び窒化膜37の厚さによる反射
率を示した図面であり、図8は適正線幅を得るための図
6の酸化膜35の厚さによる露光エネルギを示した図面
である。具体的に、本発明の露光装置に適用されたウェ
ハは図6に示されるようにシリコン基板31上に下部膜
としてタングステン膜33、酸化膜35及び窒化膜37
が形成されており、窒化膜37上にはフォトレジスト膜
39が形成されている。本具体例ではタングステン膜3
3が形成されているが、形成しない場合もある。このよ
うに準備されたウェハに対して露光を遂行した時は図7
に示すように窒化膜37及び酸化膜35の厚さにより反
射率に相違が現れる。例えば、窒化膜37が250Åの
場合、酸化膜35の厚さを1850Åから1950Åま
で変化させれば、反射率は0.1から0.17へ上昇す
る。図7で、参照番号70,72,74,76は各々酸化
膜35の厚さが1850Å、1900Å、1950Å及
び2000Åの場合の反射率を示す。従って、本発明の
露光装置を用いて前記反射率に従って露光エネルギを変
化させなければならない。即ち、適正線幅値を得るため
には露光エネルギが変更されなければならない。例え
ば、窒化膜37が250Åの場合、酸化膜35の厚さが
1850Åから1950Åまで増加すれば増加するほど
反射率が大きくなるので適正線幅値を得るためには図8
に示したように露光エネルギを増加させなければならな
い。図8で参照番号82は露光エネルギを示し、参照番
号84は酸化膜35の厚さを示す。
FIG. 6 is a view showing another wafer prepared for performing exposure by the exposure apparatus according to the present invention, and FIG. 7 is a view showing the reflectance depending on the thickness of the oxide film 35 and the nitride film 37 in FIG. FIG. 8 is a diagram showing exposure energy depending on the thickness of the oxide film 35 of FIG. 6 for obtaining an appropriate line width. Specifically, as shown in FIG. 6, a wafer applied to the exposure apparatus of the present invention has a tungsten film 33, an oxide film 35, and a nitride film 37 as lower films on a silicon substrate 31.
Is formed, and a photoresist film 39 is formed on the nitride film 37. In this specific example, the tungsten film 3
3 is formed, but may not be formed. When exposure is performed on the wafer prepared as described above, FIG.
As shown in the figure, the reflectivity differs depending on the thickness of the nitride film 37 and the oxide film 35. For example, when the thickness of the nitride film 37 is 250 ° and the thickness of the oxide film 35 is changed from 1850 ° to 1950 °, the reflectance increases from 0.1 to 0.17. In FIG. 7, reference numerals 70, 72, 74, and 76 indicate the reflectivity when the thickness of the oxide film 35 is 1850, 1900, 1950, and 2000, respectively. Therefore, it is necessary to change the exposure energy according to the reflectance using the exposure apparatus of the present invention. That is, the exposure energy must be changed to obtain an appropriate line width value. For example, when the thickness of the nitride film 37 is 250 °, the reflectance increases as the thickness of the oxide film 35 increases from 1850 ° to 1950 °.
The exposure energy must be increased as shown in FIG. In FIG. 8, reference numeral 82 indicates the exposure energy, and reference numeral 84 indicates the thickness of the oxide film 35.

【0014】図9は本発明の露光装置を用いた露光方法
を説明するために示した流れ図である。先ず、所望のマ
スクを反射光検出器が含まれた露光装置に設ける(ステ
ップ100)。その後、露光装置の支持台に25乃至5
0枚で構成されたウェハロット(lot)中のテストウェハ
をローディングする(ステップ102)。このウェハ上に
は下部膜が既に形成されており、下部膜上にはフォトレ
ジスト膜が塗布されている。前記下部膜は一例として窒
化膜、或いは酸化膜と窒化膜の複合膜である。続いて、
前記支持台に連結されたモータを用いてテストウェハを
X軸及びY軸へ順次に移動しながら40回乃至60回露光
して前記テストウェハの各区画から反射された反射光を
反射光検出器で検出する(ステップ104)。その後、前
記反射光検出器で検出された反射光を反射光分析装置で
分析してテストウェハの反射光に対する反射光分布マッ
プを得る(ステップ106)。その後、前記テストウェハ
をアンローディングする(ステップ108)。続いて、前
記支持台にウェハロット中の一番目のウェハをローディ
ングする(ステップ110)。一番目のウェハはやはりテ
ストウェハと同一にウェハ上に既に下部膜が形成されて
おり、下部膜質上にはフォトレジスト膜が形成されてい
る。その後、前記テストウェハで分析された反射光分布
マップにより露光調節器で露光量を調節しながら、前記
支持台に連結されたモータを用いて前記一番目ウェハを
X軸及びY軸へ順次に移動させながら各区画に対応して4
0回乃至60回露光する(ステップ112)。その後、前
記一番目のウェハをアンローディングさせた後二番目の
ウェハから最後のウェハまでに対して前記一番目のウェ
ハと同一に反射光分布マップにより露光量を調節しなが
ら露光を実施することにより一つのウェハロットの露光
を済ませる(ステップ114)。なお、以上は、一つの
ウェハロットを露光することを説明したが、製造工場で
多くのウェハロットを露光する場合、個々のウェハロッ
トから任意のウェハを選定して反射光分布マップの分析
と、時に微細校正(calibration)をしながらこれを全体
的なウェハロットに適用することもできる。
FIG. 9 is a flowchart for explaining an exposure method using the exposure apparatus of the present invention. First, a desired mask is provided in an exposure apparatus including a reflected light detector (step 100). Then, 25 to 5 on the support of the exposure apparatus
A test wafer in a wafer lot (lot) composed of 0 sheets is loaded (step 102). A lower film is already formed on this wafer, and a photoresist film is applied on the lower film. The lower film is, for example, a nitride film or a composite film of an oxide film and a nitride film. continue,
Using a motor connected to the support, the test wafer is
Exposure is performed 40 to 60 times while sequentially moving to the X axis and the Y axis, and reflected light from each section of the test wafer is detected by a reflected light detector (step 104). Thereafter, the reflected light detected by the reflected light detector is analyzed by a reflected light analyzer to obtain a reflected light distribution map for the reflected light of the test wafer (step 106). Thereafter, the test wafer is unloaded (Step 108). Then, the first wafer in the wafer lot is loaded on the support (step 110). The first wafer has a lower film already formed on the wafer similarly to the test wafer, and a photoresist film is formed on the lower film quality. Thereafter, the first wafer is adjusted using a motor connected to the support table while adjusting an exposure amount using an exposure controller according to a reflected light distribution map analyzed on the test wafer.
While moving sequentially to the X axis and the Y axis, 4
Exposure is performed 0 to 60 times (step 112). After that, by unloading the first wafer, the second wafer to the last wafer are subjected to exposure while adjusting the exposure amount using the reflected light distribution map in the same manner as the first wafer. Exposure of one wafer lot is completed (step 114). In the above description, one wafer lot is exposed.However, when many wafer lots are exposed at a manufacturing plant, an arbitrary wafer is selected from each wafer lot to analyze a reflection light distribution map and sometimes fine calibration. This can also be applied to the entire wafer lot while calibrating.

【0015】また、以上で実施の形態を通じて本発明を
具体的に説明したが、本発明は上記に限らず本発明の技
術的思想内で当分野の通常の知識により変形や改良が可
能である。
Although the present invention has been described in detail with reference to the embodiment, the present invention is not limited to the above, and can be modified and improved by ordinary knowledge in the art within the technical idea of the present invention. .

【0016】[0016]

【発明の効果】以上詳述したように本発明によれば、下
部膜から反射される反射光を検出し、これに基づき露光
量を調節することにより下部膜により臨界寸法が変わる
現象を改善できる。
As described in detail above, according to the present invention, the phenomenon that the critical dimension is changed by the lower film can be improved by detecting the reflected light reflected from the lower film and adjusting the exposure amount based on the detected light. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】反射光検出器を含む本発明の露光装置の実施の
形態を示す概略図。
FIG. 1 is a schematic diagram showing an embodiment of an exposure apparatus of the present invention including a reflected light detector.

【図2】前記図1の露光装置の反射光分析装置で分析し
た反射光分布マップを示す図。
FIG. 2 is a view showing a reflected light distribution map analyzed by a reflected light analyzer of the exposure apparatus of FIG. 1;

【図3】本発明に係る露光装置で露光を実施するために
準備したウェハを示す図。
FIG. 3 is a view showing a wafer prepared for performing exposure with the exposure apparatus according to the present invention.

【図4】図3の窒化膜の厚さによる反射率を示す図。FIG. 4 is a view showing the reflectance depending on the thickness of the nitride film of FIG. 3;

【図5】図3の窒化膜の厚さによる臨界寸法を示す図。FIG. 5 is a view showing critical dimensions depending on the thickness of the nitride film of FIG. 3;

【図6】本発明に係る露光装置で露光を実施するために
準備したさらに他のウェハを示す図。
FIG. 6 is a view showing still another wafer prepared for performing exposure by the exposure apparatus according to the present invention.

【図7】図6の酸化膜及び窒化膜の厚さによる反射率を
示す図。
FIG. 7 is a graph showing the reflectance depending on the thickness of the oxide film and the nitride film in FIG.

【図8】適正線幅を有するための図6の酸化膜の厚さに
よる露光エネルギを示す図。
FIG. 8 is a diagram showing exposure energy depending on the thickness of the oxide film of FIG. 6 for having an appropriate line width.

【図9】本発明の露光装置を用いた露光方法を説明する
ために示した流れ図。
FIG. 9 is a flowchart shown to explain an exposure method using the exposure apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 支持台 2 モータ 3 ウェハ 5 光源 7 ハーフミラー 9 マスク 11 レンズ 13 反射光検出器 15 反射光分析装置 17 露光調節器 19 シャッタ REFERENCE SIGNS LIST 1 support 2 motor 3 wafer 5 light source 7 half mirror 9 mask 11 lens 13 reflected light detector 15 reflected light analyzer 17 exposure controller 19 shutter

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 フォトレジスト膜が形成されたウェハを
X軸及びY軸へ動かせる支持台と、前記ウェハに選択的に
光を透過させるマスクと、光をマスクへ伝達できる光伝
達ユニットとを備える露光装置において、 前記フォトレジスト膜の下部に形成された下部膜により
反射された反射光を検出できる反射光検出器と、 この反射光検出器から出る反射光を分析して反射光分布
マップを得られる反射光分析装置と、 この反射光分析装置により分析された反射光分布マップ
により露光量を調節する露光調節器とを具備することを
特徴とする露光装置。
1. A wafer on which a photoresist film is formed
An exposure apparatus comprising: a support base that can be moved in the X-axis and the Y-axis; a mask that selectively transmits light to the wafer; and a light transmission unit that can transmit light to the mask. A reflected light detector that can detect the reflected light reflected by the lower film, a reflected light analyzer that can analyze the reflected light from the reflected light detector to obtain a reflected light distribution map, and an analyzer that uses the reflected light analyzer An exposure controller for adjusting an exposure amount based on the reflected light distribution map.
【請求項2】 前記下部膜は窒化膜又は酸化膜と窒化膜
との複合膜であることを特徴とする請求項1に記載の露
光装置。
2. The exposure apparatus according to claim 1, wherein the lower film is a nitride film or a composite film of an oxide film and a nitride film.
【請求項3】 前記支持台はモータを用いてX軸及びY軸
へ移動できることを特徴とする請求項1に記載の露光装
置。
3. The exposure apparatus according to claim 1, wherein the support table can be moved in X and Y axes using a motor.
【請求項4】 所望のマスクを反射光検出器が含まれた
露光装置に設ける段階と、 前記露光装置の支持台にウェハロット中のフォトレジス
トが形成されたテストウェハをローディングする段階
と、 前記テストウェハをX軸及びY軸に区画露光して露光時前
記フォトレジスト下部に形成された下部膜により反射さ
れた反射光を反射光検出器で検出する段階と、 前記反射光検出器で検出された反射光を反射光分析装置
で分析して前記テストウェハの反射光分布マップを得る
段階と、 前記テストウェハをアンローディングする段階と、 前記支持台にウェハロット中の一番目のウェハをローデ
ィングする段階と、 前記テストウェハで分析された反射光分布マップにより
露光量を調節しながら前記一番目のウェハをX軸及びY軸
に区画露光する段階と、 前記一番目のウェハをアンローディングさせる段階と、 前記ウェハロット中の二番目のウェハから最後のウェハ
までに対して前記一番目のウェハと同一に露光を実施す
る段階とを具備することを特徴とする露光方法。
4. A step of providing a desired mask in an exposure apparatus including a reflected light detector; a step of loading a test wafer having a photoresist in a wafer lot on a support table of the exposure apparatus; Detecting the reflected light reflected by the lower film formed under the photoresist at the time of exposure by sectioning and exposing the wafer to the X axis and the Y axis, and detecting the reflected light by the reflected light detector. Analyzing the reflected light with a reflected light analyzer to obtain a reflected light distribution map of the test wafer; unloading the test wafer; and loading a first wafer in a wafer lot on the support. Subjecting the first wafer to X-axis and Y-axis divisional exposure while adjusting the amount of exposure according to the reflected light distribution map analyzed on the test wafer; Unloading a first wafer; and performing the same exposure as the first wafer from the second wafer to the last wafer in the wafer lot. Method.
【請求項5】 前記下部膜は窒化膜又は酸化膜と窒化膜
との複合膜であることを特徴とする請求項4に記載の露
光方法。
5. The exposure method according to claim 4, wherein the lower film is a nitride film or a composite film of an oxide film and a nitride film.
【請求項6】 前記露光量の調節は前記反射光分析装置
に連結された露光調節器とシャッタを用いて遂行するこ
とを特徴とする請求項4に記載の露光方法。
6. The exposure method according to claim 4, wherein the adjustment of the exposure amount is performed using an exposure controller and a shutter connected to the reflected light analyzer.
JP2000000163A 1999-01-08 2000-01-04 Exposure device and exposure method wherein it is used Pending JP2000208411A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1999P-246 1999-01-08
KR1019990000246A KR20000050395A (en) 1999-01-08 1999-01-08 Exposure apparatus having reflective light detector and exposure method using the same

Publications (1)

Publication Number Publication Date
JP2000208411A true JP2000208411A (en) 2000-07-28

Family

ID=19570821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000000163A Pending JP2000208411A (en) 1999-01-08 2000-01-04 Exposure device and exposure method wherein it is used

Country Status (5)

Country Link
JP (1) JP2000208411A (en)
KR (1) KR20000050395A (en)
DE (1) DE19950987A1 (en)
FR (1) FR2788350A1 (en)
NL (1) NL1013287C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153402A (en) * 2006-12-15 2008-07-03 Canon Inc Aligner and method of manufacturing device
US20140152969A1 (en) * 2011-08-18 2014-06-05 ASML, Netherland B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI230390B (en) * 2000-07-11 2005-04-01 Tokyo Electron Ltd Apparatus for determining exposure conditions, method for determining exposure conditions and process apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782981B2 (en) * 1986-02-07 1995-09-06 株式会社ニコン Projection exposure method and apparatus
DE69032005T2 (en) * 1990-04-13 1998-09-17 Hitachi Ltd Method for controlling the thickness of a thin film during its manufacture
US5363171A (en) * 1993-07-29 1994-11-08 The United States Of America As Represented By The Director, National Security Agency Photolithography exposure tool and method for in situ photoresist measurments and exposure control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153402A (en) * 2006-12-15 2008-07-03 Canon Inc Aligner and method of manufacturing device
US20140152969A1 (en) * 2011-08-18 2014-06-05 ASML, Netherland B.V. Lithographic apparatus and device manufacturing method
US9690210B2 (en) * 2011-08-18 2017-06-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
DE19950987A1 (en) 2000-07-13
FR2788350A1 (en) 2000-07-13
NL1013287C2 (en) 2000-07-11
KR20000050395A (en) 2000-08-05

Similar Documents

Publication Publication Date Title
US5943550A (en) Method of processing a semiconductor wafer for controlling drive current
US7292330B2 (en) Wafer inspection with a customized reflective optical channel component
JP2001237174A (en) Reflection-type exposure mask
KR20030085067A (en) Method to measure features with asymmetrical profile
JP2002246299A (en) Reflecting type exposure mask, its manufacturing method and semiconductor element
US6457882B2 (en) Substrate processing method and substrate processing apparatus
JP2000208411A (en) Exposure device and exposure method wherein it is used
TW200428156A (en) Lithographic apparatus, device manufacturing method and substrate holder
JPH07211630A (en) Method and equipment for forming pattern
JP3187581B2 (en) X-ray apparatus, X-ray exposure apparatus, and semiconductor device manufacturing method
KR20040072780A (en) Method for measuring a thickness of a thin layer
JP2000294480A (en) Method for controlling exposure, exposure system, and manufacture of device
JP2000277413A (en) Exposure amount control method, aligner and device manufacturing method
US5834364A (en) Method of implementing of a reference sample for use in a device for characterizing implanted doses
CN112305853A (en) Photomask manufacturing method and semiconductor device manufacturing method including the same
JPH0955352A (en) Apparatus and method for exposure
JP2001230175A (en) Pattern formation method and electron beam exposure system
JP2973737B2 (en) Exposure method and exposure apparatus used for carrying out the method
JPH02297922A (en) Focusing method for photolithogra- -phic device
JP5352989B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
US6225134B1 (en) Method of controlling linewidth in photolithography suitable for use in fabricating integrated circuits
JP2002033268A (en) Surface shape measuring method, exposure method using it, and manufacturing method of device
JP3109946B2 (en) Exposure apparatus and device manufacturing method
KR100373306B1 (en) Measuring method of leveling
Dumford et al. Ag2Te/As2S3, a top‐surface, high‐contrast negative‐tone resist for deep ultraviolet submicron lithography