JP2000206220A - Magnetic field detecting element - Google Patents

Magnetic field detecting element

Info

Publication number
JP2000206220A
JP2000206220A JP11004552A JP455299A JP2000206220A JP 2000206220 A JP2000206220 A JP 2000206220A JP 11004552 A JP11004552 A JP 11004552A JP 455299 A JP455299 A JP 455299A JP 2000206220 A JP2000206220 A JP 2000206220A
Authority
JP
Japan
Prior art keywords
magnetic field
film
electrode
perovskite
conductive oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11004552A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
宏 菅原
Hiroko Higuma
弘子 樋熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11004552A priority Critical patent/JP2000206220A/en
Publication of JP2000206220A publication Critical patent/JP2000206220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a tunnel resistance change ratio by setting an insulator of a thickness with which a tunnel current can be detected and exchange interelectrode magnetic coupling can be shielded between an electrode of a perovskite type conductive oxide magnetic body and a metallic electrode of a ferromagnetic body. SOLUTION: For example, a platinum film is formed as a lower lead wiring 2 by sputtering onto a silicon wafer substrate 1. The substrate is heated to 700 deg.C. An La0.67Sr0.33MnO3 film of a thickness of 80 nm is formed as an electrode 3 of a perovskite type conductive oxide magnetic body by laser ablation, on which an aluminum film of a thickness of 1.5 nm is formed by sputtering. An insulating film 5 is formed by sputter etching and modifying the aluminum film to Al2O3 in Ar+O2 gas. An Ni80Fe20 film of a thickness of 50 nm is formed as a metallic electrode 4 of a ferromagnetic body by sputtering on the insulating film. A layered structure of films 3, 4 and 5 is patterned to a size of 10 μm×30 μm. An insulating layer 7 is formed of an SiO2 film by a lift-off method and an upper lead wiring 6 is formed of a gold sputter film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、磁界を電気的に
検出する磁界検出素子に関する。
The present invention relates to a magnetic field detecting element for detecting a magnetic field electrically.

【0002】[0002]

【従来の技術】従来から、MR素子と呼ばれる磁性体の
磁界による電気抵抗変化(磁気抵抗効果)を利用した磁
界検出素子が位置センサや磁気ディスク装置用磁気ヘッ
ドとして使われてきた。近年では、これよりも磁界検出
感度の高い磁気抵抗効果を有するGMR素子の実用化も
始まっている。この素子構造は多層構造の磁性薄膜であ
る。将来的にさらに高感度の磁界検出素子として期待さ
れているのがCMR素子であり、これはペロブスカイト
型マンガン酸化物の磁気抵抗効果を利用している。一
方、もう一つの将来的な磁界検出素子はTMR素子と呼
ばれるもので、磁性体間のトンネル電流の磁界依存性を
利用するものである。
2. Description of the Related Art Hitherto, a magnetic field detecting element called an MR element utilizing a change in electric resistance (magnetoresistive effect) due to a magnetic field of a magnetic material has been used as a position sensor or a magnetic head for a magnetic disk drive. In recent years, practical use of a GMR element having a magnetoresistance effect with higher magnetic field detection sensitivity has started. This element structure is a magnetic thin film having a multilayer structure. In the future, CMR elements are expected as higher sensitivity magnetic field detection elements, and use the magnetoresistance effect of perovskite-type manganese oxide. On the other hand, another future magnetic field detecting element is called a TMR element, which utilizes the magnetic field dependence of a tunnel current between magnetic materials.

【0003】CMR素子に向けて研究されているペロブ
スカイト型マンガン酸化物について、たとえば“Phy
sical Review B”53(1996)R1
689〜R1692に掲載されたY.Tomioka,
A.Asamitsu,H.Kuwahara,Y.M
oritomoおよびY.Tokuraの論文ではPr
1-xCaxMnO3単結晶が紹介されており、0.3<x
<0.4の組成範囲の単結晶に温度77Kで12Tの磁
界を印加すると、その電気抵抗が6〜8桁も減少する。
また“Appl.Phys.Lett.”66(199
5)1689〜1691に掲載されたG.C.Xion
g,Q.Li,L.Ju,R.l.Greeneおよび
T.Venkatesanの論文では薄膜の場合でもN
0.7Sr0.3MnO3の薄膜に温度60Kで8Tの磁界
を印加すると、その電気抵抗が2桁近く減少することが
示されている。
A perovskite-type manganese oxide studied for a CMR element is described in, for example, "Phy
local Review B "53 (1996) R1
689-R1692. Tomioka,
A. Asamitsu, H .; Kuwahara, Y .; M
oritomo and Y .; Pr in Tokura's paper
1-x Ca x MnO 3 single crystal is introduced, and 0.3 <x
When a magnetic field of 12 T is applied at a temperature of 77 K to a single crystal having a composition range of <0.4, the electric resistance decreases by 6 to 8 digits.
Also, “Appl. Phys. Lett.” 66 (199)
5) G. G. published in 1689 to 1691; C. Xion
g, Q. Li, L .; Ju, R .; l. Greene and T.W. Venkatesan's paper states that N
It has been shown that when a magnetic field of 8 T is applied to a d 0.7 Sr 0.3 MnO 3 thin film at a temperature of 60 K, its electric resistance decreases by almost two orders of magnitude.

【0004】ペロブスカイト型マンガン酸化物における
このように巨大な磁気抵抗効果の原因は一般に次のよう
に考えられている。一般式R1-xxMnO3(Rは三価
の希土金属、Aは二価のアルカリ土類金属)で表される
ある種のペロブスカイト型マンガン酸化物は低温では強
磁性の良導電体であり、その伝導機構はいわゆるホッピ
ング伝導である。すなわち、R元素の一部がA元素で置
換されているため三価のマンガンの一部が四価のマンガ
ンとなるので伝導電子準位に空準位が生じ、それを介し
て電子がマンガン原子間を跳び移ることにより電気伝導
が生じる。このとき跳び移り前後で電子のスピンは同じ
向きに保存されるが、強磁性体状態ではマンガン原子の
外殻電子のスピンは同じ向きに揃っている。したがっ
て、電子の跳び移りは容易であって良導電体となる。一
方、高温になってペロブスカイト型マンガン酸化物が強
磁性体から常磁性体に転移したり、組成を変えて反強磁
性体にしたりすると、隣接マンガン原子のスピンは同じ
向きに揃っていないので電子の跳び移りが困難となり、
電気抵抗は非常に大きくなる。この現象をCMR素子と
して使うにはペロブスカイト型マンガン酸化物の組成
を、使用温度では常磁性体または反強磁性体状態であ
り、外部磁界を印加することにより強磁性体状態に転移
できるような組成にしておく。そうすれば外部磁界の印
加により電気抵抗の大きな変化が生じて磁界センサとし
て利用できる。
[0004] The cause of such a huge magnetoresistance effect in perovskite-type manganese oxide is generally considered as follows. Certain perovskite-type manganese oxides represented by the general formula R 1-x A x MnO 3 (R is a trivalent rare earth metal and A is a divalent alkaline earth metal) are ferromagnetic and good conductive at low temperatures. Body, and its conduction mechanism is so-called hopping conduction. That is, since a part of the R element is replaced by the A element, a part of the trivalent manganese becomes tetravalent manganese, so that an empty level is generated in the conduction electron level, through which electrons are converted to manganese atoms. Jumping between creates electrical conduction. At this time, the spins of the electrons are preserved in the same direction before and after the jump, but in the ferromagnetic state, the spins of the outer electrons of the manganese atom are aligned in the same direction. Therefore, the jump of the electrons is easy and a good conductor is obtained. On the other hand, when the perovskite-type manganese oxide changes from a ferromagnetic material to a paramagnetic material at a high temperature, or changes its composition to an antiferromagnetic material, the spins of adjacent manganese atoms are not aligned in the same direction, so the electron It becomes difficult to jump
The electrical resistance becomes very large. In order to use this phenomenon as a CMR element, the composition of the perovskite-type manganese oxide is such that it is in a paramagnetic or antiferromagnetic state at the operating temperature and can be changed to a ferromagnetic state by applying an external magnetic field. Keep it. In that case, the application of an external magnetic field causes a large change in electric resistance, and can be used as a magnetic field sensor.

【0005】ペロブスカイト型マンガン酸化物を用いた
磁界センサは別の原理によるものも提案されている。
“Physical Review B”54(199
6)R8357〜R8360に掲載されたY.Lu,
X.W.Li,G.Q.Gong,G.Xiao,A.
Gupta,P.Lecoeur,J.Z.Sun,
Y.Y.WangおよびV.P.Dravidの論文に
はペロブスカイト型マンガン酸化物を電極とするトンネ
ル接合が報告されている。これは二層のLa0.67Sr
0.33MnO3蒸着膜をSrTiO3の絶縁膜を介して積層
したものである。La0. 67Sr0.33MnO3膜は4.2
Kでは強磁性導電体であり、その抗磁力は下層が56O
e、上層が160Oeになっている。絶縁層の厚さは3
〜6nmと薄いため、上下層の電極間に電圧を印加する
と絶縁層を通してトンネル電流が流れる。このトンネル
電流で両層間を移動する電子はスピンの向きが保持され
なければならない。そのため上下層のLa0.67Sr0.33
MnO3膜の磁化の向きが同じときはトンネル電流が流
れやすく、逆向きのときは流れにくい。したがって外部
磁界を変化させ、それが上層、下層の抗磁力をこえる
と、その層の磁化の向きが変わり、上下層の磁化の向き
が平行になったり反平行になったりして同時にトンネル
電流も増減する。4.2Kでのトンネル電流の変化量は
トンネル抵抗値に換算すると、110Oe以下の磁界で
約80%である。
[0005] Using perovskite type manganese oxide
A magnetic field sensor based on another principle has been proposed.
"Physical Review B" 54 (199
6) Y. published in R8357 to R8360. Lu,
X. W. Li, G .; Q. Gong, G .; Xiao, A .;
Gupta, P .; Lecoeur, J .; Z. Sun,
Y. Y. Wang and V.W. P. In Dravid's paper
Is a tunnel using perovskite-type manganese oxide as an electrode.
Has been reported. This is a two-layer La0.67Sr
0.33MnOThreeSrTiOThreeLaminated via insulating film
It was done. La0. 67Sr0.33MnOThreeThe membrane is 4.2
K is a ferromagnetic conductor, and its coercive force is
e, the upper layer is 160 Oe. The thickness of the insulating layer is 3
Voltage is applied between upper and lower electrodes because it is as thin as ~ 6 nm
Tunnel current flows through the insulating layer. This tunnel
Electrons moving between the layers due to current maintain their spin directions
There must be. Therefore, the upper and lower La0.67Sr0.33
MnOThreeWhen the magnetization directions of the films are the same, tunnel current flows.
It is easy to flow, and it is hard to flow when it is in the opposite direction. Therefore external
Changes the magnetic field, which exceeds the coercive force of the upper and lower layers
The magnetization direction of the layer changes, and the magnetization directions of the upper and lower layers
Become parallel or anti-parallel and simultaneously tunnel
The current also increases and decreases. The change amount of the tunnel current at 4.2K is
When converted to tunnel resistance, a magnetic field of 110 Oe or less
About 80%.

【0006】磁性体のトンネル接合による磁界センサ
は、磁性体としてペロブスカイト型マンガン酸化物でな
く、強磁性体金属を上下層電極に用いたものも報告され
ている。“Appl.Phys.Lett.”73(1
998)698〜670に掲載されたJ.Nassa
r,M.Hehn,A.Vaures,F.Petro
ffおよびA.Fertの論文にはCo/Al23/N
80Fe20という層構成のトンネル接合が報告されてい
る。このトンネル接合の4.2Kでのトンネル抵抗変化
率は5Oe以下の磁界で約17%であり、室温では約6
%である。
A magnetic field sensor using a tunnel junction of a magnetic material has been reported in which a ferromagnetic metal is used for the upper and lower layer electrodes instead of a perovskite-type manganese oxide as the magnetic material. "Appl. Phys. Lett." 73 (1
998) J98-670. Nassa
r, M. Hehn, A .; Vaures, F.C. Petro
ff and A.I. Fert's paper states that Co / Al 2 O 3 / N
Tunnel junction layer structure has been reported that i 80 Fe 20. The tunnel resistance change rate of this tunnel junction at 4.2 K is about 17% in a magnetic field of 5 Oe or less, and about 6% at room temperature.
%.

【0007】[0007]

【発明が解決しようとする課題】以上に述べた各種磁界
センサはその特性に一長一短がある。ペロブスカイト型
マンガン酸化物の磁気抵抗素子は巨大な抵抗変化を示す
が、そのためには常磁性体または反強磁性体状態から強
磁性体に転移させるための大きな磁界が必要である。こ
の素子を弱磁界でも動作させるためにMnZnフェライ
トやパーマロイなどの透磁率の大きい強磁性体コアで挟
むという方法も考えられるが、素子全体の体積が大きく
なるのと微小化したときの加工法の困難性のために用途
が限られてしまう。
The various magnetic field sensors described above have advantages and disadvantages in their characteristics. A perovskite-type manganese oxide magnetoresistive element exhibits a large change in resistance, but requires a large magnetic field for transition from a paramagnetic or antiferromagnetic state to a ferromagnetic substance. In order to operate this element even in a weak magnetic field, a method of sandwiching it between ferromagnetic cores having a large magnetic permeability such as MnZn ferrite or permalloy can be considered. Difficulty limits applications.

【0008】ペロブスカイト型マンガン酸化物のトンネ
ル接合素子の場合は磁性状態の転移ではなく、強磁性体
状態における磁化方向の反転を利用するため動作磁界は
前記のように大幅に小さくなる。それでも、一層小さい
磁界や微小領域に発生している磁界を検出するためには
さらに動作磁界を小さくする必要がある。たとえば高記
録密度のハードディスク装置に使用されている磁気抵抗
ヘッドは5Oe程度の磁界で動作する磁性膜を用いてお
り、この程度の動作磁界が望まれる。
In the case of a perovskite-type manganese oxide tunnel junction device, the operating magnetic field is significantly reduced as described above because the magnetization direction is reversed in the ferromagnetic state instead of the magnetic state transition. Nevertheless, in order to detect a smaller magnetic field or a magnetic field generated in a minute area, it is necessary to further reduce the operating magnetic field. For example, a magnetoresistive head used in a hard disk drive having a high recording density uses a magnetic film that operates with a magnetic field of about 5 Oe, and such an operating magnetic field is desired.

【0009】一方、強磁性体金属同志のトンネル接合で
は、強磁性体金属の磁化反転磁界の大きさを小さくする
ことが比較的容易なため、前記例のように動作磁界を極
めて小さくできる。しかしトンネル抵抗の最大変化率は
ペロブスカイト型マンガン酸化物のトンネル接合素子に
比べるとかなり小さい。
On the other hand, in a tunnel junction between ferromagnetic metals, it is relatively easy to reduce the magnitude of the magnetization reversal magnetic field of the ferromagnetic metal, so that the operating magnetic field can be extremely reduced as in the above example. However, the maximum change rate of the tunnel resistance is considerably smaller than that of a perovskite-type manganese oxide tunnel junction device.

【0010】この発明は前記のような問題点を解決する
ためになされたもので、動作磁界は強磁性体金属のトン
ネル接合素子と同等に小さく、トンネル抵抗変化率はそ
れよりも大きい磁界検出素子を得ることを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has a magnetic field detecting element having an operating magnetic field as small as a ferromagnetic metal tunnel junction element and a tunnel resistance change rate larger than that. The purpose is to get.

【0011】[0011]

【課題を解決するための手段】この発明の請求項1にか
かわる磁界検出素子は、ペロブスカイト型導電性酸化物
磁性体電極と、強磁性体金属電極と、前記2つの電極の
あいだに設置され、トンネル電流の検出と、前記2つの
電極間の交換磁気結合の遮断が可能な厚さを有する絶縁
膜とを備えたものである。
The magnetic field detecting element according to claim 1 of the present invention is provided between a perovskite-type conductive oxide magnetic electrode, a ferromagnetic metal electrode, and the two electrodes, An insulating film having a thickness capable of detecting a tunnel current and interrupting exchange magnetic coupling between the two electrodes is provided.

【0012】この発明の請求項2にかかわる磁界検出素
子は、検出対象とする磁界強度範囲の外部磁界に対し
て、前記ペロブスカイト型導電性酸化物磁性体電極の磁
化方向は実質的に変化せず、前記強磁性体金属電極の磁
化方向が実質的に変化するように前記2つの電極の抗磁
力の大きさが制御されたものである。
In the magnetic field detecting element according to a second aspect of the present invention, the magnetization direction of the perovskite-type conductive oxide magnetic material electrode does not substantially change with respect to an external magnetic field within a magnetic field strength range to be detected. The magnitude of the coercive force of the two electrodes is controlled so that the magnetization direction of the ferromagnetic metal electrode changes substantially.

【0013】この発明の請求項3にかかわる磁界検出素
子は、前記ペロブスカイト型導電性酸化物磁性体電極が
基板上に形成され、前記絶縁膜と前記強磁性体電極がそ
の上部に配置されたものである。
According to a third aspect of the present invention, there is provided a magnetic field detecting element, wherein the perovskite-type conductive oxide magnetic material electrode is formed on a substrate, and the insulating film and the ferromagnetic material electrode are disposed thereon. It is.

【0014】[0014]

【発明の実施の形態】この発明の磁界検出素子の基本構
成は、絶縁膜をはさんで、一方にペロブスカイト型マン
ガン酸化物等のペロブスカイト型導電性酸化物磁性体の
電極を備え、他方に強磁性体金属の電極を備えたもので
ある。絶縁膜はトンネル電流が流れる程度に薄く、両側
の2つの電極間の交換磁気結合を遮断し、且つトンネル
電流の測定のための印加電圧に耐える絶縁性を有する厚
さで作られている。このような絶縁膜は金属酸化物や金
属と金属酸化物の積層体で作ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The basic structure of a magnetic field detecting element according to the present invention is such that an electrode of a perovskite-type conductive oxide magnetic material such as a perovskite-type manganese oxide is provided on one side with an insulating film interposed therebetween, and the other is strong. It is provided with a magnetic metal electrode. The insulating film is thin enough to allow a tunnel current to flow, has a thickness that has an insulating property to block exchange magnetic coupling between two electrodes on both sides and withstand an applied voltage for measuring the tunnel current. Such an insulating film can be formed using a metal oxide or a stacked body of a metal and a metal oxide.

【0015】この場合もペロブスカイト型マンガン酸化
物の磁化の向きと強磁性体金属の磁化の向きが平行のと
きにはトンネル抵抗が小さく、反平行のときにはトンネ
ル抵抗が大きい。ただし検出範囲内の磁界に対して、ペ
ロブスカイト型マンガン酸化物の磁化の向きは変化せ
ず、強磁性体金属の磁化の向きだけが変化するようにそ
れぞれの抗磁力の大きさを制御してある。この制御は電
極の材料組成、形成法、形状などを調整することにより
可能である。このような構成の磁界検出素子の動作磁界
は強磁性体金属の抗磁力の大きさだけで決まり、その大
きさを小さくすることは従来技術で行えるので、動作磁
界の小さい磁界検出素子を作ることができる。
Also in this case, when the magnetization direction of the perovskite-type manganese oxide is parallel to the magnetization direction of the ferromagnetic metal, the tunnel resistance is small, and when the magnetization direction is antiparallel, the tunnel resistance is large. However, the magnitude of each coercive force is controlled so that the magnetization direction of the perovskite-type manganese oxide does not change with respect to the magnetic field within the detection range, and only the magnetization direction of the ferromagnetic metal changes. . This control can be performed by adjusting the material composition, forming method, shape, and the like of the electrode. The operating magnetic field of the magnetic field detecting element having such a configuration is determined only by the magnitude of the coercive force of the ferromagnetic metal, and it is possible to reduce the magnitude by the conventional technology. Can be.

【0016】この磁界検出素子の電気抵抗変化率は前記
従来例による強磁性体金属同志のトンネル接合素子より
も大きい。その理由は強磁性体電極間のトンネル電流特
性と強磁性体材料とのあいだに次のような関係があるか
らである。すなわち強磁性体電極間のトンネル抵抗の最
大変化率は理論的に次式で表されることが知られてい
る。
The rate of change in electric resistance of this magnetic field detecting element is greater than that of the conventional ferromagnetic metal tunnel junction element. The reason is that the following relationship exists between the tunnel current characteristics between the ferromagnetic electrodes and the ferromagnetic material. That is, it is known that the maximum rate of change of the tunnel resistance between the ferromagnetic electrodes is theoretically expressed by the following equation.

【0017】 (Rap−Rp)/Rp=2PAB(1−PAB)‥‥‥(1) ここでRpは両電極の磁化の向きが平行のときのトンネ
ル抵抗、Rapは反平行のトンネル抵抗である。PA
Bはそれぞれの電極のスピン分極率で、上向きスピ
ン、下向きスピンの数をそれぞれn↑、n↓とすると次
式で与えられる。
(Rap−Rp) / Rp = 2P A P B (1−P A P B ) ‥‥‥ (1) where Rp is the tunnel resistance when the magnetization directions of both electrodes are parallel, and Rap is Parallel tunnel resistance. P A ,
P B is the spin polarizability of each electrode, and is given by the following equation, where the numbers of upward spins and downward spins are n ↑ and n ↓, respectively.

【0018】 P=(n↑−n↓)/(n↑+n↓)‥‥‥(2) したがってスピン分極率が大きいほど、トンネル抵抗の
最大変化率が大きくなる。この理論式と各種トンネル接
合での実測値とは必ずしも正確に一致はしていないが、
強磁性体電極のスピン分極率が大きいほどトンネル抵抗
の変化率が大きいという傾向は実測結果と一致する。文
献によれば室温でのNi80Fe20およびCoのスピン分
極率はそれぞれ0.30、0.34であり、低温では若
干増加する。一方、“固体物理”32(1997)29
8〜308に掲載された木村および十倉の論文には低温
でのペロブスカイト型マンガン酸化物のスピン分極率は
理論的に1.0に近いことが述べられており、実測では
La0.67Sr0.33MnO3膜で0.54(温度4.2
K)というスピン分極率が報告されている。
P = (n ↑ −n ↓) / (n ↑ + n ↓) ‥‥‥ (2) Therefore, as the spin polarizability increases, the maximum rate of change of the tunnel resistance increases. Although this theoretical formula does not always exactly match the measured value at various tunnel junctions,
The tendency that the higher the spin polarization of the ferromagnetic electrode is, the larger the rate of change in the tunnel resistance is, which is consistent with the measured results. According to the literature, the spin polarizabilities of Ni 80 Fe 20 and Co at room temperature are 0.30 and 0.34, respectively, and slightly increase at low temperatures. On the other hand, "Solid State Physics" 32 (1997) 29
The papers by Kimura and Tokura published in Nos. 8 to 308 state that the spin polarizability of perovskite-type manganese oxides at low temperatures is theoretically close to 1.0, and La 0.67 Sr 0.33 MnO 3 is measured by actual measurement. 0.54 at the membrane (temperature 4.2
K) has been reported.

【0019】前記各種材料のスピン分極率を用い、式
(1)に基づいてトンネル抵抗変化率を計算すると次の
ようになる。すなわち、Ni80Fe20とCoの組み合わ
せを電極としたときは23%、La0.67Sr0.33MnO
3同志を電極としたときは82%、Ni80Fe20とLa
0.67Sr0.33MnO3の組み合わせを電極としたときは
39%となる。したがって本発明による構成のトンネル
接合型磁界検出素子は、ペロブスカイト型マンガン酸化
物同志を電極としたものよりも弱い磁界で動作し、かつ
強磁性体金属同志を電極としたものよりも大きなトンネ
ル抵抗変化率が得られることになる。
Using the spin polarizabilities of the various materials and calculating the tunnel resistance change rate based on equation (1), the following is obtained. That is, when the electrode is made of a combination of Ni 80 Fe 20 and Co, 23% and La 0.67 Sr 0.33 MnO are used.
3 comrades when was the electrode 82%, Ni 80 Fe 20 and La
When a combination of 0.67 Sr 0.33 MnO 3 is used as an electrode, the ratio is 39%. Therefore, the tunnel junction type magnetic field detecting element having the configuration according to the present invention operates with a weaker magnetic field than that using the perovskite type manganese oxide as an electrode, and has a larger tunnel resistance change than that using the ferromagnetic metal as an electrode. Rate will be obtained.

【0020】[0020]

【実施例】以下、この発明の一実施例を図に基づいて説
明する。図1は本実施例にかかわる磁界検出素子の断面
図である。図1において、1は基板、2は下部リード配
線、3はペロブスカイト型導電性酸化物磁性体電極、4
は強磁性体金属電極、5はトンネル接合部に設置された
絶縁膜、6は上部リード配線、7はリード配線間の絶縁
層である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a magnetic field detecting element according to the present embodiment. In FIG. 1, 1 is a substrate, 2 is a lower lead wiring, 3 is a perovskite-type conductive oxide magnetic material electrode,
Is a ferromagnetic metal electrode, 5 is an insulating film provided at a tunnel junction, 6 is an upper lead wiring, and 7 is an insulating layer between the lead wirings.

【0021】基板1はシリコンウェハを用い、その上に
下部リード配線2としての白金膜をスパッタリングで形
成する。この基板を700℃に加熱しながらペロブスカ
イト型導電性酸化物磁性体電極3として厚さ80nmの
La0.67Sr0.33MnO3膜をレーザアブレーションで
形成し、つづいてその上に厚さ1.5nmのアルミニウ
ム膜をスパッタリングで形成した。絶縁膜5はこのアル
ミニウム膜をAr+O 2ガス中でスパッタエッチしてA
23に変えることにより形成した。したがって絶縁膜
5の正確な厚さは不明であるが、スパッタエッチの諸条
件を変化させ最適なトンネル電流が得られる条件で試料
を作成した。他の報告例によれば、特性からの推定値と
して1.5〜6nmの範囲であろうとの報告がある。さ
らにこの上に厚さ50nmのNi80Fe20膜をスパッタ
リングで形成して強磁性体金属電極4とした。次に写真
製版によりレジストパターンを形成し、イオンミリング
でエッチングすることにより、3、4、5の積層構造を
10μm×30μmの大きさにパターニングした。つづ
いてリフトオフ法により絶縁層7をSiO2膜で形成
し、さらに上部リード配線6を金スパッタ膜で形成し
た。ペロブスカイト型導電性酸化物磁性体電極3の抗磁
力は約80Oeであった。強磁性体金属電極4の磁気特
性はパターニング前の磁界中熱処理により最適化し、パ
ターニング後の抗磁力の大きさが5Oe以下になるよう
にした。
As the substrate 1, a silicon wafer is used, and
Forming a platinum film as the lower lead wiring 2 by sputtering
To achieve. While heating this substrate to 700 ° C.,
The electrode type conductive oxide magnetic material electrode 3 has a thickness of 80 nm.
La0.67Sr0.33MnOThreeLaser ablation of film
And then 1.5 nm thick aluminum
A film was formed by sputtering. The insulating film 5
Ar + O minium film TwoSputter etch in gas
lTwoOThreeIt was formed by changing to Therefore insulating film
The exact thickness of 5 is unknown, but the sputter etch conditions
Sample under conditions that change the conditions to obtain the optimal tunnel current
It was created. According to other reports, estimates from properties and
There is a report that the range may be 1.5 to 6 nm. Sa
Furthermore, a 50 nm thick Ni80Fe20Sputter film
The ferromagnetic metal electrode 4 was formed by a ring. Next photo
Form resist pattern by plate making, ion milling
By etching at 3, the laminated structure of 3, 4, 5
Patterning was performed to a size of 10 μm × 30 μm. Continued
And the insulating layer 7 is made of SiOTwoFormed with film
Then, the upper lead wiring 6 is formed with a gold sputtered film.
Was. Coercivity of perovskite-type conductive oxide magnetic electrode 3
The force was about 80 Oe. Magnetic characteristics of ferromagnetic metal electrode 4
Is optimized by heat treatment in a magnetic field before patterning.
The coercive force after turning should be less than 5 Oe
I made it.

【0022】このようにして作成した素子を温度4.2
Kに冷却し、上下部リード配線間に直流電圧を印加して
両電極間に流れるトンネル電流の外部磁界依存性を測定
した結果を図2に示す。トンネル抵抗に換算すると外部
磁界5Oe以下で最大抵抗変化率30%が得られた。
The device fabricated in this manner was operated at a temperature of 4.2.
FIG. 2 shows the result of measuring the external magnetic field dependence of the tunnel current flowing between both electrodes by applying a DC voltage between the upper and lower lead wires after cooling to K. In terms of tunnel resistance, a maximum resistance change rate of 30% was obtained at an external magnetic field of 5 Oe or less.

【0023】本発明の磁界検出素子に用いるペロブスカ
イト型導電性酸化物としては、スピン分極率の大きいこ
とが要求されるが、抗磁力が小さいことは必要でなく、
選択の自由度が大きい。また、抗磁力を小さくするため
の形成条件の制約もない。
The perovskite-type conductive oxide used in the magnetic field detecting element of the present invention is required to have a high spin polarizability, but does not need to have a low coercive force.
Great freedom of choice. Also, there is no restriction on the forming conditions for reducing the coercive force.

【0024】本実施例では、ペロブスカイト型導電性酸
化物磁性体電極3としてLa0.67Sr0.33MnO3膜を
用いたが、その理由はこの膜のキュリー温度が300K
以上であり、低温でのスピン分極率が大きいと考えたか
らである。La1-xPbxMnO3(x=0.3−0.
4)膜やLa1-xSrxNiO3(x=0.3)膜もキュ
リー温度が300K以上であり、同様に使用が可能であ
る。キュリー温度がもっと低い他のペロブスカイト型導
電性酸化物磁性体を電極として用いても、使用温度範囲
は狭くなるが原理的に動作は同じである。また今後キュ
リー温度のもっと高いペロブスカイト型導電性酸化物磁
性体が発見されれば、同様の素子構成で使用温度範囲を
高くすることが可能である。また本実施例では強磁性体
金属電極4としてNi80Fe20膜を用いたが、抗磁力が
小さければ他のFe、Ni、Coのいずれかを含む強磁
性体金属膜でもよい。また本実施例では絶縁膜5として
Al23膜を用いたが、SrZrO3、SrZr(T
i)O3、PbTiO3、MgO、ZrO2などの絶縁膜
を用いてもよい。
In this embodiment, a La 0.67 Sr 0.33 MnO 3 film was used as the perovskite-type conductive oxide magnetic material electrode 3 because the Curie temperature of this film was 300K.
This is because the spin polarization at a low temperature is considered to be large. La 1-x Pb x MnO 3 (x = 0.3-0.
4) The film and the La 1-x Sr x NiO 3 (x = 0.3) film also have a Curie temperature of 300 K or more and can be used similarly. Even if another perovskite-type conductive oxide magnetic material having a lower Curie temperature is used as an electrode, the operating temperature range is narrowed, but the operation is basically the same. Further, if a perovskite-type conductive oxide magnetic material having a higher Curie temperature is discovered in the future, it is possible to increase the operating temperature range with a similar element configuration. In this embodiment, the Ni 80 Fe 20 film is used as the ferromagnetic metal electrode 4. However, other ferromagnetic metal films containing any of Fe, Ni, and Co may be used as long as the coercive force is small. In this embodiment, the Al 2 O 3 film is used as the insulating film 5. However, SrZrO 3 , SrZr (T
i) An insulating film such as O 3 , PbTiO 3 , MgO, or ZrO 2 may be used.

【0025】[0025]

【発明の効果】以上のように、この発明によればトンネ
ル接合型の磁気検出素子において強磁性体金属およびペ
ロブスカイト型導電性酸化物磁性体を上下電極とし、検
出磁界範囲で強磁性体金属電極の磁化の向きだけが実質
的に変化するような構成にしたので、次のような効果が
得られる。
As described above, according to the present invention, in a tunnel junction type magnetic sensing element, a ferromagnetic metal and a perovskite type conductive oxide magnetic material are used as upper and lower electrodes, and a ferromagnetic metal electrode is used in a detection magnetic field range. Since only the magnetization direction is substantially changed, the following effects can be obtained.

【0026】1)強磁性体金属同志を電極とするトンネ
ル接合型磁界検出素子と同様の弱磁界で動作し、それよ
りもトンネル抵抗変化率の大きい磁界検出素子が得られ
る。
1) A magnetic field detecting element which operates with a weak magnetic field similar to a tunnel junction type magnetic field detecting element having electrodes of ferromagnetic metals as electrodes and has a larger tunnel resistance change rate can be obtained.

【0027】2)従来のペロブスカイト型導電性酸化物
磁性体同志を上下電極とするトンネル接合型磁界検出素
子はできるだけ検出磁界を小さくするために下部電極の
抗磁力を小さくしなければならず、そのために下部電極
の形成条件に種々の制約があったが、この発明によれば
ペロブスカイト型導電性酸化物磁性体電極の抗磁力はい
くら大きくても良いので、作成が容易となる。
2) In a conventional tunnel junction type magnetic field detecting element having upper and lower electrodes made of perovskite-type conductive oxide magnetic materials, the coercive force of the lower electrode must be reduced in order to reduce the detected magnetic field as much as possible. However, there are various restrictions on the conditions for forming the lower electrode, but according to the present invention, the perovskite-type conductive oxide magnetic electrode can have any coercive force, which facilitates fabrication.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例にかかわる磁界検出素子の
断面図である。
FIG. 1 is a sectional view of a magnetic field detecting element according to an embodiment of the present invention.

【図2】 本発明の磁界検出素子のトンネル電流の外部
磁界依存性を示す図である。
FIG. 2 is a diagram showing the external magnetic field dependence of the tunnel current of the magnetic field detecting element of the present invention.

【符号の説明】[Explanation of symbols]

1 基板、2 下部リード配線、3 ペロブスカイト型
導電性酸化物磁性体電極、4 強磁性体金属電極、5
絶縁膜、6 上部リード配線、7 リード配線間絶縁
層。
1 substrate, 2 lower lead wiring, 3 perovskite-type conductive oxide magnetic material electrode, 4 ferromagnetic metal electrode, 5
Insulating film, 6 Upper lead wiring, 7 Insulating layer between lead wiring.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ペロブスカイト型導電性酸化物磁性体電
極と、強磁性体金属電極と、前記2つの電極のあいだに
設置され、トンネル電流の検出と、前記2つの電極間の
交換磁気結合の遮断が可能な厚さを有する絶縁膜とを備
えた磁界検出素子。
1. A perovskite-type conductive oxide magnetic electrode, a ferromagnetic metal electrode, and a ferromagnetic metal electrode disposed between the two electrodes for detecting a tunnel current and interrupting exchange magnetic coupling between the two electrodes. A magnetic field detecting element comprising:
【請求項2】 検出対象とする磁界強度範囲の外部磁界
に対して、前記ペロブスカイト型導電性酸化物磁性体電
極の磁化方向は実質的に変化せず、前記強磁性体金属電
極の磁化方向が実質的に変化するように前記2つの電極
の抗磁力の大きさが制御された請求項1記載の磁界検出
素子。
2. A magnetization direction of the perovskite-type conductive oxide magnetic material electrode does not substantially change with respect to an external magnetic field within a magnetic field strength range to be detected, and a magnetization direction of the ferromagnetic metal electrode changes. 2. The magnetic field detecting element according to claim 1, wherein the magnitude of the coercive force of the two electrodes is controlled so as to substantially change.
【請求項3】 前記ペロブスカイト型導電性酸化物磁性
体電極が基板上に形成され、前記絶縁膜と前記強磁性体
電極がその上部に配置された請求項1または2記載の磁
界検出素子。
3. The magnetic field detecting element according to claim 1, wherein said perovskite-type conductive oxide magnetic material electrode is formed on a substrate, and said insulating film and said ferromagnetic material electrode are disposed thereon.
JP11004552A 1999-01-11 1999-01-11 Magnetic field detecting element Pending JP2000206220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11004552A JP2000206220A (en) 1999-01-11 1999-01-11 Magnetic field detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11004552A JP2000206220A (en) 1999-01-11 1999-01-11 Magnetic field detecting element

Publications (1)

Publication Number Publication Date
JP2000206220A true JP2000206220A (en) 2000-07-28

Family

ID=11587220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11004552A Pending JP2000206220A (en) 1999-01-11 1999-01-11 Magnetic field detecting element

Country Status (1)

Country Link
JP (1) JP2000206220A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084014A (en) * 2000-09-06 2002-03-22 Ricoh Co Ltd Tunnel magnetoresistive effect element and device using the same
US6746875B2 (en) 2001-10-17 2004-06-08 Nec Electronics Corporation Magnetic memory and method of its manufacture
JP2004228561A (en) * 2003-01-23 2004-08-12 Sharp Corp Cross point memory array isolated with dual trench and its manufacturing method
JP2004260162A (en) * 2003-02-27 2004-09-16 Sharp Corp Manufacturing method of pram array and pram

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084014A (en) * 2000-09-06 2002-03-22 Ricoh Co Ltd Tunnel magnetoresistive effect element and device using the same
US6746875B2 (en) 2001-10-17 2004-06-08 Nec Electronics Corporation Magnetic memory and method of its manufacture
JP2004228561A (en) * 2003-01-23 2004-08-12 Sharp Corp Cross point memory array isolated with dual trench and its manufacturing method
JP4651075B2 (en) * 2003-01-23 2011-03-16 シャープ株式会社 Dual-point isolated cross-point memory array and manufacturing method thereof
JP2004260162A (en) * 2003-02-27 2004-09-16 Sharp Corp Manufacturing method of pram array and pram
JP4718119B2 (en) * 2003-02-27 2011-07-06 シャープ株式会社 RRAM array manufacturing method and RRAM

Similar Documents

Publication Publication Date Title
JP3583102B2 (en) Magnetic switching element and magnetic memory
TW546648B (en) Spin switch and magnetic storage element using the same
JP4231506B2 (en) Magnetic switch element and magnetic memory using the same
KR100320008B1 (en) A spin dependent conduction device
US6483741B1 (en) Magnetization drive method, magnetic functional device, and magnetic apparatus
US6639765B2 (en) Magnetoresistive element and magnetoresistive device using the same
JP4714918B2 (en) Spin injection device and magnetic device using spin injection device
EP1571713A1 (en) Spin injection device, magnetic device using the same, magnetic thin film used in the same
US7005691B2 (en) Magnetoresistance element and magnetoresistance storage element and magnetic memory
JP3593472B2 (en) Magnetic element, magnetic memory and magnetic sensor using the same
JP2004179219A (en) Magnetic device and magnetic memory using the same
US20090015969A1 (en) Magnetic thin film, magnetoresistance effect device and magnetic device using the same
WO2007119748A1 (en) Magnetic random access memory and method for manufacturing the same
JP4304688B2 (en) Spin filter effect element and magnetic device using the same
JP3697369B2 (en) Magnetic element, magnetic memory device, magnetoresistive head, magnetic head gimbal assembly, and magnetic recording system
JP3946355B2 (en) Magnetic element, magnetic sensor and magnetic storage device using the same
JP3344712B2 (en) Pinning layer for magnetic devices
JP4061590B2 (en) Magnetic thin film, magnetoresistive effect element and magnetic device using the same
JP2001339110A (en) Magnetism control element, magnetic component using the same and memory device
JP3520192B2 (en) Magnetic element and magnetic component and electronic component using the same
JP2000206220A (en) Magnetic field detecting element
JP2003318462A (en) Magnetoresistance effect element and magnetic head and magnetic memory using the element
JP2000357828A (en) Ferromagnetic oxide and magnetoresistance element wherein the same is used
JP4978868B2 (en) Spin filter effect element and magnetic device using the same
JP2001320108A (en) Magneto resistance element, magnetic storage device and magnetic sensor