JP2000205556A - Operating method of once-through boiler - Google Patents
Operating method of once-through boilerInfo
- Publication number
- JP2000205556A JP2000205556A JP429399A JP429399A JP2000205556A JP 2000205556 A JP2000205556 A JP 2000205556A JP 429399 A JP429399 A JP 429399A JP 429399 A JP429399 A JP 429399A JP 2000205556 A JP2000205556 A JP 2000205556A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- excess air
- fuel
- air ratio
- superheater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Regulation And Control Of Combustion (AREA)
- Solid-Fuel Combustion (AREA)
- Combustion Of Fluid Fuel (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、変圧貫流ボイラ装
置の運転方法に係り、特に部分負荷の亜臨界圧領域にお
けるボイラ火炉壁の熱吸収量の変動幅を制御し、コスト
低減を図るのに好適な石炭焚き変圧貫流ボイラ装置の運
転方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a once-through boiler apparatus, and more particularly to a method for controlling a fluctuation range of a heat absorption amount of a boiler furnace wall in a sub-critical pressure region of a partial load to reduce costs. The present invention relates to a preferred method of operating a coal-fired variable pressure once-through boiler.
【0002】[0002]
【従来の技術】変圧貫流ボイラの系統図を図5に示す。
図5においてボイラ火炉壁4は、水管を板状に連続溶接
したメンブレン壁からなり、伝熱面を構成している。ボ
イラ火炉壁4への給水は、まず、給水ポンプ1から給水
加熱器2に送られて加熱された後、節炭器3を経てボイ
ラ火炉壁4に送られる。給水は、ボイラ火炉壁4で加熱
されながら上昇し、ついには蒸気を生成する。生成した
蒸気は気水分離器13、一次過熱器5、過熱器過熱低減
器14a、二次過熱器6、過熱器過熱低減器14bおよ
び三次過熱器7を経て高圧タービン8へ送られる。高圧
タービン8で仕事をした蒸気は一次再熱器9、再熱器過
熱低減器15および二次再熱器10を経て中圧タービン
11へ蒸気を送るよう系統構成されている。なお、中圧
タービン11から排出される蒸気は復水器12で熱回収
され、給水系へ循環使用される。2. Description of the Related Art A system diagram of a variable-pressure once-through boiler is shown in FIG.
In FIG. 5, the boiler furnace wall 4 is formed of a membrane wall in which water tubes are continuously welded in a plate shape, and forms a heat transfer surface. Water supplied to the boiler furnace wall 4 is first sent from the water supply pump 1 to the feed water heater 2 and heated, and then sent to the boiler furnace wall 4 through the economizer 3. The feedwater rises while being heated by the boiler furnace wall 4, and finally generates steam. The generated steam is sent to the high-pressure turbine 8 through the steam separator 13, the primary superheater 5, the superheater overheat reducer 14a, the secondary superheater 6, the superheater overheat reducer 14b, and the tertiary superheater 7. The steam that has worked in the high-pressure turbine 8 is systematically configured to send the steam to the medium-pressure turbine 11 through the primary reheater 9, the reheater overheat reducer 15, and the secondary reheater 10. The steam discharged from the intermediate pressure turbine 11 is recovered in a condenser 12 for heat and is circulated to a water supply system.
【0003】また、ボイラ火炉壁4から出る気水混合流
体を気水分離器13で分離して水を貫流域である一次過
熱器5に流さないで節炭器3側に循環させる流路に切替
弁16を設ける。また、給水加熱器2で加熱され、ボイ
ラ火炉壁4へ供給される給水の一部は節炭器3の入口部
から抽水されて過熱器注水流量調節弁17の設けられた
分岐配管から過熱器過熱低減器14a、14bに供給さ
れる。さらに、給水ポンプ1の中段からの圧力の低い給
水の一部は、抽水されて再熱器注水流量調節弁18が設
けられた分岐配管から再熱器過熱低減器15に供給可能
である。Further, the steam-water mixed fluid flowing out of the boiler furnace wall 4 is separated by a steam-water separator 13 so that the water is not circulated to the primary superheater 5 which is a flow-through area, but is circulated to the economizer 3 side. A switching valve 16 is provided. Further, a part of the feed water heated by the feed water heater 2 and supplied to the boiler furnace wall 4 is extracted from the inlet of the economizer 3 through a branch pipe provided with the superheater injection flow control valve 17 and the superheater. It is supplied to the overheat reducers 14a and 14b. Further, a part of the supply water having a low pressure from the middle stage of the water supply pump 1 can be extracted and supplied to the reheater overheat reducer 15 from a branch pipe provided with the reheater injection flow control valve 18.
【0004】図3には上記石炭焚き変圧貫流ボイラにお
ける各伝熱器のエンタルピ−圧力線図を示す。図3の横
軸に内部流体の出口圧力、縦軸に内部流体の出口エンタ
ルピを示す。また、図3の横軸方向の細線は内部流体の
等温線であり、左側の山形状の内側の温度が急上昇する
領域はスチーミング発生域であることを示す。FIG. 3 shows an enthalpy-pressure diagram of each heat exchanger in the above-mentioned coal-fired variable pressure once-through boiler. The horizontal axis of FIG. 3 shows the outlet pressure of the internal fluid, and the vertical axis shows the outlet enthalpy of the internal fluid. Further, the thin line in the horizontal axis direction in FIG. 3 is an isotherm of the internal fluid, and the region where the temperature rises sharply inside the mountain shape on the left side is a steaming generation region.
【0005】図3に示すように超臨海圧領域では、火炉
出口では蒸気と水の混合流体は完全に蒸気だけが存在す
る。しかし、亜臨界領域では火炉出口付近で蒸気と水が
混合して存在し得る領域がある。As shown in FIG. 3, in the supercritical pressure region, the mixed fluid of steam and water contains only steam at the outlet of the furnace. However, in the subcritical region, there is a region where steam and water can exist in a mixture near the furnace outlet.
【0006】このように亜臨界圧領域で貫流ボイラを運
転する場合には、ボイラ火炉壁4から出る気水混合流体
が貫流域である過熱器5に流れないように水を分離し
て、節炭器3側に循環させる運転(循環運転)と、ボイ
ラ火炉4から出る気水混合流体が蒸気のみに変化した後
に前記切替弁16を切替えて貫流域のみに流す場合の切
替を行う必要がある。亜臨界圧領域での前記循環と貫流
との切り替えをスムーズに行うためには過熱器入口での
蒸気の過熱度S(図3参照)、すなわち過熱器入口での
流体の飽和温度に対する過熱温度を適切に確保すること
が重要となる。When the once-through boiler is operated in the subcritical pressure region as described above, the water is separated so that the steam-water mixed fluid flowing out of the boiler furnace wall 4 does not flow to the superheater 5 which is the once-through region, and the water is separated. It is necessary to perform an operation of circulating to the charcoal device 3 side (circulation operation) and a case of switching the switching valve 16 after the steam-water mixed fluid flowing out of the boiler furnace 4 changes to only steam and flowing only the once-through region. . In order to smoothly switch between the circulation and the once-through flow in the subcritical pressure region, the superheat degree S (see FIG. 3) of the steam at the superheater inlet, that is, the superheat temperature with respect to the saturation temperature of the fluid at the superheater inlet is determined. It is important to secure them properly.
【0007】しかしながら、炭種の違いにより火炉内で
の熱吸収率が大きく変化するため、この過熱度を常に適
切な値に確保することが困難となる。そこで、従来の石
炭焚き変圧貫流ボイラ装置は、炭種の違いによる火炉内
での熱吸収量の違いに対して、図5に示すように火炉壁
面を構成する水壁で加熱される前の水を過熱器過熱低温
器14a、14bでスプレすることにより火炉壁面を通
過する気水混合流体の流量を変化させて過熱器入口での
適切な蒸気温度の過熱度を確保している。また前記スプ
レにより過熱器5、6を通過する蒸気の温度を調節して
いる。However, since the heat absorption rate in the furnace greatly changes depending on the type of coal, it is difficult to always maintain this degree of superheat at an appropriate value. Therefore, the conventional coal-fired variable-pressure once-through boiler apparatus, as shown in FIG. 5, is provided with water before being heated by the water wall constituting the furnace wall as shown in FIG. Is sprayed by a superheater / superheater / lower heater 14a, 14b to change the flow rate of the gas-water mixed fluid passing through the furnace wall surface, thereby ensuring an appropriate degree of superheat of the steam temperature at the inlet of the superheater. The temperature of the steam passing through the superheaters 5 and 6 is adjusted by the spray.
【0008】なお、図3におけるMCR(Maximu
m Continuous Ratio:最大連続負
荷)は、夏場など復水器の真空度が下がり、タービン
8、11の効率が低下するため、ボイラとしては100
%負荷以上の余裕としてプラス7%から8%程度持って
おり、その余裕を含めた負荷をいう。通常の運転では1
00%負荷で考えればよく、従って、本発明では無視し
ている。The MCR (Maximum) shown in FIG.
mContinuous Ratio: maximum continuous load), the degree of vacuum in the condenser is reduced in summer and the efficiency of the turbines 8 and 11 is reduced.
It has about 7% to 8% as a margin above the% load, and refers to the load including the margin. 1 for normal operation
It is sufficient to consider the load at 00%, and therefore, it is ignored in the present invention.
【0009】[0009]
【発明が解決しようとする課題】上記従来のボイラ装置
は、図4に示すように炭種(燃料比等に基づく区別)の
違いにかかわらず、各負荷において所定の空気過剰率で
運転しており、炭種(燃料比等に基づく区別)の違いに
よる大きな火炉熱吸収変動を過熱器スプレ以外の方法で
抑制させることはできなかった。As shown in FIG. 4, the conventional boiler apparatus operates at a predetermined excess air ratio at each load regardless of the type of coal (discrimination based on the fuel ratio or the like). As a result, large fluctuations in furnace heat absorption due to differences in coal type (discrimination based on fuel ratio, etc.) could not be suppressed by any method other than the superheater spray.
【0010】そのため、安定運用に向けて蒸気の過熱度
を一定範囲内に抑えるためには過熱器過熱低温器14
a、14bでのスプレ量を大きく変化させる必要があ
り、過熱器スプレ設備容量が増大し、コストアップにつ
ながる問題があった。本発明の課題は、過熱器入口での
適切な過熱度を確保しながら、しかも過熱器スプレ容量
設備を縮小させてコスト低減を図ることにある。Therefore, in order to keep the degree of superheat of the steam within a certain range for stable operation, the superheater and superheater 14
It is necessary to greatly change the spray amount in a and 14b, and there is a problem that the superheater spray equipment capacity increases and leads to an increase in cost. An object of the present invention is to reduce the cost by reducing the superheater spray capacity equipment while ensuring an appropriate degree of superheat at the superheater inlet.
【0011】[0011]
【課題を解決するための手段】本発明の課題は、過熱器
スプレのみでなく、空気過剰率の制御をすることでボイ
ラ火炉壁の熱吸収量の変動幅を抑制することで解決でき
る。本発明は部分負荷の亜臨界圧領域での空気過剰率を
使用燃料石炭の炭種毎に個別に予め設定されたプログラ
ムに従って制御する貫流ボイラ装置の運転方法である。The object of the present invention can be solved by controlling not only the superheater spray but also the excess air ratio to suppress the fluctuation range of the heat absorption of the boiler furnace wall. The present invention is a method of operating a once-through boiler apparatus in which the excess air ratio in the subcritical pressure region of a partial load is controlled according to a preset program for each coal type of fuel coal used.
【0012】多数の炭種を燃料として使用する場合に
は、使用燃料石炭中の固定炭素含有率および揮発分含有
率の関数である燃料比に基づき利用可能な数のグループ
に分け、各グループ毎に空気過剰率を設定する。そし
て、例えば、使用燃料石炭を燃料比(固定炭素含有率/
揮発分含有率)により低燃料比炭、中燃料比炭、高燃料
比炭の3つのグループに分け、中燃料比炭の空気過剰率
に対し、低燃料比炭は空気過剰率を上げ、高燃料比炭は
空気過剰率を下げることにより、貫流ボイラ装置の運転
を行う。こうして過熱器スプレ容量設備を縮小させコス
ト低減を図ることができる。When a large number of coal types are used as fuel, the number of available coal types is divided into available groups based on the fuel ratio which is a function of the fixed carbon content and the volatile content in the fuel coal used. Set the excess air ratio to Then, for example, the used fuel coal is converted into a fuel ratio (fixed carbon content /
Volatile content), it is divided into three groups: low fuel ratio coal, medium fuel ratio coal, and high fuel ratio coal. The fuel-to-fuel ratio operates the once-through boiler device by lowering the excess air ratio. In this way, the size of the superheater spray capacity equipment can be reduced, and the cost can be reduced.
【0013】ここで、個別のプログラム設定とは、例え
ば図1に示すようにボイラで燃焼させる石炭の性状によ
って、その石炭を、例えば低燃料比炭、中燃料比炭およ
び高燃料比炭というようにグループに分け、グループ毎
に負荷に対する空気過剰率のカーブをプログラム設定し
て、炭種(燃料比等)の違いによって空気過剰率のカー
ブを可変し、各負荷に対する空気過剰率を制御するもの
である。Here, the individual program setting means, for example, as shown in FIG. 1, depending on the properties of the coal to be burned in the boiler, the coal is, for example, a low fuel specific coal, a medium fuel specific coal, and a high fuel specific coal. The group is divided into groups, and the curve of the excess air ratio with respect to the load is programmed for each group, and the curve of the excess air ratio is varied depending on the type of coal (fuel ratio, etc.) to control the excess air ratio for each load. It is.
【0014】[0014]
【作用】ボイラ火炉壁内を流れる流体に対する燃焼ガス
からの熱の伝熱は主として輻射伝熱に支配される。その
輻射伝熱の主要パラメータである燃焼ガス放射率は雰囲
気温度にも依存するが、CO2やH2O等の輻射性ガ
ス、すす及びフライアッシュなどの輻射性固体粒子の単
位体積当たりの濃度にも依存する。The heat transfer from the combustion gas to the fluid flowing in the boiler furnace wall is mainly governed by radiant heat transfer. The combustion gas emissivity, which is a main parameter of radiant heat transfer, also depends on the ambient temperature, but the concentration per unit volume of radiant gas such as CO 2 and H 2 O, and radiant solid particles such as soot and fly ash. Also depends.
【0015】前記輻射性固体粒子の単位体積当たりの濃
度は空気過剰率により変化させることができるため、空
気過剰率に基づき燃焼ガス体率を変化させてボイラ火炉
壁での熱吸収量を制御することができる。Since the concentration of the radiating solid particles per unit volume can be changed by the excess air ratio, the amount of heat absorbed by the boiler furnace wall is controlled by changing the combustion gas mass ratio based on the excess air ratio. be able to.
【0016】例えば、図2のボイラ火炉の断面図に示す
ようにバーナ部21で揮発分の高い石炭、すなわち燃料
比の低い石炭は、輻射性固体粒子のすすを多く発生する
ため、燃焼ガス放射率が高く、火炉20内の熱吸収量が
増加する。そこで、このような場合には空気過剰率を増
加させることにより、輻射性ガス及び輻射姓固体粒子の
濃度を減少させて燃焼ガス放射率を低下させ、火炉20
内での流体に対する燃焼ガスからの熱の熱吸収を抑制す
る。For example, as shown in the cross-sectional view of the boiler furnace in FIG. 2, coal having a high volatile content in the burner portion 21, that is, coal having a low fuel ratio generates a large amount of soot of radiating solid particles. The rate is high, and the amount of heat absorbed in the furnace 20 increases. Therefore, in such a case, by increasing the excess air ratio, the concentration of the radiant gas and the radiant solid particles is reduced, and the emissivity of the combustion gas is reduced.
The heat absorption of the heat from the combustion gas to the fluid in the inside is suppressed.
【0017】以上のように、空気過剰率の変化により、
炭種(燃料比他)の違いによる大きなボイラ火炉壁での
熱吸収量の変動幅を、炭種(燃料比他)毎に空気過剰率
を個別プログラム設定にすることにより低減することが
できる。なお、灰分含有量は燃料比により求めた空気過
剰率にバイアスをかけるために用いられる。As described above, due to the change in the excess air ratio,
A large fluctuation range of the heat absorption amount in the boiler furnace wall due to the difference in the coal type (fuel ratio, etc.) can be reduced by setting the excess air ratio for each coal type (fuel ratio, etc.) in an individual program. The ash content is used to bias the excess air ratio obtained from the fuel ratio.
【0018】[0018]
【発明の実施の形態】本発明の実施の形態について、以
下説明する。ボイラ火炉壁での熱吸収量の変動幅低減の
ための空気過剰率制御の説明に必要な石炭のグループ
化、炭種(燃料比他)の違いに対する空気過剰率の設
定、空気過剰率炭種(燃料比他)毎の個別プログラム
制御について説明する。 石炭のグループ化 まず、対象の石炭を燃焼させる前に、その石炭の石炭性
状分析を行い、工業分析における固定炭素、揮発分及び
灰分含有率を評価する。そして、燃料比(固定炭素含有
率/揮発分含有率)の関数により、対象の石炭を低燃料
比炭、中燃料比炭および高燃料比炭といったグループに
区別する。 炭種(燃料比他)の違いに対する空気過剰率の設定 前記において選定されたグループ毎に図1(a)に示
す燃料比毎の空気過剰率カーブのいずれかを選択する。
ここで、図1(b)に示すように灰分含有率が高い場合
には選定した空気過剰率カーブに対して補正を行う。 炭種(燃料比他)毎の個別プログラム制御 において選定されたグループ毎の石炭を燃焼させる際
に、負荷に対する空気過剰率カーブ設定をプログラムに
より切り替えることで火炉熱吸収量の制御を行う。こう
して、表1に各負荷でのスプレ量の比率で示すように本
発明の空気過剰率制御により石炭燃焼によるボイラ火炉
壁の熱吸収量の変動幅を低減することができた。Embodiments of the present invention will be described below. Grouping of coal necessary for explanation of excess air ratio control to reduce the fluctuation range of heat absorption in boiler furnace wall, setting of excess air ratio for difference in coal type (fuel ratio etc.), excess air ratio coal type The individual program control for each (fuel ratio, etc.) will be described. Coal grouping First, before burning the target coal, the coal is analyzed for its coal properties to evaluate the fixed carbon, volatile and ash content in industrial analysis. Then, the target coal is classified into groups such as low-fuel ratio coal, medium-fuel ratio coal, and high-fuel ratio coal by a function of the fuel ratio (fixed carbon content / volatile content). Setting of excess air ratio for difference in coal type (fuel ratio etc.) One of the excess air ratio curves for each fuel ratio shown in FIG. 1 (a) is selected for each of the groups selected above.
Here, as shown in FIG. 1B, when the ash content is high, the correction is performed on the selected excess air rate curve. When burning coal for each group selected in individual program control for each coal type (fuel ratio, etc.), the furnace heat absorption is controlled by switching the excess air ratio curve setting for the load by a program. Thus, as shown in Table 1 by the ratio of the spray amount at each load, the fluctuation range of the heat absorption amount of the boiler furnace wall due to coal combustion could be reduced by the air excess ratio control of the present invention.
【0019】[0019]
【表1】 なお上記表1の数値はスプレ量が最大となる高熱量比炭
をベースにしたスプレ量の比率を表わす。その結果、過
熱度を確保するための過熱器スプレ量を、従来の大容量
石炭焚き変圧貫流ボイラにおいて常識であった過熱器ス
プレ3段を2段化することができ、コスト低減が図れ
た。[Table 1] The numerical values in Table 1 above represent the ratio of the spray amount based on the high calorific value coal that maximizes the spray amount. As a result, the amount of the superheater spray for securing the degree of superheat can be reduced to three stages of the superheater spray, which is common knowledge in the conventional large-capacity coal-fired variable-pressure once-through boiler, and the cost can be reduced.
【0020】[0020]
【発明の効果】本発明によれば、石炭燃焼による大きな
ボイラ火炉壁の熱吸収量の変動幅を空気過剰率制御によ
り低減することができる。その結果、過熱度を確保する
ための過熱器スプレ量を低減することができ、コスト低
減が図れた。According to the present invention, the fluctuation range of the heat absorption amount of the large boiler furnace wall due to coal combustion can be reduced by controlling the excess air ratio. As a result, the amount of the superheater spray for securing the degree of superheat could be reduced, and the cost was reduced.
【図1】 本発明における実施の形態の負荷に対する空
気過剰率の設定例を示す図である。FIG. 1 is a diagram illustrating an example of setting an excess air ratio with respect to a load according to an embodiment of the present invention.
【図2】 低燃料比の炭種の燃焼時の火炉内の伝熱特性
を示す図である。FIG. 2 is a view showing heat transfer characteristics in a furnace when burning low-fuel-ratio coal types.
【図3】 変圧貫流ボイラにおける各伝熱器のエンタル
ピ−圧力線図を示す図である。FIG. 3 is a diagram showing an enthalpy-pressure diagram of each heat exchanger in the variable-pressure once-through boiler.
【図4】 従来技術における負荷に対する空気過剰率の
設定例を示す図である。FIG. 4 is a diagram showing a setting example of an excess air ratio with respect to a load in the related art.
【図5】 変圧貫流ボイラの系統図である。FIG. 5 is a system diagram of a variable-pressure once-through boiler.
1 給水ポンプ 2 給水加熱器 3 節炭器 4 ボイラ火炉
壁 5 一次過熱器 6 二次過熱器 7 三次過熱器 8 高圧タービ
ン 9 一次再熱器 10 二次再熱
器 11 中圧タービン 12 復水器 13 汽水分離器 14 過熱器過
熱低減器 15 再熱器過熱低減器 16 切替弁 17 過熱器注水流量調節弁 18 再熱器注
水流量調節弁REFERENCE SIGNS LIST 1 feed water pump 2 feed water heater 3 economizer 4 boiler furnace wall 5 primary superheater 6 secondary superheater 7 tertiary superheater 8 high pressure turbine 9 primary reheater 10 secondary reheater 11 medium pressure turbine 12 condenser 13 Steam separator 14 Superheater overheat reducer 15 Reheater overheat reducer 16 Switching valve 17 Superheater injection flow control valve 18 Reheater injection flow control valve
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 茂樹 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 Fターム(参考) 3K003 AA03 AC01 CA05 DA05 3K046 AA02 AB01 BA01 EA05 FA06 3K091 BB02 CC13 CC24 DD02 3L021 AA04 BA01 CA10 DA25 DA26 EA01 FA13 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shigeki Morita 6-9 Takara-cho, Kure-shi, Hiroshima Babcock Hitachi Kure Factory F-term (reference) 3K003 AA03 AC01 CA05 DA05 3K046 AA02 AB01 BA01 EA05 FA06 3K091 BB02 CC13 CC24 DD02 3L021 AA04 BA01 CA10 DA25 DA26 EA01 FA13
Claims (4)
使用燃料石炭の炭種毎に個別に予め設定されたプログラ
ムに従って制御することを特徴とする貫流ボイラ装置の
運転方法。1. A method of operating a once-through boiler apparatus, wherein an excess air ratio in a subcritical region of a partial load is controlled in accordance with a preset program for each type of coal used as fuel.
含有率の関数である燃料比によりグループに分け、各グ
ループ毎に空気過剰率を設定することを特徴とする請求
項1記載の貫流ボイラ装置の運転方法。2. The once-through flow according to claim 1, wherein the used fuel coal is divided into groups by a fuel ratio which is a function of a fixed carbon content and a volatile content, and an excess air ratio is set for each group. Operating method of boiler device.
分含有率及び灰分含有率に基づく関数により炭種毎の燃
焼時の空気過剰率を個別にプログラム設定することを特
徴とする請求項1記載の貫流ボイラ装置の運転方法。3. The method according to claim 2, wherein the excess air ratio during combustion for each coal type is individually programmed by a function based on the fixed carbon content, volatile content, and ash content in the fuel used. The method for operating the once-through boiler device according to claim 1.
なくとも2以上のグループに分け、低い燃料比の石炭は
空気過剰率を上げ、高い燃料比の石炭は空気過剰率を下
げることを特徴とする請求項2記載の貫流ボイラ装置の
運転方法。4. The fuel used is divided into at least two or more groups according to the size of the fuel ratio, and coal having a low fuel ratio increases the excess air ratio, and coal having a high fuel ratio decreases the excess air ratio. The method for operating the once-through boiler device according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP429399A JP2000205556A (en) | 1999-01-11 | 1999-01-11 | Operating method of once-through boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP429399A JP2000205556A (en) | 1999-01-11 | 1999-01-11 | Operating method of once-through boiler |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000205556A true JP2000205556A (en) | 2000-07-25 |
Family
ID=11580477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP429399A Pending JP2000205556A (en) | 1999-01-11 | 1999-01-11 | Operating method of once-through boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000205556A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101311629B (en) * | 2007-05-25 | 2010-06-02 | 王泽章 | On-line detection method for controlling station boiler combustion extinguishment |
EP2998651A1 (en) * | 2011-04-01 | 2016-03-23 | Mitsubishi Heavy Industries, Ltd. | Boiler and method for operating boiler |
CN113091046A (en) * | 2021-04-15 | 2021-07-09 | 中国电力工程顾问集团华东电力设计院有限公司 | Double reheat boiler and outlet steam temperature control method and device thereof |
-
1999
- 1999-01-11 JP JP429399A patent/JP2000205556A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101311629B (en) * | 2007-05-25 | 2010-06-02 | 王泽章 | On-line detection method for controlling station boiler combustion extinguishment |
EP2998651A1 (en) * | 2011-04-01 | 2016-03-23 | Mitsubishi Heavy Industries, Ltd. | Boiler and method for operating boiler |
US9671108B2 (en) | 2011-04-01 | 2017-06-06 | Mitsubishi Heavy Industries, Ltd. | Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler |
CN113091046A (en) * | 2021-04-15 | 2021-07-09 | 中国电力工程顾问集团华东电力设计院有限公司 | Double reheat boiler and outlet steam temperature control method and device thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102889570B (en) | Tower-type boiler with primary reheater and secondary reheater | |
CN104763485B (en) | A kind of concurrent heating type ultrahigh pressure/subcritical back pressure thermal power plant unit thermodynamic system | |
US5269130A (en) | Method for operating a gas and steam turbine plant and gas and steam turbine plant operated according to the method | |
WO2014131272A1 (en) | Boiler provided with external steam heater | |
CN108775573A (en) | A kind of novel electricity generation boiler of burning away the refuse | |
AU674751B2 (en) | Steam turbine | |
CN107062296A (en) | One kind prevents station boiler low-temperature corrosion system | |
CN105953216A (en) | Temperature lowering structure for waste incineration boiler reheater | |
CN106122938A (en) | A kind of can the double reheat system of power station boiler of homoiothermic flexibly | |
EP0588392A1 (en) | Steam and gas turbine power plant using moistened natural gas | |
KR20170105028A (en) | A steam turbine plant, a combined cycle plant having the steam turbine plant, and a method of operating the steam turbine plant | |
JP3836139B2 (en) | Method and apparatus for starting once-through boiler | |
JP2000205556A (en) | Operating method of once-through boiler | |
JP2018189276A (en) | Power generation plant and method for operating the same | |
JP3140539B2 (en) | Waste heat recovery boiler and method of supplying de-heated water | |
JPH01203802A (en) | Steam production system at high pressure and high temperature level | |
CN210532338U (en) | Low-calorific-value gas oxygen-enriched combustion power generation system | |
CN101056719A (en) | Device and method for boiler superheat temperature control | |
CN208025489U (en) | A kind of full film type wall boiler water wall loop structure | |
JP2006125760A (en) | Exhaust heat recovery boiler and its control system | |
JPH0729364Y2 (en) | Independent steam superheater | |
JP5766527B2 (en) | Method and apparatus for controlling once-through boiler | |
JP2021046989A (en) | Feedwater heating system, power generation plant equipped with the same, and operation method of feedwater heating system | |
JP3285946B2 (en) | Steam temperature controller for variable-pressure once-through boiler | |
Kumar et al. | Effect of Parameters in Once-Through Boiler for Controlling Reheat Steam Temperature in Supercritical Power Plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050615 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050628 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060314 |